1 | /*************************************************************************/ |
---|
2 | /* */ |
---|
3 | /* Copyright (c) 1994 Stanford University */ |
---|
4 | /* */ |
---|
5 | /* All rights reserved. */ |
---|
6 | /* */ |
---|
7 | /* Permission is given to use, copy, and modify this software for any */ |
---|
8 | /* non-commercial purpose as long as this copyright notice is not */ |
---|
9 | /* removed. All other uses, including redistribution in whole or in */ |
---|
10 | /* part, are forbidden without prior written permission. */ |
---|
11 | /* */ |
---|
12 | /* This software is provided with absolutely no warranty and no */ |
---|
13 | /* support. */ |
---|
14 | /* */ |
---|
15 | /*************************************************************************/ |
---|
16 | |
---|
17 | /* **************** |
---|
18 | subroutine slave |
---|
19 | **************** */ |
---|
20 | |
---|
21 | EXTERN_ENV |
---|
22 | |
---|
23 | #include <stdio.h> |
---|
24 | #include <math.h> |
---|
25 | #include <stdlib.h> |
---|
26 | |
---|
27 | #include "decs.h" |
---|
28 | |
---|
29 | void slave(long *ptr_procid) |
---|
30 | { |
---|
31 | long i; |
---|
32 | long j; |
---|
33 | long nstep; |
---|
34 | long iindex; |
---|
35 | long iday; |
---|
36 | double ysca1; |
---|
37 | double y; |
---|
38 | double factor; |
---|
39 | double sintemp; |
---|
40 | double curlt; |
---|
41 | double ressqr; |
---|
42 | long istart; |
---|
43 | long iend; |
---|
44 | long jstart; |
---|
45 | long jend; |
---|
46 | long ist; |
---|
47 | long ien; |
---|
48 | long jst; |
---|
49 | long jen; |
---|
50 | double fac; |
---|
51 | long dayflag = 0; |
---|
52 | long dhourflag = 0; |
---|
53 | long endflag = 0; |
---|
54 | long firstrow; |
---|
55 | long lastrow; |
---|
56 | long numrows; |
---|
57 | long firstcol; |
---|
58 | long lastcol; |
---|
59 | long numcols; |
---|
60 | long psiindex; |
---|
61 | double psibipriv; |
---|
62 | double ttime; |
---|
63 | double dhour; |
---|
64 | double day; |
---|
65 | long procid; |
---|
66 | long j_off = 0; |
---|
67 | unsigned long t1; |
---|
68 | double **t2a; |
---|
69 | double **t2b; |
---|
70 | double *t1a; |
---|
71 | double *t1b; |
---|
72 | double *t1c; |
---|
73 | double *t1d; |
---|
74 | |
---|
75 | |
---|
76 | /* |
---|
77 | LOCK(locks->idlock) |
---|
78 | procid = global->id; |
---|
79 | global->id = global->id+1; |
---|
80 | UNLOCK(locks->idlock) |
---|
81 | */ |
---|
82 | |
---|
83 | procid = *ptr_procid; |
---|
84 | ressqr = lev_res[numlev - 1] * lev_res[numlev - 1]; |
---|
85 | |
---|
86 | #if defined(MULTIPLE_BARRIERS) |
---|
87 | BARRIER(bars->sl_prini, nprocs) |
---|
88 | #else |
---|
89 | BARRIER(bars->barrier, nprocs) |
---|
90 | #endif |
---|
91 | /* POSSIBLE ENHANCEMENT: Here is where one might pin processes to |
---|
92 | processors to avoid migration. */ |
---|
93 | /* POSSIBLE ENHANCEMENT: Here is where one might distribute |
---|
94 | data structures across physically distributed memories as |
---|
95 | desired. |
---|
96 | |
---|
97 | One way to do this is as follows. The function allocate(START,SIZE,I) |
---|
98 | is assumed to place all addresses x such that |
---|
99 | (START <= x < START+SIZE) on node I. |
---|
100 | |
---|
101 | long d_size; |
---|
102 | unsigned long g_size; |
---|
103 | unsigned long mg_size; |
---|
104 | |
---|
105 | if (procid == MASTER) { |
---|
106 | g_size = ((jmx[numlev-1]-2)/xprocs+2)*((imx[numlev-1]-2)/yprocs+2)*siz |
---|
107 | eof(double) + |
---|
108 | ((imx[numlev-1]-2)/yprocs+2)*sizeof(double *); |
---|
109 | |
---|
110 | mg_size = numlev*sizeof(double **); |
---|
111 | for (i=0;i<numlev;i++) { |
---|
112 | mg_size+=((imx[i]-2)/yprocs+2)*((jmx[i]-2)/xprocs+2)*sizeof(double)+ |
---|
113 | ((imx[i]-2)/yprocs+2)*sizeof(double *); |
---|
114 | } |
---|
115 | for (i= 0;i<nprocs;i++) { |
---|
116 | d_size = 2*sizeof(double **); |
---|
117 | allocate((unsigned long) psi[i],d_size,i); |
---|
118 | allocate((unsigned long) psim[i],d_size,i); |
---|
119 | allocate((unsigned long) work1[i],d_size,i); |
---|
120 | allocate((unsigned long) work4[i],d_size,i); |
---|
121 | allocate((unsigned long) work5[i],d_size,i); |
---|
122 | allocate((unsigned long) work7[i],d_size,i); |
---|
123 | allocate((unsigned long) temparray[i],d_size,i); |
---|
124 | allocate((unsigned long) psi[i][0],g_size,i); |
---|
125 | allocate((unsigned long) psi[i][1],g_size,i); |
---|
126 | allocate((unsigned long) psim[i][0],g_size,i); |
---|
127 | allocate((unsigned long) psim[i][1],g_size,i); |
---|
128 | allocate((unsigned long) psium[i],g_size,i); |
---|
129 | allocate((unsigned long) psilm[i],g_size,i); |
---|
130 | allocate((unsigned long) psib[i],g_size,i); |
---|
131 | allocate((unsigned long) ga[i],g_size,i); |
---|
132 | allocate((unsigned long) gb[i],g_size,i); |
---|
133 | allocate((unsigned long) work1[i][0],g_size,i); |
---|
134 | allocate((unsigned long) work1[i][1],g_size,i); |
---|
135 | allocate((unsigned long) work2[i],g_size,i); |
---|
136 | allocate((unsigned long) work3[i],g_size,i); |
---|
137 | allocate((unsigned long) work4[i][0],g_size,i); |
---|
138 | allocate((unsigned long) work4[i][1],g_size,i); |
---|
139 | allocate((unsigned long) work5[i][0],g_size,i); |
---|
140 | allocate((unsigned long) work5[i][1],g_size,i); |
---|
141 | allocate((unsigned long) work6[i],g_size,i); |
---|
142 | allocate((unsigned long) work7[i][0],g_size,i); |
---|
143 | allocate((unsigned long) work7[i][1],g_size,i); |
---|
144 | allocate((unsigned long) temparray[i][0],g_size,i); |
---|
145 | allocate((unsigned long) temparray[i][1],g_size,i); |
---|
146 | allocate((unsigned long) tauz[i],g_size,i); |
---|
147 | allocate((unsigned long) oldga[i],g_size,i); |
---|
148 | allocate((unsigned long) oldgb[i],g_size,i); |
---|
149 | d_size = numlev * sizeof(long); |
---|
150 | allocate((unsigned long) gp[i].rel_num_x,d_size,i); |
---|
151 | allocate((unsigned long) gp[i].rel_num_y,d_size,i); |
---|
152 | allocate((unsigned long) gp[i].eist,d_size,i); |
---|
153 | allocate((unsigned long) gp[i].ejst,d_size,i); |
---|
154 | allocate((unsigned long) gp[i].oist,d_size,i); |
---|
155 | allocate((unsigned long) gp[i].ojst,d_size,i); |
---|
156 | allocate((unsigned long) gp[i].rlist,d_size,i); |
---|
157 | allocate((unsigned long) gp[i].rljst,d_size,i); |
---|
158 | allocate((unsigned long) gp[i].rlien,d_size,i); |
---|
159 | allocate((unsigned long) gp[i].rljen,d_size,i); |
---|
160 | |
---|
161 | allocate((unsigned long) q_multi[i],mg_size,i); |
---|
162 | allocate((unsigned long) rhs_multi[i],mg_size,i); |
---|
163 | allocate((unsigned long) &(gp[i]),sizeof(struct Global_Private),i); |
---|
164 | } |
---|
165 | } |
---|
166 | |
---|
167 | */ |
---|
168 | t2a = (double **) oldga[procid]; |
---|
169 | t2b = (double **) oldgb[procid]; |
---|
170 | for (i = 0; i < im; i++) { |
---|
171 | t1a = (double *) t2a[i]; |
---|
172 | t1b = (double *) t2b[i]; |
---|
173 | for (j = 0; j < jm; j++) { |
---|
174 | t1a[j] = 0.0; |
---|
175 | t1b[j] = 0.0; |
---|
176 | } |
---|
177 | } |
---|
178 | |
---|
179 | firstcol = 1; |
---|
180 | lastcol = firstcol + gp[procid].rel_num_x[numlev - 1] - 1; |
---|
181 | firstrow = 1; |
---|
182 | lastrow = firstrow + gp[procid].rel_num_y[numlev - 1] - 1; |
---|
183 | numcols = gp[procid].rel_num_x[numlev - 1]; |
---|
184 | numrows = gp[procid].rel_num_y[numlev - 1]; |
---|
185 | j_off = (*gp[procid].colnum) * numcols; |
---|
186 | |
---|
187 | /* |
---|
188 | if (procid > nprocs/2) { |
---|
189 | psinum = 2; |
---|
190 | } else { |
---|
191 | psinum = 1; |
---|
192 | } |
---|
193 | */ |
---|
194 | |
---|
195 | /* every process gets its own copy of the timing variables to avoid |
---|
196 | contention at shared memory locations. here, these variables |
---|
197 | are initialized. */ |
---|
198 | |
---|
199 | ttime = 0.0; |
---|
200 | dhour = 0.0; |
---|
201 | nstep = 0; |
---|
202 | day = 0.0; |
---|
203 | |
---|
204 | ysca1 = 0.5 * ysca; |
---|
205 | |
---|
206 | if (*gp[procid].lpid == MASTER) { |
---|
207 | |
---|
208 | f = (double *) G_MALLOC(oim * sizeof(double), procid); |
---|
209 | |
---|
210 | t1a = (double *) f; |
---|
211 | for (iindex = 0; iindex <= jmx[numlev - 1] - 1; iindex++) { |
---|
212 | y = ((double) iindex) * res; |
---|
213 | t1a[iindex] = f0 + beta * (y - ysca1); |
---|
214 | } |
---|
215 | } |
---|
216 | |
---|
217 | t2a = (double **) psium[procid]; |
---|
218 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
219 | t2a[0][0] = 0.0; |
---|
220 | } |
---|
221 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
222 | t2a[im - 1][0] = 0.0; |
---|
223 | } |
---|
224 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
225 | t2a[0][jm - 1] = 0.0; |
---|
226 | } |
---|
227 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
228 | t2a[im - 1][jm - 1] = 0.0; |
---|
229 | } |
---|
230 | if (gp[procid].neighbors[UP] == -1) { |
---|
231 | t1a = (double *) t2a[0]; |
---|
232 | for (j = firstcol; j <= lastcol; j++) { |
---|
233 | t1a[j] = 0.0; |
---|
234 | } |
---|
235 | } |
---|
236 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
237 | t1a = (double *) t2a[im - 1]; |
---|
238 | for (j = firstcol; j <= lastcol; j++) { |
---|
239 | t1a[j] = 0.0; |
---|
240 | } |
---|
241 | } |
---|
242 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
243 | for (j = firstrow; j <= lastrow; j++) { |
---|
244 | t2a[j][0] = 0.0; |
---|
245 | } |
---|
246 | } |
---|
247 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
248 | for (j = firstrow; j <= lastrow; j++) { |
---|
249 | t2a[j][jm - 1] = 0.0; |
---|
250 | } |
---|
251 | } |
---|
252 | |
---|
253 | for (i = firstrow; i <= lastrow; i++) { |
---|
254 | t1a = (double *) t2a[i]; |
---|
255 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
256 | t1a[iindex] = 0.0; |
---|
257 | } |
---|
258 | } |
---|
259 | t2a = (double **) psilm[procid]; |
---|
260 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
261 | t2a[0][0] = 0.0; |
---|
262 | } |
---|
263 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
264 | t2a[im - 1][0] = 0.0; |
---|
265 | } |
---|
266 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
267 | t2a[0][jm - 1] = 0.0; |
---|
268 | } |
---|
269 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
270 | t2a[im - 1][jm - 1] = 0.0; |
---|
271 | } |
---|
272 | if (gp[procid].neighbors[UP] == -1) { |
---|
273 | t1a = (double *) t2a[0]; |
---|
274 | for (j = firstcol; j <= lastcol; j++) { |
---|
275 | t1a[j] = 0.0; |
---|
276 | } |
---|
277 | } |
---|
278 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
279 | t1a = (double *) t2a[im - 1]; |
---|
280 | for (j = firstcol; j <= lastcol; j++) { |
---|
281 | t1a[j] = 0.0; |
---|
282 | } |
---|
283 | } |
---|
284 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
285 | for (j = firstrow; j <= lastrow; j++) { |
---|
286 | t2a[j][0] = 0.0; |
---|
287 | } |
---|
288 | } |
---|
289 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
290 | for (j = firstrow; j <= lastrow; j++) { |
---|
291 | t2a[j][jm - 1] = 0.0; |
---|
292 | } |
---|
293 | } |
---|
294 | for (i = firstrow; i <= lastrow; i++) { |
---|
295 | t1a = (double *) t2a[i]; |
---|
296 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
297 | t1a[iindex] = 0.0; |
---|
298 | } |
---|
299 | } |
---|
300 | |
---|
301 | t2a = (double **) psib[procid]; |
---|
302 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
303 | t2a[0][0] = 1.0; |
---|
304 | } |
---|
305 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
306 | t2a[0][jm - 1] = 1.0; |
---|
307 | } |
---|
308 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
309 | t2a[im - 1][0] = 1.0; |
---|
310 | } |
---|
311 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
312 | t2a[im - 1][jm - 1] = 1.0; |
---|
313 | } |
---|
314 | if (gp[procid].neighbors[UP] == -1) { |
---|
315 | t1a = (double *) t2a[0]; |
---|
316 | for (j = firstcol; j <= lastcol; j++) { |
---|
317 | t1a[j] = 1.0; |
---|
318 | } |
---|
319 | } |
---|
320 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
321 | t1a = (double *) t2a[im - 1]; |
---|
322 | for (j = firstcol; j <= lastcol; j++) { |
---|
323 | t1a[j] = 1.0; |
---|
324 | } |
---|
325 | } |
---|
326 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
327 | for (j = firstrow; j <= lastrow; j++) { |
---|
328 | t2a[j][0] = 1.0; |
---|
329 | } |
---|
330 | } |
---|
331 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
332 | for (j = firstrow; j <= lastrow; j++) { |
---|
333 | t2a[j][jm - 1] = 1.0; |
---|
334 | } |
---|
335 | } |
---|
336 | for (i = firstrow; i <= lastrow; i++) { |
---|
337 | t1a = (double *) t2a[i]; |
---|
338 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
339 | t1a[iindex] = 0.0; |
---|
340 | } |
---|
341 | } |
---|
342 | |
---|
343 | /* wait until all processes have completed the above initialization */ |
---|
344 | #if defined(MULTIPLE_BARRIERS) |
---|
345 | BARRIER(bars->sl_prini, nprocs) |
---|
346 | #else |
---|
347 | BARRIER(bars->barrier, nprocs) |
---|
348 | #endif |
---|
349 | /* compute psib array (one-time computation) and integrate into psibi */ |
---|
350 | istart = 1; |
---|
351 | iend = istart + gp[procid].rel_num_y[numlev - 1] - 1; |
---|
352 | jstart = 1; |
---|
353 | jend = jstart + gp[procid].rel_num_x[numlev - 1] - 1; |
---|
354 | ist = istart; |
---|
355 | ien = iend; |
---|
356 | jst = jstart; |
---|
357 | jen = jend; |
---|
358 | |
---|
359 | if (gp[procid].neighbors[UP] == -1) { |
---|
360 | istart = 0; |
---|
361 | } |
---|
362 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
363 | jstart = 0; |
---|
364 | } |
---|
365 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
366 | iend = im - 1; |
---|
367 | } |
---|
368 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
369 | jend = jm - 1; |
---|
370 | } |
---|
371 | |
---|
372 | t2a = (double **) rhs_multi[procid][numlev - 1]; |
---|
373 | t2b = (double **) psib[procid]; |
---|
374 | for (i = istart; i <= iend; i++) { |
---|
375 | t1a = (double *) t2a[i]; |
---|
376 | t1b = (double *) t2b[i]; |
---|
377 | for (j = jstart; j <= jend; j++) { |
---|
378 | t1a[j] = t1b[j] * ressqr; |
---|
379 | } |
---|
380 | } |
---|
381 | t2a = (double **) q_multi[procid][numlev - 1]; |
---|
382 | if (gp[procid].neighbors[UP] == -1) { |
---|
383 | t1a = (double *) t2a[0]; |
---|
384 | t1b = (double *) t2b[0]; |
---|
385 | for (j = jstart; j <= jend; j++) { |
---|
386 | t1a[j] = t1b[j]; |
---|
387 | } |
---|
388 | } |
---|
389 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
390 | t1a = (double *) t2a[im - 1]; |
---|
391 | t1b = (double *) t2b[im - 1]; |
---|
392 | for (j = jstart; j <= jend; j++) { |
---|
393 | t1a[j] = t1b[j]; |
---|
394 | } |
---|
395 | } |
---|
396 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
397 | for (i = istart; i <= iend; i++) { |
---|
398 | t2a[i][0] = t2b[i][0]; |
---|
399 | } |
---|
400 | } |
---|
401 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
402 | for (i = istart; i <= iend; i++) { |
---|
403 | t2a[i][jm - 1] = t2b[i][jm - 1]; |
---|
404 | } |
---|
405 | } |
---|
406 | |
---|
407 | #if defined(MULTIPLE_BARRIERS) |
---|
408 | BARRIER(bars->sl_psini, nprocs) |
---|
409 | #else |
---|
410 | BARRIER(bars->barrier, nprocs) |
---|
411 | #endif |
---|
412 | |
---|
413 | t2a = (double **) psib[procid]; |
---|
414 | j = gp[procid].neighbors[UP]; |
---|
415 | if (j != -1) { |
---|
416 | t1a = (double *) t2a[0]; |
---|
417 | t1b = (double *) psib[j][im - 2]; |
---|
418 | for (i = 1; i < jm - 1; i++) { |
---|
419 | t1a[i] = t1b[i]; |
---|
420 | } |
---|
421 | } |
---|
422 | j = gp[procid].neighbors[DOWN]; |
---|
423 | if (j != -1) { |
---|
424 | t1a = (double *) t2a[im - 1]; |
---|
425 | t1b = (double *) psib[j][1]; |
---|
426 | for (i = 1; i < jm - 1; i++) { |
---|
427 | t1a[i] = t1b[i]; |
---|
428 | } |
---|
429 | } |
---|
430 | j = gp[procid].neighbors[LEFT]; |
---|
431 | if (j != -1) { |
---|
432 | t2b = (double **) psib[j]; |
---|
433 | for (i = 1; i < im - 1; i++) { |
---|
434 | t2a[i][0] = t2b[i][jm - 2]; |
---|
435 | } |
---|
436 | } |
---|
437 | j = gp[procid].neighbors[RIGHT]; |
---|
438 | if (j != -1) { |
---|
439 | t2b = (double **) psib[j]; |
---|
440 | for (i = 1; i < im - 1; i++) { |
---|
441 | t2a[i][jm - 1] = t2b[i][1]; |
---|
442 | } |
---|
443 | } |
---|
444 | |
---|
445 | t2a = (double **) q_multi[procid][numlev - 1]; |
---|
446 | t2b = (double **) psib[procid]; |
---|
447 | fac = 1.0 / (4.0 - ressqr * eig2); |
---|
448 | for (i = ist; i <= ien; i++) { |
---|
449 | t1a = (double *) t2a[i]; |
---|
450 | t1b = (double *) t2b[i]; |
---|
451 | t1c = (double *) t2b[i - 1]; |
---|
452 | t1d = (double *) t2b[i + 1]; |
---|
453 | for (j = jst; j <= jen; j++) { |
---|
454 | t1a[j] = fac * (t1d[j] + t1c[j] + t1b[j + 1] + t1b[j - 1] - ressqr * t1b[j]); |
---|
455 | } |
---|
456 | } |
---|
457 | |
---|
458 | multig(procid); |
---|
459 | |
---|
460 | for (i = istart; i <= iend; i++) { |
---|
461 | t1a = (double *) t2a[i]; |
---|
462 | t1b = (double *) t2b[i]; |
---|
463 | for (j = jstart; j <= jend; j++) { |
---|
464 | t1b[j] = t1a[j]; |
---|
465 | } |
---|
466 | } |
---|
467 | |
---|
468 | #if defined(MULTIPLE_BARRIERS) |
---|
469 | BARRIER(bars->sl_prini, nprocs) |
---|
470 | #else |
---|
471 | BARRIER(bars->barrier, nprocs) |
---|
472 | #endif |
---|
473 | |
---|
474 | /* update the local running sum psibipriv by summing all the resulting |
---|
475 | values in that process's share of the psib matrix */ |
---|
476 | |
---|
477 | t2a = (double **) psib[procid]; |
---|
478 | psibipriv = 0.0; |
---|
479 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
480 | psibipriv = psibipriv + 0.25 * (t2a[0][0]); |
---|
481 | } |
---|
482 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
483 | psibipriv = psibipriv + 0.25 * (t2a[0][jm - 1]); |
---|
484 | } |
---|
485 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
486 | psibipriv = psibipriv + 0.25 * (t2a[im - 1][0]); |
---|
487 | } |
---|
488 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
489 | psibipriv = psibipriv + 0.25 * (t2a[im - 1][jm - 1]); |
---|
490 | } |
---|
491 | if (gp[procid].neighbors[UP] == -1) { |
---|
492 | t1a = (double *) t2a[0]; |
---|
493 | for (j = firstcol; j <= lastcol; j++) { |
---|
494 | psibipriv = psibipriv + 0.5 * t1a[j]; |
---|
495 | } |
---|
496 | } |
---|
497 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
498 | t1a = (double *) t2a[im - 1]; |
---|
499 | for (j = firstcol; j <= lastcol; j++) { |
---|
500 | psibipriv = psibipriv + 0.5 * t1a[j]; |
---|
501 | } |
---|
502 | } |
---|
503 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
504 | for (j = firstrow; j <= lastrow; j++) { |
---|
505 | psibipriv = psibipriv + 0.5 * t2a[j][0]; |
---|
506 | } |
---|
507 | } |
---|
508 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
509 | for (j = firstrow; j <= lastrow; j++) { |
---|
510 | psibipriv = psibipriv + 0.5 * t2a[j][jm - 1]; |
---|
511 | } |
---|
512 | } |
---|
513 | for (i = firstrow; i <= lastrow; i++) { |
---|
514 | t1a = (double *) t2a[i]; |
---|
515 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
516 | psibipriv = psibipriv + t1a[iindex]; |
---|
517 | } |
---|
518 | } |
---|
519 | |
---|
520 | /* update the shared variable psibi by summing all the psibiprivs |
---|
521 | of the individual processes into it. note that this combined |
---|
522 | private and shared sum method avoids accessing the shared |
---|
523 | variable psibi once for every element of the matrix. */ |
---|
524 | |
---|
525 | LOCK(locks->psibilock); |
---|
526 | global->psibi = global->psibi + psibipriv; |
---|
527 | UNLOCK(locks->psibilock); |
---|
528 | |
---|
529 | /* initialize psim matrices |
---|
530 | |
---|
531 | if there is more than one process, then split the processes |
---|
532 | between the two psim matrices; otherwise, let the single process |
---|
533 | work on one first and then the other */ |
---|
534 | |
---|
535 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
536 | t2a = (double **) psim[procid][psiindex]; |
---|
537 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
538 | t2a[0][0] = 0.0; |
---|
539 | } |
---|
540 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
541 | t2a[im - 1][0] = 0.0; |
---|
542 | } |
---|
543 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
544 | t2a[0][jm - 1] = 0.0; |
---|
545 | } |
---|
546 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
547 | t2a[im - 1][jm - 1] = 0.0; |
---|
548 | } |
---|
549 | if (gp[procid].neighbors[UP] == -1) { |
---|
550 | t1a = (double *) t2a[0]; |
---|
551 | for (j = firstcol; j <= lastcol; j++) { |
---|
552 | t1a[j] = 0.0; |
---|
553 | } |
---|
554 | } |
---|
555 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
556 | t1a = (double *) t2a[im - 1]; |
---|
557 | for (j = firstcol; j <= lastcol; j++) { |
---|
558 | t1a[j] = 0.0; |
---|
559 | } |
---|
560 | } |
---|
561 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
562 | for (j = firstrow; j <= lastrow; j++) { |
---|
563 | t2a[j][0] = 0.0; |
---|
564 | } |
---|
565 | } |
---|
566 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
567 | for (j = firstrow; j <= lastrow; j++) { |
---|
568 | t2a[j][jm - 1] = 0.0; |
---|
569 | } |
---|
570 | } |
---|
571 | for (i = firstrow; i <= lastrow; i++) { |
---|
572 | t1a = (double *) t2a[i]; |
---|
573 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
574 | t1a[iindex] = 0.0; |
---|
575 | } |
---|
576 | } |
---|
577 | } |
---|
578 | |
---|
579 | /* initialize psi matrices the same way */ |
---|
580 | |
---|
581 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
582 | t2a = (double **) psi[procid][psiindex]; |
---|
583 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
584 | t2a[0][0] = 0.0; |
---|
585 | } |
---|
586 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
587 | t2a[0][jm - 1] = 0.0; |
---|
588 | } |
---|
589 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
590 | t2a[im - 1][0] = 0.0; |
---|
591 | } |
---|
592 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
593 | t2a[im - 1][jm - 1] = 0.0; |
---|
594 | } |
---|
595 | if (gp[procid].neighbors[UP] == -1) { |
---|
596 | t1a = (double *) t2a[0]; |
---|
597 | for (j = firstcol; j <= lastcol; j++) { |
---|
598 | t1a[j] = 0.0; |
---|
599 | } |
---|
600 | } |
---|
601 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
602 | t1a = (double *) t2a[im - 1]; |
---|
603 | for (j = firstcol; j <= lastcol; j++) { |
---|
604 | t1a[j] = 0.0; |
---|
605 | } |
---|
606 | } |
---|
607 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
608 | for (j = firstrow; j <= lastrow; j++) { |
---|
609 | t2a[j][0] = 0.0; |
---|
610 | } |
---|
611 | } |
---|
612 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
613 | for (j = firstrow; j <= lastrow; j++) { |
---|
614 | t2a[j][jm - 1] = 0.0; |
---|
615 | } |
---|
616 | } |
---|
617 | for (i = firstrow; i <= lastrow; i++) { |
---|
618 | t1a = (double *) t2a[i]; |
---|
619 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
620 | t1a[iindex] = 0.0; |
---|
621 | } |
---|
622 | } |
---|
623 | } |
---|
624 | |
---|
625 | /* compute input curl of wind stress */ |
---|
626 | |
---|
627 | |
---|
628 | t2a = (double **) tauz[procid]; |
---|
629 | ysca1 = .5 * ysca; |
---|
630 | factor = -t0 * pi / ysca1; |
---|
631 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
632 | t2a[0][0] = 0.0; |
---|
633 | } |
---|
634 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
635 | t2a[im - 1][0] = 0.0; |
---|
636 | } |
---|
637 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
638 | sintemp = pi * ((double) jm - 1 + j_off) * res / ysca1; |
---|
639 | sintemp = sin(sintemp); |
---|
640 | t2a[0][jm - 1] = factor * sintemp; |
---|
641 | } |
---|
642 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
643 | sintemp = pi * ((double) jm - 1 + j_off) * res / ysca1; |
---|
644 | sintemp = sin(sintemp); |
---|
645 | t2a[im - 1][jm - 1] = factor * sintemp; |
---|
646 | } |
---|
647 | if (gp[procid].neighbors[UP] == -1) { |
---|
648 | t1a = (double *) t2a[0]; |
---|
649 | for (j = firstcol; j <= lastcol; j++) { |
---|
650 | sintemp = pi * ((double) j + j_off) * res / ysca1; |
---|
651 | sintemp = sin(sintemp); |
---|
652 | curlt = factor * sintemp; |
---|
653 | t1a[j] = curlt; |
---|
654 | } |
---|
655 | } |
---|
656 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
657 | t1a = (double *) t2a[im - 1]; |
---|
658 | for (j = firstcol; j <= lastcol; j++) { |
---|
659 | sintemp = pi * ((double) j + j_off) * res / ysca1; |
---|
660 | sintemp = sin(sintemp); |
---|
661 | curlt = factor * sintemp; |
---|
662 | t1a[j] = curlt; |
---|
663 | } |
---|
664 | } |
---|
665 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
666 | for (j = firstrow; j <= lastrow; j++) { |
---|
667 | t2a[j][0] = 0.0; |
---|
668 | } |
---|
669 | } |
---|
670 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
671 | sintemp = pi * ((double) jm - 1 + j_off) * res / ysca1; |
---|
672 | sintemp = sin(sintemp); |
---|
673 | curlt = factor * sintemp; |
---|
674 | for (j = firstrow; j <= lastrow; j++) { |
---|
675 | t2a[j][jm - 1] = curlt; |
---|
676 | } |
---|
677 | } |
---|
678 | for (i = firstrow; i <= lastrow; i++) { |
---|
679 | t1a = (double *) t2a[i]; |
---|
680 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
681 | sintemp = pi * ((double) iindex + j_off) * res / ysca1; |
---|
682 | sintemp = sin(sintemp); |
---|
683 | curlt = factor * sintemp; |
---|
684 | t1a[iindex] = curlt; |
---|
685 | } |
---|
686 | } |
---|
687 | |
---|
688 | #if defined(MULTIPLE_BARRIERS) |
---|
689 | BARRIER(bars->sl_onetime, nprocs) |
---|
690 | #else |
---|
691 | BARRIER(bars->barrier, nprocs) |
---|
692 | #endif |
---|
693 | |
---|
694 | /*************************************************************** |
---|
695 | one-time stuff over at this point |
---|
696 | ***************************************************************/ |
---|
697 | while (!endflag) { |
---|
698 | while ((!dayflag) || (!dhourflag)) { |
---|
699 | dayflag = 0; |
---|
700 | dhourflag = 0; |
---|
701 | if (nstep == 1) { |
---|
702 | for (i = 0; i < 10; i++) { |
---|
703 | gp[procid].steps_time[i] = 0; |
---|
704 | } |
---|
705 | if (procid == MASTER) { |
---|
706 | CLOCK(global->trackstart) |
---|
707 | } |
---|
708 | if ((procid == MASTER) || (do_stats)) { |
---|
709 | CLOCK(t1); |
---|
710 | (*gp[procid].total_time) = t1; |
---|
711 | (*gp[procid].multi_time) = 0; |
---|
712 | } |
---|
713 | /* POSSIBLE ENHANCEMENT: Here is where one might reset the |
---|
714 | statistics that one is measuring about the parallel execution */ |
---|
715 | } |
---|
716 | |
---|
717 | slave2(procid, firstrow, lastrow, numrows, firstcol, lastcol, numcols); |
---|
718 | |
---|
719 | /* update time and step number |
---|
720 | note that these time and step variables are private i.e. every |
---|
721 | process has its own copy and keeps track of its own time */ |
---|
722 | |
---|
723 | ttime = ttime + dtau; |
---|
724 | nstep = nstep + 1; |
---|
725 | day = ttime / 86400.0; |
---|
726 | |
---|
727 | if (day > ((double) outday0)) { |
---|
728 | dayflag = 1; |
---|
729 | iday = (long) day; |
---|
730 | dhour = dhour + dtau; |
---|
731 | if (dhour >= 86400.0) { |
---|
732 | dhourflag = 1; |
---|
733 | } |
---|
734 | } |
---|
735 | } |
---|
736 | dhour = 0.0; |
---|
737 | |
---|
738 | t2a = (double **) psium[procid]; |
---|
739 | t2b = (double **) psim[procid][0]; |
---|
740 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
741 | t2a[0][0] = t2a[0][0] + t2b[0][0]; |
---|
742 | } |
---|
743 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
744 | t2a[im - 1][0] = t2a[im - 1][0] + t2b[im - 1][0]; |
---|
745 | } |
---|
746 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
747 | t2a[0][jm - 1] = t2a[0][jm - 1] + t2b[0][jm - 1]; |
---|
748 | } |
---|
749 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
750 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + t2b[im - 1][jm - 1]; |
---|
751 | } |
---|
752 | if (gp[procid].neighbors[UP] == -1) { |
---|
753 | t1a = (double *) t2a[0]; |
---|
754 | t1b = (double *) t2b[0]; |
---|
755 | for (j = firstcol; j <= lastcol; j++) { |
---|
756 | t1a[j] = t1a[j] + t1b[j]; |
---|
757 | } |
---|
758 | } |
---|
759 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
760 | t1a = (double *) t2a[im - 1]; |
---|
761 | t1b = (double *) t2b[im - 1]; |
---|
762 | for (j = firstcol; j <= lastcol; j++) { |
---|
763 | t1a[j] = t1a[j] + t1b[j]; |
---|
764 | } |
---|
765 | } |
---|
766 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
767 | for (j = firstrow; j <= lastrow; j++) { |
---|
768 | t2a[j][0] = t2a[j][0] + t2b[j][0]; |
---|
769 | } |
---|
770 | } |
---|
771 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
772 | for (j = firstrow; j <= lastrow; j++) { |
---|
773 | t2a[j][jm - 1] = t2a[j][jm - 1] + t2b[j][jm - 1]; |
---|
774 | } |
---|
775 | } |
---|
776 | for (i = firstrow; i <= lastrow; i++) { |
---|
777 | t1a = (double *) t2a[i]; |
---|
778 | t1b = (double *) t2b[i]; |
---|
779 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
780 | t1a[iindex] = t1a[iindex] + t1b[iindex]; |
---|
781 | } |
---|
782 | } |
---|
783 | |
---|
784 | /* update values of psilm array to psilm + psim[2] */ |
---|
785 | |
---|
786 | t2a = (double **) psilm[procid]; |
---|
787 | t2b = (double **) psim[procid][1]; |
---|
788 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
789 | t2a[0][0] = t2a[0][0] + t2b[0][0]; |
---|
790 | } |
---|
791 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
792 | t2a[im - 1][0] = t2a[im - 1][0] + t2b[im - 1][0]; |
---|
793 | } |
---|
794 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
795 | t2a[0][jm - 1] = t2a[0][jm - 1] + t2b[0][jm - 1]; |
---|
796 | } |
---|
797 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
798 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + t2b[im - 1][jm - 1]; |
---|
799 | } |
---|
800 | if (gp[procid].neighbors[UP] == -1) { |
---|
801 | t1a = (double *) t2a[0]; |
---|
802 | t1b = (double *) t2b[0]; |
---|
803 | for (j = firstcol; j <= lastcol; j++) { |
---|
804 | t1a[j] = t1a[j] + t1b[j]; |
---|
805 | } |
---|
806 | } |
---|
807 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
808 | t1a = (double *) t2a[im - 1]; |
---|
809 | t1b = (double *) t2b[im - 1]; |
---|
810 | for (j = firstcol; j <= lastcol; j++) { |
---|
811 | t1a[j] = t1a[j] + t1b[j]; |
---|
812 | } |
---|
813 | } |
---|
814 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
815 | for (j = firstrow; j <= lastrow; j++) { |
---|
816 | t2a[j][0] = t2a[j][0] + t2b[j][0]; |
---|
817 | } |
---|
818 | } |
---|
819 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
820 | for (j = firstrow; j <= lastrow; j++) { |
---|
821 | t2a[j][jm - 1] = t2a[j][jm - 1] + t2b[j][jm - 1]; |
---|
822 | } |
---|
823 | } |
---|
824 | for (i = firstrow; i <= lastrow; i++) { |
---|
825 | t1a = (double *) t2a[i]; |
---|
826 | t1b = (double *) t2b[i]; |
---|
827 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
828 | t1a[iindex] = t1a[iindex] + t1b[iindex]; |
---|
829 | } |
---|
830 | } |
---|
831 | if (iday >= (long) outday3) { |
---|
832 | endflag = 1; |
---|
833 | } |
---|
834 | } |
---|
835 | if ((procid == MASTER) || (do_stats)) { |
---|
836 | CLOCK(t1); |
---|
837 | (*gp[procid].total_time) = t1 - (*gp[procid].total_time); |
---|
838 | } |
---|
839 | } |
---|