
SocLib's way of handling locks
Traditionnal setups implements locks through RCU (Read/copy/update) -- ie atomic -- operations. This is archieved
by not releasing the bus between a read and a write operation. Most of the time with SocLib designs, we have
NoC-centric designs rather than buses therefore we can't lock bus access between operations, and can't avoid race
conditions.

A new scheme is introduced in a specific ram component:

Every accessible word is a spin lock• 
Read operation returns the spin lock's status

0 if not locked♦ 
other if locked♦ 

• 

Read operation locks the spin lock (so the spin lock is always taken after a read)• 
Write operation releases the spin lock (even if locked by another CPU)• 

Weirdness
Usual setups implements atomic operations which are used for locks• 
Soclib implements spin locks which are used to protect atomic operations• 

Weirdness 1


