[812] | 1 | /*************************************************************************/ |
---|
| 2 | /* */ |
---|
| 3 | /* Copyright (c) 1994 Stanford University */ |
---|
| 4 | /* */ |
---|
| 5 | /* All rights reserved. */ |
---|
| 6 | /* */ |
---|
| 7 | /* Permission is given to use, copy, and modify this software for any */ |
---|
| 8 | /* non-commercial purpose as long as this copyright notice is not */ |
---|
| 9 | /* removed. All other uses, including redistribution in whole or in */ |
---|
| 10 | /* part, are forbidden without prior written permission. */ |
---|
| 11 | /* */ |
---|
| 12 | /* This software is provided with absolutely no warranty and no */ |
---|
| 13 | /* support. */ |
---|
| 14 | /* */ |
---|
| 15 | /*************************************************************************/ |
---|
| 16 | |
---|
| 17 | /////////////////////////////////////////////////////////////////////////// |
---|
| 18 | // This is the port of the SPLASH FFT benchmark on the GIET_VM OS. |
---|
| 19 | // It has been done by Hao LIU (04/12/2014), and Alain Greiner (14/03/2016). |
---|
| 20 | // |
---|
| 21 | // This application performs the 1D fast Fourier transfom for an array |
---|
| 22 | // of N complex points, using the Cooley-Tuckey FFT method. |
---|
| 23 | // The N data points are seen as a 2D array (rootN rows * rootN columns). |
---|
| 24 | // Each thread handle (rootN / nthreads) rows. The N input data points |
---|
| 25 | // be initialised in three different modes: |
---|
| 26 | // - CONSTANT : all data points have the same [1,0] value |
---|
| 27 | // - COSIN : data point n has [cos(n/N) , sin(n/N)] values |
---|
| 28 | // - RANDOM : data points have pseudo random values |
---|
| 29 | // |
---|
| 30 | // This application uses 4 shared data arrays, that are distributed |
---|
| 31 | // in all clusters (one sub-buffer per cluster): |
---|
| 32 | // - data[N] contains N input data points, with 2 double per point. |
---|
| 33 | // - trans[N] contains N intermediate data points, 2 double per point. |
---|
| 34 | // - umain[rootN] contains rootN coefs required for a rootN points FFT. |
---|
| 35 | // - twid[N] contains N coefs : exp(2*pi*i*j/N) / i and j in [0,rootN-1]. |
---|
| 36 | // For data, trans, twid, each sub-buffer contains (N/nclusters) points. |
---|
| 37 | // For umain, each sub-buffer contains (rootN/nclusters) points. |
---|
| 38 | // |
---|
| 39 | // The two main parameters are the following: |
---|
| 40 | // - M : N = 2**M = number of data points / M must be an even number. |
---|
| 41 | // - T : nthreads = nprocs defined by the hardware / must be power of 2. |
---|
| 42 | // |
---|
| 43 | // Several configuration parameters can be defined below: |
---|
| 44 | // - VERBOSE : Print out complex data points arrays. |
---|
| 45 | // - CHECK : Perform both FFT and inverse FFT to check output/input. |
---|
| 46 | // - DEBUG : Display intermediate results |
---|
| 47 | /////////////////////////////////////////////////////////////////////////// |
---|
| 48 | |
---|
| 49 | #include "stdio.h" |
---|
| 50 | #include "stdlib.h" |
---|
| 51 | #include "user_barrier.h" |
---|
| 52 | #include "malloc.h" |
---|
| 53 | #include "math.h" |
---|
| 54 | |
---|
| 55 | // constants |
---|
| 56 | |
---|
| 57 | #define PI 3.14159265359 |
---|
| 58 | #define PAGE_SIZE 4096 |
---|
| 59 | #define CLUSTERS_MAX 256 |
---|
| 60 | #define THREADS_MAX 1024 |
---|
| 61 | #define RANDOM 0 |
---|
| 62 | #define COSIN 1 |
---|
| 63 | #define CONSTANT 2 |
---|
| 64 | |
---|
| 65 | // parameters |
---|
| 66 | |
---|
| 67 | #define DEFAULT_M 16 |
---|
| 68 | #define VERBOSE 0 |
---|
| 69 | #define CHECK 0 |
---|
| 70 | #define DEBUG 0 |
---|
| 71 | #define DETAILED_DEBUG 0 |
---|
| 72 | #define MODE RANDOM |
---|
| 73 | |
---|
| 74 | // macro to swap two variables |
---|
| 75 | #define SWAP(a,b) { double tmp; tmp = a; a = b; b = tmp; } |
---|
| 76 | |
---|
| 77 | // global variables |
---|
| 78 | unsigned int x_size; // number of clusters per row in the mesh |
---|
| 79 | unsigned int y_size; // number of clusters per column in the mesh |
---|
| 80 | unsigned int nprocs; // number of processors per cluster |
---|
| 81 | long nthreads; // total number of threads (one thread per proc) |
---|
| 82 | long nclusters; // total number of clusters |
---|
| 83 | long M = DEFAULT_M; // log2(number of points) |
---|
| 84 | long N; // number of points (N = 2^M) |
---|
| 85 | long rootN; // rootN = 2^M/2 |
---|
| 86 | long rows_per_proc; // number of data "rows" handled by a single thread |
---|
| 87 | long points_per_cluster; // number of data points per cluster |
---|
| 88 | |
---|
| 89 | // arrays of pointers on distributed buffers (one sub-buffer per cluster) |
---|
| 90 | double * data[CLUSTERS_MAX]; // original time-domain data |
---|
| 91 | double * trans[CLUSTERS_MAX]; // used as auxiliary space for transpose |
---|
| 92 | double * bloup[CLUSTERS_MAX]; // used as auxiliary space for DFT |
---|
| 93 | double * umain[CLUSTERS_MAX]; // roots of unity used fo rootN points FFT |
---|
| 94 | double * twid[CLUSTERS_MAX]; // twiddle factor : exp(-2iPI*k*n/N) |
---|
| 95 | |
---|
| 96 | // instrumentation counters |
---|
| 97 | long parallel_time[THREADS_MAX]; // total computation time (per thread) |
---|
| 98 | long sync_time[THREADS_MAX]; // cumulative waiting time in barriers (per thread) |
---|
| 99 | long init_time; // initialisation time (in main) |
---|
| 100 | |
---|
| 101 | // lock protecting shared TTY |
---|
| 102 | user_lock_t tty_lock; |
---|
| 103 | |
---|
| 104 | // synchronisation barrier (all threads) |
---|
| 105 | giet_sqt_barrier_t barrier; |
---|
| 106 | |
---|
| 107 | // functions declaration |
---|
| 108 | void slave(); |
---|
| 109 | |
---|
| 110 | double CheckSum(double ** x); |
---|
| 111 | |
---|
| 112 | void InitX(double ** x , unsigned int mode); |
---|
| 113 | |
---|
| 114 | void InitU(double ** u); |
---|
| 115 | |
---|
| 116 | void InitT(double ** u); |
---|
| 117 | |
---|
| 118 | long BitReverse( long k ); |
---|
| 119 | |
---|
| 120 | void FFT1D( long direction , double ** x , double ** tmp , double * upriv, |
---|
| 121 | double ** twid , long MyNum , long MyFirst , long MyLast ); |
---|
| 122 | |
---|
| 123 | void TwiddleOneCol(long direction, long j, double ** u, double ** x, long offset_x ); |
---|
| 124 | |
---|
| 125 | void Scale( double **x, long offset_x ); |
---|
| 126 | |
---|
| 127 | void Transpose( double ** src, double ** dest, long MyFirst, long MyLast ); |
---|
| 128 | |
---|
| 129 | void Copy( double ** src, double ** dest, long MyFirst , long MyLast ); |
---|
| 130 | |
---|
| 131 | void Reverse( double ** x, long offset_x ); |
---|
| 132 | |
---|
| 133 | void FFT1DOnce( long direction , double * u , double ** x , long offset_x ); |
---|
| 134 | |
---|
| 135 | void PrintArray( double ** x , long size ); |
---|
| 136 | |
---|
| 137 | void SimpleDft( long direction , long size , double ** src , long src_offset , |
---|
| 138 | double ** dst , long dst_offset ); |
---|
| 139 | |
---|
| 140 | /////////////////////////////////////////////////////////////////// |
---|
| 141 | // This function execute the sequencial initialisation |
---|
| 142 | // launch the parallel execution, and makes the instrumentation. |
---|
| 143 | /////////////////////////////////////////////////////////////////// |
---|
| 144 | __attribute__ ((constructor)) void main() |
---|
| 145 | { |
---|
| 146 | long x; // index for cluster X coordinate |
---|
| 147 | long y; // index for cluster Y coordinate |
---|
| 148 | long i; // cluster index = y * x_size + x |
---|
| 149 | long n; // thread index |
---|
| 150 | long start_time; // starting cycle for main |
---|
| 151 | double ck1; // for input/output checking |
---|
| 152 | double ck3; // for input/output checking |
---|
| 153 | |
---|
| 154 | // FFT application starts |
---|
| 155 | start_time = giet_proctime(); |
---|
| 156 | |
---|
| 157 | // allocate shared TTY |
---|
| 158 | giet_tty_alloc( 1 ); |
---|
| 159 | lock_init( &tty_lock); |
---|
| 160 | |
---|
| 161 | // get platform parameters to compute nthreads & nclusters |
---|
| 162 | giet_procs_number( &x_size , &y_size , &nprocs ); |
---|
| 163 | |
---|
| 164 | giet_pthread_assert( ((nprocs == 1) || (nprocs == 2) || (nprocs == 4)), |
---|
| 165 | "[FFT ERROR] number of procs per cluster must be 1, 2 or 4"); |
---|
| 166 | |
---|
| 167 | giet_pthread_assert( ((x_size == 1) || (x_size == 2) || (x_size == 4) || |
---|
| 168 | (x_size == 8) || (x_size == 16)), |
---|
| 169 | "[FFT ERROR] x_size must be 1,2,4,8,16"); |
---|
| 170 | |
---|
| 171 | giet_pthread_assert( ((y_size == 1) || (y_size == 2) || (y_size == 4) || |
---|
| 172 | (y_size == 8) || (y_size == 16)), |
---|
| 173 | "[FFT ERROR] y_size must be 1,2,4,8,16"); |
---|
| 174 | |
---|
| 175 | nthreads = x_size * y_size * nprocs; |
---|
| 176 | nclusters = x_size * y_size; |
---|
| 177 | |
---|
| 178 | // compute various constants depending on N and T |
---|
| 179 | N = 1 << M; |
---|
| 180 | rootN = 1 << (M / 2); |
---|
| 181 | rows_per_proc = rootN / nthreads; |
---|
| 182 | points_per_cluster = N / nclusters; |
---|
| 183 | |
---|
| 184 | giet_pthread_assert( (rootN >= nthreads) , |
---|
| 185 | "[FFT ERROR] sqrt(N) must be larger than nthreads"); |
---|
| 186 | |
---|
| 187 | giet_tty_printf("\n*** Entering FFT ***\n" |
---|
| 188 | " - %d Complex points\n" |
---|
| 189 | " - %d Thread(s)\n", |
---|
| 190 | N , nthreads ); |
---|
| 191 | |
---|
| 192 | // distributed heap initialisation |
---|
| 193 | for ( x = 0 ; x < x_size ; x++ ) |
---|
| 194 | { |
---|
| 195 | for ( y = 0 ; y < y_size ; y++ ) |
---|
| 196 | { |
---|
| 197 | heap_init( x , y ); |
---|
| 198 | } |
---|
| 199 | } |
---|
| 200 | |
---|
| 201 | // allocate memory for the distributed data[i], trans[i], umain[i], twid[i] buffers |
---|
| 202 | // the index (i) is a continuous cluster index |
---|
| 203 | long data_size = (N / nclusters) * 2 * sizeof(double); |
---|
| 204 | long coefs_size = (rootN / nclusters) * 2 * sizeof(double); |
---|
| 205 | for (x = 0 ; x < x_size ; x++) |
---|
| 206 | { |
---|
| 207 | for (y = 0 ; y < y_size ; y++) |
---|
| 208 | { |
---|
| 209 | i = x * y_size + y; |
---|
| 210 | data[i] = (double *)remote_malloc( data_size , x , y ); |
---|
| 211 | trans[i] = (double *)remote_malloc( data_size , x , y ); |
---|
| 212 | bloup[i] = (double *)remote_malloc( data_size , x , y ); |
---|
| 213 | umain[i] = (double *)remote_malloc( coefs_size , x , y ); |
---|
| 214 | twid[i] = (double *)remote_malloc( data_size , x , y ); |
---|
| 215 | } |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | // arrays initialisation |
---|
| 219 | InitX( data , MODE ); |
---|
| 220 | InitU( umain ); |
---|
| 221 | InitT( twid ); |
---|
| 222 | |
---|
| 223 | if ( CHECK ) |
---|
| 224 | { |
---|
| 225 | ck1 = CheckSum( data ); |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | if ( VERBOSE ) |
---|
| 229 | { |
---|
| 230 | giet_tty_printf("Data values / base = %x\n", &data[0][0] ); |
---|
| 231 | PrintArray( data , N ); |
---|
| 232 | |
---|
| 233 | giet_tty_printf("Twiddle values / base = %x\n", &twid[0][0] ); |
---|
| 234 | PrintArray( twid , N ); |
---|
| 235 | |
---|
| 236 | SimpleDft( 1 , N , data , 0 , bloup , 0 ); |
---|
| 237 | giet_tty_printf("Expected results / base = %x\n", &bloup[0][0] ); |
---|
| 238 | PrintArray( bloup , N ); |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | // allocate thread[] array : thread identidiers defined by the kernel |
---|
| 242 | pthread_t* thread = malloc( nthreads * sizeof(pthread_t) ); |
---|
| 243 | |
---|
| 244 | // allocate tid[] array : continuous thred index defined by the user |
---|
| 245 | long* tid = malloc( nthreads * sizeof(long) ); |
---|
| 246 | |
---|
| 247 | // initialise distributed barrier |
---|
| 248 | sqt_barrier_init( &barrier, x_size , y_size , nprocs ); |
---|
| 249 | |
---|
| 250 | // Initialisation completed |
---|
| 251 | giet_tty_printf("\n*** Starting Parallel FFT ***\n"); |
---|
| 252 | |
---|
| 253 | // register initialisation time |
---|
| 254 | init_time = giet_proctime() - start_time; |
---|
| 255 | |
---|
| 256 | // launch other threads to execute the slave() function |
---|
| 257 | for ( n = 1 ; n < nthreads ; n++ ) |
---|
| 258 | { |
---|
| 259 | tid[n] = n; |
---|
| 260 | if ( giet_pthread_create( &thread[n], |
---|
| 261 | NULL, // no attribute |
---|
| 262 | &slave, |
---|
| 263 | &tid[n] ) ) // pointer on thread index |
---|
| 264 | { |
---|
| 265 | giet_tty_printf("\n[FFT ERROR] creating thread %d\n", tid[n] ); |
---|
| 266 | giet_pthread_exit( NULL ); |
---|
| 267 | } |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | // main execute itself the slave() function |
---|
| 271 | tid[0] = 0; |
---|
| 272 | slave( &tid[0] ); |
---|
| 273 | |
---|
| 274 | // wait other threads completion |
---|
| 275 | for ( n = 1 ; n < nthreads ; n++ ) |
---|
| 276 | { |
---|
| 277 | if ( giet_pthread_join( thread[n], NULL ) ) |
---|
| 278 | { |
---|
| 279 | giet_tty_printf("\n[FFT ERROR] joining thread %d\n", tid[n] ); |
---|
| 280 | giet_pthread_exit( NULL ); |
---|
| 281 | } |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | if ( VERBOSE ) |
---|
| 285 | { |
---|
| 286 | giet_tty_printf("Data values after FFT:\n"); |
---|
| 287 | PrintArray( data , N ); |
---|
| 288 | } |
---|
| 289 | |
---|
| 290 | if ( CHECK ) |
---|
| 291 | { |
---|
| 292 | ck3 = CheckSum( data ); |
---|
| 293 | giet_tty_printf("\n*** Results ***\n"); |
---|
| 294 | giet_tty_printf("Checksum difference is %f (%f, %f)\n", ck1 - ck3, ck1, ck3); |
---|
| 295 | if (fabs(ck1 - ck3) < 0.001) giet_tty_printf("Results OK.\n"); |
---|
| 296 | else giet_tty_printf("Results KO.\n"); |
---|
| 297 | } |
---|
| 298 | |
---|
| 299 | // instrumentation (display and save on disk) |
---|
| 300 | char string[256]; |
---|
| 301 | |
---|
| 302 | snprintf( string , 256 , "/home/fft_%d_%d_%d_%d", |
---|
| 303 | x_size , y_size , nprocs , N ); |
---|
| 304 | |
---|
| 305 | // open instrumentation file |
---|
| 306 | long fd = giet_fat_open( string , O_CREAT ); |
---|
| 307 | if ( fd < 0 ) |
---|
| 308 | { |
---|
| 309 | giet_tty_printf("\n[FFT ERROR] cannot open instrumentation file %s\n", string ); |
---|
| 310 | giet_pthread_exit( NULL ); |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | snprintf( string , 256 , "\n*** FFT instrumentation : (%dx%dx%d) procs / %d data points ---\n", |
---|
| 314 | x_size, y_size, nprocs , N ); |
---|
| 315 | |
---|
| 316 | giet_tty_printf( "%s" , string ); |
---|
| 317 | giet_fat_fprintf( fd , "%s" , string ); |
---|
| 318 | |
---|
| 319 | long min_para = parallel_time[0]; |
---|
| 320 | long max_para = parallel_time[0]; |
---|
| 321 | long min_sync = sync_time[0]; |
---|
| 322 | long max_sync = sync_time[0]; |
---|
| 323 | |
---|
| 324 | for (i = 1 ; i < nthreads ; i++) |
---|
| 325 | { |
---|
| 326 | if (parallel_time[i] > max_para) max_para = parallel_time[i]; |
---|
| 327 | if (parallel_time[i] < min_para) min_para = parallel_time[i]; |
---|
| 328 | if (sync_time[i] > max_sync) max_sync = sync_time[i]; |
---|
| 329 | if (sync_time[i] < min_sync) min_sync = sync_time[i]; |
---|
| 330 | } |
---|
| 331 | |
---|
| 332 | snprintf( string , 256 , "\n Init Parallel Barrier\n" |
---|
| 333 | "MIN : %d | %d | %d (cycles)\n" |
---|
| 334 | "MAX : %d | %d | %d (cycles)\n", |
---|
| 335 | (int)init_time, (int)min_para, (int)min_sync, |
---|
| 336 | (int)init_time, (int)max_para, (int)max_sync ); |
---|
| 337 | |
---|
| 338 | giet_tty_printf("%s" , string ); |
---|
| 339 | giet_fat_fprintf( fd , "%s" , string ); |
---|
| 340 | |
---|
| 341 | // close instrumentation file and exit |
---|
| 342 | giet_fat_close( fd ); |
---|
| 343 | |
---|
| 344 | giet_pthread_exit("main() completed"); |
---|
| 345 | |
---|
| 346 | return ; |
---|
| 347 | } // end main() |
---|
| 348 | |
---|
| 349 | /////////////////////////////////////////////////////////////// |
---|
| 350 | // This function is executed in parallel by all threads. |
---|
| 351 | /////////////////////////////////////////////////////////////// |
---|
| 352 | __attribute__ ((constructor)) void slave( long* tid ) |
---|
| 353 | { |
---|
| 354 | long i; |
---|
| 355 | long MyNum = *tid; |
---|
| 356 | long MyFirst; // index first row allocated to thread |
---|
| 357 | long MyLast; // index last row allocated to thread |
---|
| 358 | double * upriv; |
---|
| 359 | long c_id; |
---|
| 360 | long c_offset; |
---|
| 361 | long parallel_start; |
---|
| 362 | long barrier_start; |
---|
| 363 | |
---|
| 364 | // initialise instrumentation |
---|
| 365 | parallel_start = giet_proctime(); |
---|
| 366 | sync_time[MyNum] = 0; |
---|
| 367 | |
---|
| 368 | // allocate and initialise local array upriv[] |
---|
| 369 | // that is a local copy of the rootN coefs defined in umain[] |
---|
| 370 | upriv = (double *)malloc(2 * (rootN - 1) * sizeof(double)); |
---|
| 371 | for ( i = 0 ; i < (rootN - 1) ; i++) |
---|
| 372 | { |
---|
| 373 | c_id = i / (rootN / nclusters); |
---|
| 374 | c_offset = i % (rootN / nclusters); |
---|
| 375 | upriv[2*i] = umain[c_id][2*c_offset]; |
---|
| 376 | upriv[2*i+1] = umain[c_id][2*c_offset+1]; |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | // compute first and last rows handled by the thread |
---|
| 380 | MyFirst = rootN * MyNum / nthreads; |
---|
| 381 | MyLast = rootN * (MyNum + 1) / nthreads; |
---|
| 382 | |
---|
| 383 | // perform forward FFT |
---|
| 384 | FFT1D( 1 , data , trans , upriv , twid , MyNum , MyFirst , MyLast ); |
---|
| 385 | |
---|
| 386 | // BARRIER |
---|
| 387 | barrier_start = giet_proctime(); |
---|
| 388 | sqt_barrier_wait( &barrier ); |
---|
| 389 | sync_time[MyNum] = giet_proctime() - barrier_start; |
---|
| 390 | |
---|
| 391 | // perform backward FFT if required |
---|
| 392 | if ( CHECK ) |
---|
| 393 | { |
---|
| 394 | // BARRIER |
---|
| 395 | barrier_start = giet_proctime(); |
---|
| 396 | sqt_barrier_wait( &barrier ); |
---|
| 397 | sync_time[MyNum] = giet_proctime() - barrier_start; |
---|
| 398 | |
---|
| 399 | FFT1D( -1 , data , trans , upriv , twid , MyNum , MyFirst , MyLast ); |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | // register computation time |
---|
| 403 | parallel_time[MyNum] = giet_proctime() - parallel_start; |
---|
| 404 | |
---|
| 405 | // exit if MyNum != 0 |
---|
| 406 | if( MyNum ) giet_pthread_exit("slave() completed\n"); |
---|
| 407 | |
---|
| 408 | } // end slave() |
---|
| 409 | |
---|
| 410 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 411 | // This function makes the DFT from the src[nclusters][points_per_cluster] distributed |
---|
| 412 | // buffer, to the dst[nclusters][points_per_cluster] distributed buffer. |
---|
| 413 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 414 | void SimpleDft( long direction, |
---|
| 415 | long size, // number of points |
---|
| 416 | double ** src, // source distributed buffer |
---|
| 417 | long src_offset, // offset in source array |
---|
| 418 | double ** dst, // destination distributed buffer |
---|
| 419 | long dst_offset ) // offset in destination array |
---|
| 420 | { |
---|
| 421 | long n , k; |
---|
| 422 | double phi; // 2*PI*n*k/N |
---|
| 423 | double u_r; // cos( phi ) |
---|
| 424 | double u_c; // sin( phi ) |
---|
| 425 | double d_r; // Re(data[n]) |
---|
| 426 | double d_c; // Im(data[n]) |
---|
| 427 | double accu_r; // Re(accu) |
---|
| 428 | double accu_c; // Im(accu) |
---|
| 429 | long c_id; // distributed buffer cluster index |
---|
| 430 | long c_offset; // offset in distributed buffer |
---|
| 431 | |
---|
| 432 | for ( k = 0 ; k < size ; k++ ) // loop on the output data points |
---|
| 433 | { |
---|
| 434 | // initialise accu |
---|
| 435 | accu_r = 0; |
---|
| 436 | accu_c = 0; |
---|
| 437 | |
---|
| 438 | for ( n = 0 ; n < size ; n++ ) // loop on the input data points |
---|
| 439 | { |
---|
| 440 | // compute coef |
---|
| 441 | phi = (double)(2*PI*n*k) / size; |
---|
| 442 | u_r = cos( phi ); |
---|
| 443 | u_c = -sin( phi ) * direction; |
---|
| 444 | |
---|
| 445 | // get input data point |
---|
| 446 | c_id = (src_offset + n) / (points_per_cluster); |
---|
| 447 | c_offset = (src_offset + n) % (points_per_cluster); |
---|
| 448 | d_r = data[c_id][2*c_offset]; |
---|
| 449 | d_c = data[c_id][2*c_offset+1]; |
---|
| 450 | |
---|
| 451 | // increment accu |
---|
| 452 | accu_r += ((u_r*d_r) - (u_c*d_c)); |
---|
| 453 | accu_c += ((u_r*d_c) + (u_c*d_r)); |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | // scale for inverse DFT |
---|
| 457 | if ( direction == -1 ) |
---|
| 458 | { |
---|
| 459 | accu_r /= size; |
---|
| 460 | accu_c /= size; |
---|
| 461 | } |
---|
| 462 | |
---|
| 463 | // set output data point |
---|
| 464 | c_id = (dst_offset + k) / (points_per_cluster); |
---|
| 465 | c_offset = (dst_offset + k) % (points_per_cluster); |
---|
| 466 | dst[c_id][2*c_offset] = accu_r; |
---|
| 467 | dst[c_id][2*c_offset+1] = accu_c; |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | } // end SimpleDft() |
---|
| 471 | |
---|
| 472 | //////////////////////////// |
---|
| 473 | double CheckSum(double ** x) |
---|
| 474 | { |
---|
| 475 | long i , j; |
---|
| 476 | double cks; |
---|
| 477 | long c_id; |
---|
| 478 | long c_offset; |
---|
| 479 | |
---|
| 480 | cks = 0.0; |
---|
| 481 | for (j = 0; j < rootN ; j++) |
---|
| 482 | { |
---|
| 483 | for (i = 0; i < rootN ; i++) |
---|
| 484 | { |
---|
| 485 | c_id = (rootN * j + i) / (points_per_cluster); |
---|
| 486 | c_offset = (rootN * j + i) % (points_per_cluster); |
---|
| 487 | |
---|
| 488 | cks += data[c_id][2*c_offset] + data[c_id][2*c_offset+1]; |
---|
| 489 | } |
---|
| 490 | } |
---|
| 491 | return(cks); |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | |
---|
| 495 | /////////////////////// |
---|
| 496 | void InitX(double ** x, |
---|
| 497 | unsigned int mode ) |
---|
| 498 | { |
---|
| 499 | long i , j; |
---|
| 500 | long c_id; |
---|
| 501 | long c_offset; |
---|
| 502 | long index; |
---|
| 503 | |
---|
| 504 | for ( j = 0 ; j < rootN ; j++ ) // loop on row index |
---|
| 505 | { |
---|
| 506 | for ( i = 0 ; i < rootN ; i++ ) // loop on point in a row |
---|
| 507 | { |
---|
| 508 | index = j * rootN + i; |
---|
| 509 | c_id = index / (points_per_cluster); |
---|
| 510 | c_offset = index % (points_per_cluster); |
---|
| 511 | |
---|
| 512 | // complex input signal is random |
---|
| 513 | if ( mode == RANDOM ) |
---|
| 514 | { |
---|
| 515 | data[c_id][2*c_offset] = ( (double)giet_rand() ) / 65536; |
---|
| 516 | data[c_id][2*c_offset+1] = ( (double)giet_rand() ) / 65536; |
---|
| 517 | } |
---|
| 518 | |
---|
| 519 | |
---|
| 520 | // complex input signal is cos(n/N) / sin(n/N) |
---|
| 521 | if ( mode == COSIN ) |
---|
| 522 | { |
---|
| 523 | double phi = (double)( 2 * PI * index) / N; |
---|
| 524 | data[c_id][2*c_offset] = cos( phi ); |
---|
| 525 | data[c_id][2*c_offset+1] = sin( phi ); |
---|
| 526 | } |
---|
| 527 | |
---|
| 528 | // complex input signal is constant |
---|
| 529 | if ( mode == CONSTANT ) |
---|
| 530 | { |
---|
| 531 | data[c_id][2*c_offset] = 1.0; |
---|
| 532 | data[c_id][2*c_offset+1] = 0.0; |
---|
| 533 | } |
---|
| 534 | } |
---|
| 535 | } |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | ///////////////////////// |
---|
| 539 | void InitU( double ** u ) |
---|
| 540 | { |
---|
| 541 | long q; |
---|
| 542 | long j; |
---|
| 543 | long base; |
---|
| 544 | long n1; |
---|
| 545 | long c_id; |
---|
| 546 | long c_offset; |
---|
| 547 | double phi; |
---|
| 548 | long stop = 0; |
---|
| 549 | |
---|
| 550 | for (q = 0 ; ((1 << q) < N) && (stop == 0) ; q++) |
---|
| 551 | { |
---|
| 552 | n1 = 1 << q; |
---|
| 553 | base = n1 - 1; |
---|
| 554 | for (j = 0; (j < n1) && (stop == 0) ; j++) |
---|
| 555 | { |
---|
| 556 | if (base + j > rootN - 1) return; |
---|
| 557 | |
---|
| 558 | c_id = (base + j) / (rootN / nclusters); |
---|
| 559 | c_offset = (base + j) % (rootN / nclusters); |
---|
| 560 | phi = (double)(2.0 * PI * j) / (2 * n1); |
---|
| 561 | u[c_id][2*c_offset] = cos( phi ); |
---|
| 562 | u[c_id][2*c_offset+1] = -sin( phi ); |
---|
| 563 | } |
---|
| 564 | } |
---|
| 565 | } |
---|
| 566 | |
---|
| 567 | ////////////////////////// |
---|
| 568 | void InitT( double ** u ) |
---|
| 569 | { |
---|
| 570 | long i, j; |
---|
| 571 | long index; |
---|
| 572 | long c_id; |
---|
| 573 | long c_offset; |
---|
| 574 | double phi; |
---|
| 575 | |
---|
| 576 | for ( j = 0 ; j < rootN ; j++ ) // loop on row index |
---|
| 577 | { |
---|
| 578 | for ( i = 0 ; i < rootN ; i++ ) // loop on points in a row |
---|
| 579 | { |
---|
| 580 | index = j * rootN + i; |
---|
| 581 | c_id = index / (points_per_cluster); |
---|
| 582 | c_offset = index % (points_per_cluster); |
---|
| 583 | |
---|
| 584 | phi = (double)(2.0 * PI * i * j) / N; |
---|
| 585 | u[c_id][2*c_offset] = cos( phi ); |
---|
| 586 | u[c_id][2*c_offset+1] = -sin( phi ); |
---|
| 587 | } |
---|
| 588 | } |
---|
| 589 | } |
---|
| 590 | |
---|
| 591 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 592 | // This function returns an index value that is the bit reverse of the input value. |
---|
| 593 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 594 | long BitReverse( long k ) |
---|
| 595 | { |
---|
| 596 | long i; |
---|
| 597 | long j; |
---|
| 598 | long tmp; |
---|
| 599 | |
---|
| 600 | j = 0; |
---|
| 601 | tmp = k; |
---|
| 602 | for (i = 0; i < M/2 ; i++) |
---|
| 603 | { |
---|
| 604 | j = 2 * j + (tmp & 0x1); |
---|
| 605 | tmp = tmp >> 1; |
---|
| 606 | } |
---|
| 607 | return j; |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 611 | // This function perform the in place (direct or inverse) FFT on the N data points |
---|
| 612 | // contained in the distributed buffers x[nclusters][points_per_cluster]. |
---|
| 613 | // It handles the (N) points 1D array as a (rootN*rootN) points 2D array. |
---|
| 614 | // 1) it transpose (rootN/nthreads ) rows from x to tmp. |
---|
| 615 | // 2) it make (rootN/nthreads) FFT on the tmp rows and apply the twiddle factor. |
---|
| 616 | // 3) it transpose (rootN/nthreads) columns from tmp to x. |
---|
| 617 | // 4) it make (rootN/nthreads) FFT on the x rows. |
---|
| 618 | // It calls the FFT1DOnce() 2*(rootN/nthreads) times to perform the in place FFT |
---|
| 619 | // on the rootN points contained in a row. |
---|
| 620 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 621 | void FFT1D( long direction, // direct : 1 / inverse : -1 |
---|
| 622 | double ** x, // input & output distributed data points array |
---|
| 623 | double ** tmp, // auxiliary distributed data points array |
---|
| 624 | double * upriv, // local array containing coefs for rootN FFT |
---|
| 625 | double ** twid, // distributed arrays containing N twiddle factors |
---|
| 626 | long MyNum, |
---|
| 627 | long MyFirst, |
---|
| 628 | long MyLast ) |
---|
| 629 | { |
---|
| 630 | long j; |
---|
| 631 | long barrier_start; |
---|
| 632 | |
---|
| 633 | // transpose (rootN/nthreads) rows from x to tmp |
---|
| 634 | Transpose( x , tmp , MyFirst , MyLast ); |
---|
| 635 | |
---|
| 636 | #if DEBUG |
---|
| 637 | giet_tty_printf("\n@@@ tmp after first transpose\n"); |
---|
| 638 | PrintArray( tmp , N ); |
---|
| 639 | #endif |
---|
| 640 | |
---|
| 641 | // BARRIER |
---|
| 642 | barrier_start = giet_proctime(); |
---|
| 643 | sqt_barrier_wait( &barrier ); |
---|
| 644 | sync_time[MyNum] = giet_proctime() - barrier_start; |
---|
| 645 | |
---|
| 646 | // do FFTs on rows of tmp (i.e. columns of x) and apply twiddle factor |
---|
| 647 | for (j = MyFirst; j < MyLast; j++) |
---|
| 648 | { |
---|
| 649 | FFT1DOnce( direction , upriv , tmp , j * rootN ); |
---|
| 650 | TwiddleOneCol( direction , j , twid , tmp , j * rootN ); |
---|
| 651 | } |
---|
| 652 | |
---|
| 653 | #if DEBUG |
---|
| 654 | giet_tty_printf("\n@@@ tmp after columns FFT + twiddle \n"); |
---|
| 655 | PrintArray( tmp , N ); |
---|
| 656 | #endif |
---|
| 657 | |
---|
| 658 | // BARRIER |
---|
| 659 | barrier_start = giet_proctime(); |
---|
| 660 | sqt_barrier_wait( &barrier ); |
---|
| 661 | sync_time[MyNum] = giet_proctime() - barrier_start; |
---|
| 662 | |
---|
| 663 | // transpose tmp to x |
---|
| 664 | Transpose( tmp , x , MyFirst , MyLast ); |
---|
| 665 | |
---|
| 666 | #if DEBUG |
---|
| 667 | giet_tty_printf("\n@@@ x after second transpose \n"); |
---|
| 668 | PrintArray( x , N ); |
---|
| 669 | #endif |
---|
| 670 | |
---|
| 671 | // BARRIER |
---|
| 672 | barrier_start = giet_proctime(); |
---|
| 673 | sqt_barrier_wait( &barrier ); |
---|
| 674 | sync_time[MyNum] = giet_proctime() - barrier_start; |
---|
| 675 | |
---|
| 676 | // do FFTs on rows of x and apply the scaling factor |
---|
| 677 | for (j = MyFirst; j < MyLast; j++) |
---|
| 678 | { |
---|
| 679 | FFT1DOnce( direction , upriv , x , j * rootN ); |
---|
| 680 | if (direction == -1) Scale( x , j * rootN ); |
---|
| 681 | } |
---|
| 682 | |
---|
| 683 | #if DEBUG |
---|
| 684 | giet_tty_printf("\n@@@ x after rows FFT + scaling \n"); |
---|
| 685 | PrintArray( x , N ); |
---|
| 686 | #endif |
---|
| 687 | |
---|
| 688 | // BARRIER |
---|
| 689 | barrier_start = giet_proctime(); |
---|
| 690 | sqt_barrier_wait( &barrier ); |
---|
| 691 | sync_time[MyNum] = giet_proctime() - barrier_start; |
---|
| 692 | |
---|
| 693 | // transpose x to tmp |
---|
| 694 | Transpose( x , tmp , MyFirst , MyLast ); |
---|
| 695 | |
---|
| 696 | #if DEBUG |
---|
| 697 | giet_tty_printf("\n@@@ tmp after third transpose \n"); |
---|
| 698 | PrintArray( tmp , N ); |
---|
| 699 | #endif |
---|
| 700 | |
---|
| 701 | // BARRIER |
---|
| 702 | barrier_start = giet_proctime(); |
---|
| 703 | sqt_barrier_wait( &barrier ); |
---|
| 704 | sync_time[MyNum] = giet_proctime() - barrier_start; |
---|
| 705 | |
---|
| 706 | // copy tmp to x |
---|
| 707 | Copy( tmp , x , MyFirst , MyLast ); |
---|
| 708 | |
---|
| 709 | #if DEBUG |
---|
| 710 | giet_tty_printf("\n@@@ x after final copy \n"); |
---|
| 711 | PrintArray( x , N ); |
---|
| 712 | #endif |
---|
| 713 | |
---|
| 714 | |
---|
| 715 | } // end FFT1D() |
---|
| 716 | |
---|
| 717 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
| 718 | // This function multiply all points contained in a row (rootN points) of the |
---|
| 719 | // x[] array by the corresponding twiddle factor, contained in the u[] array. |
---|
| 720 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
| 721 | void TwiddleOneCol( long direction, |
---|
| 722 | long j, // y coordinate in 2D view of coef array |
---|
| 723 | double ** u, // coef array base address |
---|
| 724 | double ** x, // data array base address |
---|
| 725 | long offset_x ) // first point in N points data array |
---|
| 726 | { |
---|
| 727 | long i; |
---|
| 728 | double omega_r; |
---|
| 729 | double omega_c; |
---|
| 730 | double x_r; |
---|
| 731 | double x_c; |
---|
| 732 | long c_id; |
---|
| 733 | long c_offset; |
---|
| 734 | |
---|
| 735 | for (i = 0; i < rootN ; i++) // loop on the rootN points |
---|
| 736 | { |
---|
| 737 | // get coef |
---|
| 738 | c_id = (j * rootN + i) / (points_per_cluster); |
---|
| 739 | c_offset = (j * rootN + i) % (points_per_cluster); |
---|
| 740 | omega_r = u[c_id][2*c_offset]; |
---|
| 741 | omega_c = direction * u[c_id][2*c_offset+1]; |
---|
| 742 | |
---|
| 743 | // access data |
---|
| 744 | c_id = (offset_x + i) / (points_per_cluster); |
---|
| 745 | c_offset = (offset_x + i) % (points_per_cluster); |
---|
| 746 | x_r = x[c_id][2*c_offset]; |
---|
| 747 | x_c = x[c_id][2*c_offset+1]; |
---|
| 748 | |
---|
| 749 | x[c_id][2*c_offset] = omega_r*x_r - omega_c * x_c; |
---|
| 750 | x[c_id][2*c_offset+1] = omega_r*x_c + omega_c * x_r; |
---|
| 751 | } |
---|
| 752 | } // end TwiddleOneCol() |
---|
| 753 | |
---|
| 754 | //////////////////////// |
---|
| 755 | void Scale( double ** x, // data array base address |
---|
| 756 | long offset_x ) // first point of the row to be scaled |
---|
| 757 | { |
---|
| 758 | long i; |
---|
| 759 | long c_id; |
---|
| 760 | long c_offset; |
---|
| 761 | |
---|
| 762 | for (i = 0; i < rootN ; i++) |
---|
| 763 | { |
---|
| 764 | c_id = (offset_x + i) / (points_per_cluster); |
---|
| 765 | c_offset = (offset_x + i) % (points_per_cluster); |
---|
| 766 | data[c_id][2*c_offset] /= N; |
---|
| 767 | data[c_id][2*c_offset + 1] /= N; |
---|
| 768 | } |
---|
| 769 | } |
---|
| 770 | |
---|
| 771 | //////////////////////////// |
---|
| 772 | void Transpose( double ** src, // source buffer (array of pointers) |
---|
| 773 | double ** dest, // destination buffer (array of pointers) |
---|
| 774 | long MyFirst, // first row allocated to the thread |
---|
| 775 | long MyLast ) // last row allocated to the thread |
---|
| 776 | { |
---|
| 777 | long row; // row index |
---|
| 778 | long point; // data point index in a row |
---|
| 779 | |
---|
| 780 | long index_src; // absolute index in the source N points array |
---|
| 781 | long c_id_src; // cluster for the source buffer |
---|
| 782 | long c_offset_src; // offset in the source buffer |
---|
| 783 | |
---|
| 784 | long index_dst; // absolute index in the dest N points array |
---|
| 785 | long c_id_dst; // cluster for the dest buffer |
---|
| 786 | long c_offset_dst; // offset in the dest buffer |
---|
| 787 | |
---|
| 788 | |
---|
| 789 | // scan all data points allocated to the thread |
---|
| 790 | // (between MyFirst row and MyLast row) from the source buffer |
---|
| 791 | // and write these points to the destination buffer |
---|
| 792 | for ( row = MyFirst ; row < MyLast ; row++ ) // loop on the rows |
---|
| 793 | { |
---|
| 794 | for ( point = 0 ; point < rootN ; point++ ) // loop on points in row |
---|
| 795 | { |
---|
| 796 | index_src = row * rootN + point; |
---|
| 797 | c_id_src = index_src / (points_per_cluster); |
---|
| 798 | c_offset_src = index_src % (points_per_cluster); |
---|
| 799 | |
---|
| 800 | index_dst = point * rootN + row; |
---|
| 801 | c_id_dst = index_dst / (points_per_cluster); |
---|
| 802 | c_offset_dst = index_dst % (points_per_cluster); |
---|
| 803 | |
---|
| 804 | dest[c_id_dst][2*c_offset_dst] = src[c_id_src][2*c_offset_src]; |
---|
| 805 | dest[c_id_dst][2*c_offset_dst+1] = src[c_id_src][2*c_offset_src+1]; |
---|
| 806 | } |
---|
| 807 | } |
---|
| 808 | } // end Transpose() |
---|
| 809 | |
---|
| 810 | ///////////////////////// |
---|
| 811 | void Copy( double ** src, // source buffer (array of pointers) |
---|
| 812 | double ** dest, // destination buffer (array of pointers) |
---|
| 813 | long MyFirst, // first row allocated to the thread |
---|
| 814 | long MyLast ) // last row allocated to the thread |
---|
| 815 | { |
---|
| 816 | long row; // row index |
---|
| 817 | long point; // data point index in a row |
---|
| 818 | |
---|
| 819 | long index; // absolute index in the N points array |
---|
| 820 | long c_id; // cluster index |
---|
| 821 | long c_offset; // offset in local buffer |
---|
| 822 | |
---|
| 823 | // scan all data points allocated to the thread |
---|
| 824 | for ( row = MyFirst ; row < MyLast ; row++ ) // loop on the rows |
---|
| 825 | { |
---|
| 826 | for ( point = 0 ; point < rootN ; point++ ) // loop on points in row |
---|
| 827 | { |
---|
| 828 | index = row * rootN + point; |
---|
| 829 | c_id = index / (points_per_cluster); |
---|
| 830 | c_offset = index % (points_per_cluster); |
---|
| 831 | |
---|
| 832 | dest[c_id][2*c_offset] = src[c_id][2*c_offset]; |
---|
| 833 | dest[c_id][2*c_offset+1] = src[c_id][2*c_offset+1]; |
---|
| 834 | } |
---|
| 835 | } |
---|
| 836 | } // end Copy() |
---|
| 837 | |
---|
| 838 | ////////////////////////// |
---|
| 839 | void Reverse( double ** x, |
---|
| 840 | long offset_x ) |
---|
| 841 | { |
---|
| 842 | long j, k; |
---|
| 843 | long c_id_j; |
---|
| 844 | long c_offset_j; |
---|
| 845 | long c_id_k; |
---|
| 846 | long c_offset_k; |
---|
| 847 | |
---|
| 848 | for (k = 0 ; k < rootN ; k++) |
---|
| 849 | { |
---|
| 850 | j = BitReverse( k ); |
---|
| 851 | if (j > k) |
---|
| 852 | { |
---|
| 853 | c_id_j = (offset_x + j) / (points_per_cluster); |
---|
| 854 | c_offset_j = (offset_x + j) % (points_per_cluster); |
---|
| 855 | c_id_k = (offset_x + k) / (points_per_cluster); |
---|
| 856 | c_offset_k = (offset_x + k) % (points_per_cluster); |
---|
| 857 | |
---|
| 858 | SWAP(x[c_id_j][2*c_offset_j] , x[c_id_k][2*c_offset_k]); |
---|
| 859 | SWAP(x[c_id_j][2*c_offset_j+1], x[c_id_k][2*c_offset_k+1]); |
---|
| 860 | } |
---|
| 861 | } |
---|
| 862 | } |
---|
| 863 | |
---|
| 864 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 865 | // This function makes the in-place FFT on all points contained in a row |
---|
| 866 | // (i.e. rootN points) of the x[nclusters][points_per_cluster] array. |
---|
| 867 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 868 | void FFT1DOnce( long direction, // direct / inverse |
---|
| 869 | double * u, // private coefs array |
---|
| 870 | double ** x, // array of pointers on distributed buffers |
---|
| 871 | long offset_x ) // absolute offset in the x array |
---|
| 872 | { |
---|
| 873 | long j; |
---|
| 874 | long k; |
---|
| 875 | long q; |
---|
| 876 | long L; |
---|
| 877 | long r; |
---|
| 878 | long Lstar; |
---|
| 879 | double * u1; |
---|
| 880 | |
---|
| 881 | long offset_x1; // index first butterfly input |
---|
| 882 | long offset_x2; // index second butterfly output |
---|
| 883 | |
---|
| 884 | double omega_r; // real part butterfy coef |
---|
| 885 | double omega_c; // complex part butterfly coef |
---|
| 886 | |
---|
| 887 | double tau_r; |
---|
| 888 | double tau_c; |
---|
| 889 | |
---|
| 890 | double d1_r; // real part first butterfly input |
---|
| 891 | double d1_c; // imag part first butterfly input |
---|
| 892 | double d2_r; // real part second butterfly input |
---|
| 893 | double d2_c; // imag part second butterfly input |
---|
| 894 | |
---|
| 895 | long c_id_1; // cluster index for first butterfly input |
---|
| 896 | long c_offset_1; // offset for first butterfly input |
---|
| 897 | long c_id_2; // cluster index for second butterfly input |
---|
| 898 | long c_offset_2; // offset for second butterfly input |
---|
| 899 | |
---|
| 900 | #if DETAILED_DEBUG |
---|
| 901 | unsigned int p; |
---|
| 902 | giet_tty_printf("\n@@@ FFT ROW data in / %d points / offset = %d\n", |
---|
| 903 | rootN , offset_x ); |
---|
| 904 | for ( p = 0 ; p < rootN ; p++ ) |
---|
| 905 | { |
---|
| 906 | long index = offset_x + p; |
---|
| 907 | long c_id = index / (points_per_cluster); |
---|
| 908 | long c_offset = index % (points_per_cluster); |
---|
| 909 | giet_tty_printf("%f , %f | ", x[c_id][2*c_offset] , x[c_id][2*c_offset+1] ); |
---|
| 910 | } |
---|
| 911 | giet_tty_printf("\n"); |
---|
| 912 | #endif |
---|
| 913 | |
---|
| 914 | // This makes the rootN input points reordering |
---|
| 915 | Reverse( x , offset_x ); |
---|
| 916 | |
---|
| 917 | #if DETAILED_DEBUG |
---|
| 918 | giet_tty_printf("\n@@@ FFT ROW data after reverse\n"); |
---|
| 919 | for ( p = 0 ; p < rootN ; p++ ) |
---|
| 920 | { |
---|
| 921 | long index = offset_x + p; |
---|
| 922 | long c_id = index / (points_per_cluster); |
---|
| 923 | long c_offset = index % (points_per_cluster); |
---|
| 924 | giet_tty_printf("%f , %f | ", x[c_id][2*c_offset] , x[c_id][2*c_offset+1] ); |
---|
| 925 | } |
---|
| 926 | giet_tty_printf("\n"); |
---|
| 927 | #endif |
---|
| 928 | |
---|
| 929 | // This implements the multi-stages, in place Butterfly network |
---|
| 930 | for (q = 1; q <= M/2 ; q++) // loop on stages |
---|
| 931 | { |
---|
| 932 | L = 1 << q; // number of points per subset for current stage |
---|
| 933 | r = rootN / L; // number of subsets |
---|
| 934 | Lstar = L / 2; |
---|
| 935 | u1 = &u[2 * (Lstar - 1)]; |
---|
| 936 | for (k = 0; k < r; k++) // loop on the subsets |
---|
| 937 | { |
---|
| 938 | offset_x1 = offset_x + (k * L); // index first point |
---|
| 939 | offset_x2 = offset_x + (k * L + Lstar); // index second point |
---|
| 940 | |
---|
| 941 | #if DETAILED_DEBUG |
---|
| 942 | giet_tty_printf("\n ### q = %d / k = %d / x1 = %d / x2 = %d\n", |
---|
| 943 | q , k , offset_x1 , offset_x2 ); |
---|
| 944 | #endif |
---|
| 945 | // makes all in-place butterfly(s) for subset |
---|
| 946 | for (j = 0; j < Lstar; j++) |
---|
| 947 | { |
---|
| 948 | // get coef |
---|
| 949 | omega_r = u1[2*j]; |
---|
| 950 | omega_c = direction * u1[2*j+1]; |
---|
| 951 | |
---|
| 952 | // get d[x1] address and value |
---|
| 953 | c_id_1 = (offset_x1 + j) / (points_per_cluster); |
---|
| 954 | c_offset_1 = (offset_x1 + j) % (points_per_cluster); |
---|
| 955 | d1_r = x[c_id_1][2*c_offset_1]; |
---|
| 956 | d1_c = x[c_id_1][2*c_offset_1+1]; |
---|
| 957 | |
---|
| 958 | // get d[x2] address and value |
---|
| 959 | c_id_2 = (offset_x2 + j) / (points_per_cluster); |
---|
| 960 | c_offset_2 = (offset_x2 + j) % (points_per_cluster); |
---|
| 961 | d2_r = x[c_id_2][2*c_offset_2]; |
---|
| 962 | d2_c = x[c_id_2][2*c_offset_2+1]; |
---|
| 963 | |
---|
| 964 | #if DETAILED_DEBUG |
---|
| 965 | giet_tty_printf("\n ### d1_in = (%f , %f) / d2_in = (%f , %f) / coef = (%f , %f)\n", |
---|
| 966 | d1_r , d1_c , d2_r , d2_c , omega_r , omega_c); |
---|
| 967 | #endif |
---|
| 968 | // tau = omega * d[x2] |
---|
| 969 | tau_r = omega_r * d2_r - omega_c * d2_c; |
---|
| 970 | tau_c = omega_r * d2_c + omega_c * d2_r; |
---|
| 971 | |
---|
| 972 | // set new value for d[x1] = d[x1] + omega * d[x2] |
---|
| 973 | x[c_id_1][2*c_offset_1] = d1_r + tau_r; |
---|
| 974 | x[c_id_1][2*c_offset_1+1] = d1_c + tau_c; |
---|
| 975 | |
---|
| 976 | // set new value for d[x2] = d[x1] - omega * d[x2] |
---|
| 977 | x[c_id_2][2*c_offset_2] = d1_r - tau_r; |
---|
| 978 | x[c_id_2][2*c_offset_2+1] = d1_c - tau_c; |
---|
| 979 | |
---|
| 980 | #if DETAILED_DEBUG |
---|
| 981 | giet_tty_printf("\n ### d1_out = (%f , %f) / d2_out = (%f , %f)\n", |
---|
| 982 | d1_r + tau_r , d1_c + tau_c , d2_r - tau_r , d2_c - tau_c ); |
---|
| 983 | #endif |
---|
| 984 | } |
---|
| 985 | } |
---|
| 986 | } |
---|
| 987 | |
---|
| 988 | #if DETAILED_DEBUG |
---|
| 989 | giet_tty_printf("\n@@@ FFT ROW data out\n"); |
---|
| 990 | for ( p = 0 ; p < rootN ; p++ ) |
---|
| 991 | { |
---|
| 992 | long index = offset_x + p; |
---|
| 993 | long c_id = index / (points_per_cluster); |
---|
| 994 | long c_offset = index % (points_per_cluster); |
---|
| 995 | giet_tty_printf("%f , %f | ", x[c_id][2*c_offset] , x[c_id][2*c_offset+1] ); |
---|
| 996 | } |
---|
| 997 | giet_tty_printf("\n"); |
---|
| 998 | #endif |
---|
| 999 | |
---|
| 1000 | } // end FFT1DOnce() |
---|
| 1001 | |
---|
| 1002 | ////////////////////////////////// |
---|
| 1003 | void PrintArray( double ** array, |
---|
| 1004 | long size ) |
---|
| 1005 | { |
---|
| 1006 | long i; |
---|
| 1007 | long c_id; |
---|
| 1008 | long c_offset; |
---|
| 1009 | |
---|
| 1010 | // float display |
---|
| 1011 | for (i = 0; i < size ; i++) |
---|
| 1012 | { |
---|
| 1013 | c_id = i / (points_per_cluster); |
---|
| 1014 | c_offset = i % (points_per_cluster); |
---|
| 1015 | |
---|
| 1016 | giet_tty_printf(" %f %f |", |
---|
| 1017 | array[c_id][2*c_offset], |
---|
| 1018 | array[c_id][2*c_offset+1]); |
---|
| 1019 | |
---|
| 1020 | if ( (i+1) % 4 == 0) giet_tty_printf("\n"); |
---|
| 1021 | } |
---|
| 1022 | giet_tty_printf("\n"); |
---|
| 1023 | } |
---|
| 1024 | |
---|
| 1025 | |
---|
| 1026 | // Local Variables: |
---|
| 1027 | // tab-width: 4 |
---|
| 1028 | // c-basic-offset: 4 |
---|
| 1029 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
| 1030 | // indent-tabs-mode: nil |
---|
| 1031 | // End: |
---|
| 1032 | |
---|
| 1033 | // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
| 1034 | |
---|