
Srl API
The Srl API is an abstraction layer that provides the software programmer an easy acces to several communication
and synchronisation resources.

Thanks to the Srl (System Ressource Layer) API, the same code can be compiled and executed on several platforms
such as

a Linux/Posix? workstation•
an MP-SoC architecture running the Mutek OS.•

The code of the tasks is supposed to be written in C.

Mwmr Communication Channels

srl_mwmr_t channel = GET_ARG(port_name) defines a local variable associated to a MWMR
channel acces port. The port_name argument corresponds to the port name defined in the task model
defined in the DSX/L description.

•

srl_mwmr_read(channel, local_buffer, size) reads size 32-bit words from the MWMR
channel to the local buffer. The local_buffer argument is a void*. The size argument must be a
multiple of the channel width.

•

srl_mwmr_write(channel, local_buffer, size) writes size 32-bit words from the local
buffer to the MWMR channel. The local_buffer argument is a void*. The size argument must be a
multiple of the channel width.

•

Locks

srl_lock_t lock = GET_ARG(port_name) defines a local variable associated to a lock. The
port_name argument corresponds to the port name defined in the task model defined in the DSX/L
description.

•

srl_lock_lock(lock) takes a lock, waiting if necessary•
srl_lock_unlock(lock) releases the lock•

Barriers

srl_barrier_t barrier = GET_ARG(port_name) defines a local variable associated to a
barrier. The port_name argument corresponds to the port name defined in the task model defined in the
DSX/L description.

•

srl_barrier_wait(barrier) waits for a barrier-global synchronization•

Logging

Log API let you define several message levels. Levels allow you to keep the debug code in the source, and only
compile it when needed.

In order, levels are:

Srl API 1

NONE•
TRACE•
DEBUG•
MAX•

When writing your software, you decide what level the message is for. When compiling or running you software,
you decide what minimal level your code must have to be printed.

srl_log(level, "message") prints a message•
srl_log_printf(level, "message_with_format", arguments...) prints a printf-like
message

•

Arguments in printf-like version may be not evaluated if level is not sufficient. Therefore you MUST NOT put
expressions with side effects in the parameter list. ie do not do this:

srl_log_printf(DEBUG, "i=%d\n", i++);

Other APIs

srl_busy_cycles(N) tells the simulation environment the simulation should run at least N cycles
while in this call. This makes sense only for virtually synthetised tasks, otherwise, this call is a noop.

•

srl_mwmr_config(controller_name, reg_n, value) puts value value in config
register reg_n of specified controller

•

srl_mwmr_status(controller_name, reg_n) reads status register reg_n of specified
controller, returns a int32_t

•

srl_assert(cond) checks cond is true, fatally fails otherwise•

Logging 2

