[598] | 1 | /*************************************************************************/ |
---|
| 2 | /* */ |
---|
| 3 | /* Copyright (c) 1994 Stanford University */ |
---|
| 4 | /* */ |
---|
| 5 | /* All rights reserved. */ |
---|
| 6 | /* */ |
---|
| 7 | /* Permission is given to use, copy, and modify this software for any */ |
---|
| 8 | /* non-commercial purpose as long as this copyright notice is not */ |
---|
| 9 | /* removed. All other uses, including redistribution in whole or in */ |
---|
| 10 | /* part, are forbidden without prior written permission. */ |
---|
| 11 | /* */ |
---|
| 12 | /* This software is provided with absolutely no warranty and no */ |
---|
| 13 | /* support. */ |
---|
| 14 | /* */ |
---|
| 15 | /*************************************************************************/ |
---|
[581] | 16 | |
---|
[598] | 17 | /* **************** |
---|
| 18 | subroutine slave2 |
---|
| 19 | **************** */ |
---|
| 20 | |
---|
| 21 | EXTERN_ENV |
---|
| 22 | |
---|
| 23 | #include <stdio.h> |
---|
| 24 | #include <math.h> |
---|
| 25 | #include <stdlib.h> |
---|
| 26 | |
---|
| 27 | #include "decs.h" |
---|
| 28 | |
---|
| 29 | void slave2(long procid, long firstrow, long lastrow, long numrows, long firstcol, long lastcol, long numcols) |
---|
| 30 | { |
---|
| 31 | long i; |
---|
| 32 | long j; |
---|
| 33 | long iindex; |
---|
| 34 | double hh1; |
---|
| 35 | double hh3; |
---|
| 36 | double hinv; |
---|
| 37 | double h1inv; |
---|
| 38 | long istart; |
---|
| 39 | long iend; |
---|
| 40 | long jstart; |
---|
| 41 | long jend; |
---|
| 42 | long ist; |
---|
| 43 | long ien; |
---|
| 44 | long jst; |
---|
| 45 | long jen; |
---|
| 46 | double ressqr; |
---|
| 47 | double psiaipriv; |
---|
| 48 | double f4; |
---|
| 49 | double timst; |
---|
| 50 | long psiindex; |
---|
| 51 | long i_off; |
---|
| 52 | long j_off; |
---|
| 53 | long multi_start; |
---|
| 54 | long multi_end; |
---|
| 55 | double **t2a; |
---|
| 56 | double **t2b; |
---|
| 57 | double **t2c; |
---|
| 58 | double **t2d; |
---|
| 59 | double **t2e; |
---|
| 60 | double **t2f; |
---|
| 61 | double **t2g; |
---|
| 62 | double **t2h; |
---|
| 63 | double *t1a; |
---|
| 64 | double *t1b; |
---|
| 65 | double *t1c; |
---|
| 66 | double *t1d; |
---|
| 67 | double *t1e; |
---|
| 68 | double *t1f; |
---|
| 69 | double *t1g; |
---|
| 70 | double *t1h; |
---|
| 71 | |
---|
| 72 | ressqr = lev_res[numlev - 1] * lev_res[numlev - 1]; |
---|
| 73 | i_off = (*gp[procid].rownum) * numrows; |
---|
| 74 | j_off = (*gp[procid].colnum) * numcols; |
---|
| 75 | |
---|
| 76 | START_PHASE(procid, 1); |
---|
| 77 | |
---|
| 78 | /* *************************************************************** |
---|
| 79 | |
---|
| 80 | f i r s t p h a s e (of timestep calculation) |
---|
| 81 | |
---|
| 82 | ***************************************************************/ |
---|
| 83 | |
---|
| 84 | t2a = (double **) ga[procid]; |
---|
| 85 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 86 | t2a[0][0] = 0.0; |
---|
| 87 | } |
---|
| 88 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 89 | t2a[im - 1][0] = 0.0; |
---|
| 90 | } |
---|
| 91 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 92 | t2a[0][jm - 1] = 0.0; |
---|
| 93 | } |
---|
| 94 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 95 | t2a[im - 1][jm - 1] = 0.0; |
---|
| 96 | } |
---|
| 97 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 98 | t1a = (double *) t2a[0]; |
---|
| 99 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 100 | t1a[j] = 0.0; |
---|
| 101 | } |
---|
| 102 | } |
---|
| 103 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 104 | t1a = (double *) t2a[im - 1]; |
---|
| 105 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 106 | t1a[j] = 0.0; |
---|
| 107 | } |
---|
| 108 | } |
---|
| 109 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 110 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 111 | t2a[j][0] = 0.0; |
---|
| 112 | } |
---|
| 113 | } |
---|
| 114 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 115 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 116 | t2a[j][jm - 1] = 0.0; |
---|
| 117 | } |
---|
| 118 | } |
---|
| 119 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 120 | t1a = (double *) t2a[i]; |
---|
| 121 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 122 | t1a[iindex] = 0.0; |
---|
| 123 | } |
---|
| 124 | } |
---|
| 125 | |
---|
| 126 | t2a = (double **) gb[procid]; |
---|
| 127 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 128 | t2a[0][0] = 0.0; |
---|
| 129 | } |
---|
| 130 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 131 | t2a[im - 1][0] = 0.0; |
---|
| 132 | } |
---|
| 133 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 134 | t2a[0][jm - 1] = 0.0; |
---|
| 135 | } |
---|
| 136 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 137 | t2a[im - 1][jm - 1] = 0.0; |
---|
| 138 | } |
---|
| 139 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 140 | t1a = (double *) t2a[0]; |
---|
| 141 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 142 | t1a[j] = 0.0; |
---|
| 143 | } |
---|
| 144 | } |
---|
| 145 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 146 | t1a = (double *) t2a[im - 1]; |
---|
| 147 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 148 | t1a[j] = 0.0; |
---|
| 149 | } |
---|
| 150 | } |
---|
| 151 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 152 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 153 | t2a[j][0] = 0.0; |
---|
| 154 | } |
---|
| 155 | } |
---|
| 156 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 157 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 158 | t2a[j][jm - 1] = 0.0; |
---|
| 159 | } |
---|
| 160 | } |
---|
| 161 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 162 | t1a = (double *) t2a[i]; |
---|
| 163 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 164 | t1a[iindex] = 0.0; |
---|
| 165 | } |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | /* put the laplacian of psi{1,3} in work1{1,2} |
---|
| 169 | note that psi(i,j,2) represents the psi3 array in |
---|
| 170 | the original equations */ |
---|
| 171 | |
---|
| 172 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 173 | t2a = (double **) work1[procid][psiindex]; |
---|
| 174 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 175 | t2a[0][0] = 0; |
---|
| 176 | } |
---|
| 177 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 178 | t2a[im - 1][0] = 0; |
---|
| 179 | } |
---|
| 180 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 181 | t2a[0][jm - 1] = 0; |
---|
| 182 | } |
---|
| 183 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 184 | t2a[im - 1][jm - 1] = 0; |
---|
| 185 | } |
---|
| 186 | laplacalc(procid, psi, work1, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | /* set values of work2 array to psi1 - psi3 */ |
---|
| 190 | |
---|
| 191 | t2a = (double **) work2[procid]; |
---|
| 192 | t2b = (double **) psi[procid][0]; |
---|
| 193 | t2c = (double **) psi[procid][1]; |
---|
| 194 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 195 | t2a[0][0] = t2b[0][0] - t2c[0][0]; |
---|
| 196 | } |
---|
| 197 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 198 | t2a[im - 1][0] = t2b[im - 1][0] - t2c[im - 1][0]; |
---|
| 199 | } |
---|
| 200 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 201 | t2a[0][jm - 1] = t2b[0][jm - 1] - t2c[0][jm - 1]; |
---|
| 202 | } |
---|
| 203 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 204 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1] - t2c[im - 1][jm - 1]; |
---|
| 205 | } |
---|
| 206 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 207 | t1a = (double *) t2a[0]; |
---|
| 208 | t1b = (double *) t2b[0]; |
---|
| 209 | t1c = (double *) t2c[0]; |
---|
| 210 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 211 | t1a[j] = t1b[j] - t1c[j]; |
---|
| 212 | } |
---|
| 213 | } |
---|
| 214 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 215 | t1a = (double *) t2a[im - 1]; |
---|
| 216 | t1b = (double *) t2b[im - 1]; |
---|
| 217 | t1c = (double *) t2c[im - 1]; |
---|
| 218 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 219 | t1a[j] = t1b[j] - t1c[j]; |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 223 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 224 | t2a[j][0] = t2b[j][0] - t2c[j][0]; |
---|
| 225 | } |
---|
| 226 | } |
---|
| 227 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 228 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 229 | t2a[j][jm - 1] = t2b[j][jm - 1] - t2c[j][jm - 1]; |
---|
| 230 | } |
---|
| 231 | } |
---|
| 232 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 233 | t1a = (double *) t2a[i]; |
---|
| 234 | t1b = (double *) t2b[i]; |
---|
| 235 | t1c = (double *) t2c[i]; |
---|
| 236 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 237 | t1a[iindex] = t1b[iindex] - t1c[iindex]; |
---|
| 238 | } |
---|
| 239 | } |
---|
| 240 | |
---|
| 241 | /* set values of work3 array to h3/h * psi1 + h1/h * psi3 */ |
---|
| 242 | |
---|
| 243 | t2a = (double **) work3[procid]; |
---|
| 244 | hh3 = h3 / h; |
---|
| 245 | hh1 = h1 / h; |
---|
| 246 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 247 | t2a[0][0] = hh3 * t2a[0][0] + hh1 * t2c[0][0]; |
---|
| 248 | } |
---|
| 249 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 250 | t2a[im - 1][0] = hh3 * t2a[im - 1][0] + hh1 * t2c[im - 1][0]; |
---|
| 251 | } |
---|
| 252 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 253 | t2a[0][jm - 1] = hh3 * t2a[0][jm - 1] + hh1 * t2c[0][jm - 1]; |
---|
| 254 | } |
---|
| 255 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 256 | t2a[im - 1][jm - 1] = hh3 * t2a[im - 1][jm - 1] + hh1 * t2c[im - 1][jm - 1]; |
---|
| 257 | } |
---|
| 258 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 259 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 260 | t2a[0][j] = hh3 * t2a[0][j] + hh1 * t2c[0][j]; |
---|
| 261 | } |
---|
| 262 | } |
---|
| 263 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 264 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 265 | t2a[im - 1][j] = hh3 * t2a[im - 1][j] + hh1 * t2c[im - 1][j]; |
---|
| 266 | } |
---|
| 267 | } |
---|
| 268 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 269 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 270 | t2a[j][0] = hh3 * t2a[j][0] + hh1 * t2c[j][0]; |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 274 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 275 | t2a[j][jm - 1] = hh3 * t2a[j][jm - 1] + hh1 * t2c[j][jm - 1]; |
---|
| 276 | } |
---|
| 277 | } |
---|
| 278 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 279 | t1a = (double *) t2a[i]; |
---|
| 280 | t1c = (double *) t2c[i]; |
---|
| 281 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 282 | t1a[iindex] = hh3 * t1a[iindex] + hh1 * t1c[iindex]; |
---|
| 283 | } |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | /* set values of temparray{1,3} to psi{1,3} */ |
---|
| 287 | |
---|
| 288 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 289 | t2a = (double **) temparray[procid][psiindex]; |
---|
| 290 | t2b = (double **) psi[procid][psiindex]; |
---|
| 291 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 292 | t2a[0][0] = t2b[0][0]; |
---|
| 293 | } |
---|
| 294 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 295 | t2a[im - 1][0] = t2b[im - 1][0]; |
---|
| 296 | } |
---|
| 297 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 298 | t2a[0][jm - 1] = t2b[0][jm - 1]; |
---|
| 299 | } |
---|
| 300 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 301 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1]; |
---|
| 302 | } |
---|
| 303 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 304 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 305 | t2a[0][j] = t2b[0][j]; |
---|
| 306 | } |
---|
| 307 | } |
---|
| 308 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 309 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 310 | t2a[im - 1][j] = t2b[im - 1][j]; |
---|
| 311 | } |
---|
| 312 | } |
---|
| 313 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 314 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 315 | t2a[j][0] = t2b[j][0]; |
---|
| 316 | } |
---|
| 317 | } |
---|
| 318 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 319 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 320 | t2a[j][jm - 1] = t2b[j][jm - 1]; |
---|
| 321 | } |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 325 | t1a = (double *) t2a[i]; |
---|
| 326 | t1b = (double *) t2b[i]; |
---|
| 327 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 328 | t1a[iindex] = t1b[iindex]; |
---|
| 329 | } |
---|
| 330 | } |
---|
| 331 | } |
---|
| 332 | |
---|
| 333 | END_PHASE(procid, 1); |
---|
| 334 | |
---|
| 335 | #if defined(MULTIPLE_BARRIERS) |
---|
| 336 | BARRIER(bars->sl_phase_1, nprocs) |
---|
| 337 | #else |
---|
| 338 | BARRIER(bars->barrier, nprocs) |
---|
| 339 | #endif |
---|
| 340 | |
---|
| 341 | /* ******************************************************* |
---|
| 342 | |
---|
| 343 | s e c o n d p h a s e |
---|
| 344 | |
---|
| 345 | ******************************************************* |
---|
| 346 | |
---|
| 347 | set values of psi{1,3} to psim{1,3} */ |
---|
| 348 | |
---|
| 349 | START_PHASE(procid, 2); |
---|
| 350 | |
---|
| 351 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 352 | t2a = (double **) psi[procid][psiindex]; |
---|
| 353 | t2b = (double **) psim[procid][psiindex]; |
---|
| 354 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 355 | t2a[0][0] = t2b[0][0]; |
---|
| 356 | } |
---|
| 357 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 358 | t2a[0][jm - 1] = t2b[0][jm - 1]; |
---|
| 359 | } |
---|
| 360 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 361 | t2a[im - 1][0] = t2b[im - 1][0]; |
---|
| 362 | } |
---|
| 363 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 364 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1]; |
---|
| 365 | } |
---|
| 366 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 367 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 368 | t2a[0][j] = t2b[0][j]; |
---|
| 369 | } |
---|
| 370 | } |
---|
| 371 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 372 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 373 | t2a[im - 1][j] = t2b[im - 1][j]; |
---|
| 374 | } |
---|
| 375 | } |
---|
| 376 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 377 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 378 | t2a[j][0] = t2b[j][0]; |
---|
| 379 | } |
---|
| 380 | } |
---|
| 381 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 382 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 383 | t2a[j][jm - 1] = t2b[j][jm - 1]; |
---|
| 384 | } |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 388 | t1a = (double *) t2a[i]; |
---|
| 389 | t1b = (double *) t2b[i]; |
---|
| 390 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 391 | t1a[iindex] = t1b[iindex]; |
---|
| 392 | } |
---|
| 393 | } |
---|
| 394 | } |
---|
| 395 | |
---|
| 396 | /* put the laplacian of the psim array |
---|
| 397 | into the work7 array; first part of a three-laplacian |
---|
| 398 | calculation to compute the friction terms */ |
---|
| 399 | |
---|
| 400 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 401 | t2a = (double **) work7[procid][psiindex]; |
---|
| 402 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 403 | t2a[0][0] = 0; |
---|
| 404 | } |
---|
| 405 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 406 | t2a[im - 1][0] = 0; |
---|
| 407 | } |
---|
| 408 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 409 | t2a[0][jm - 1] = 0; |
---|
| 410 | } |
---|
| 411 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 412 | t2a[im - 1][jm - 1] = 0; |
---|
| 413 | } |
---|
| 414 | laplacalc(procid, psim, work7, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
| 415 | } |
---|
| 416 | |
---|
| 417 | /* to the values of the work1{1,2} arrays obtained from the |
---|
| 418 | laplacians of psi{1,2} in the previous phase, add to the |
---|
| 419 | elements of every column the corresponding value in the |
---|
| 420 | one-dimenional f array */ |
---|
| 421 | |
---|
| 422 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 423 | t2a = (double **) work1[procid][psiindex]; |
---|
| 424 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 425 | t2a[0][0] = t2a[0][0] + f[0]; |
---|
| 426 | } |
---|
| 427 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 428 | t2a[im - 1][0] = t2a[im - 1][0] + f[0]; |
---|
| 429 | } |
---|
| 430 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 431 | t2a[0][jm - 1] = t2a[0][jm - 1] + f[jmx[numlev - 1] - 1]; |
---|
| 432 | } |
---|
| 433 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 434 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + f[jmx[numlev - 1] - 1]; |
---|
| 435 | } |
---|
| 436 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 437 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 438 | t2a[0][j] = t2a[0][j] + f[j + j_off]; |
---|
| 439 | } |
---|
| 440 | } |
---|
| 441 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 442 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 443 | t2a[im - 1][j] = t2a[im - 1][j] + f[j + j_off]; |
---|
| 444 | } |
---|
| 445 | } |
---|
| 446 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 447 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 448 | t2a[j][0] = t2a[j][0] + f[j + i_off]; |
---|
| 449 | } |
---|
| 450 | } |
---|
| 451 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 452 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 453 | t2a[j][jm - 1] = t2a[j][jm - 1] + f[j + i_off]; |
---|
| 454 | } |
---|
| 455 | } |
---|
| 456 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 457 | t1a = (double *) t2a[i]; |
---|
| 458 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 459 | t1a[iindex] = t1a[iindex] + f[iindex + j_off]; |
---|
| 460 | } |
---|
| 461 | } |
---|
| 462 | } |
---|
| 463 | |
---|
| 464 | END_PHASE(procid, 2); |
---|
| 465 | |
---|
| 466 | #if defined(MULTIPLE_BARRIERS) |
---|
| 467 | BARRIER(bars->sl_phase_2, nprocs) |
---|
| 468 | #else |
---|
| 469 | BARRIER(bars->barrier, nprocs) |
---|
| 470 | #endif |
---|
| 471 | /* ******************************************************* |
---|
| 472 | |
---|
| 473 | t h i r d p h a s e |
---|
| 474 | |
---|
| 475 | ******************************************************* |
---|
| 476 | |
---|
| 477 | put the jacobian of the work1{1,2} and psi{1,3} arrays |
---|
| 478 | (the latter currently in temparray) in the work5{1,2} arrays */ |
---|
| 479 | |
---|
| 480 | START_PHASE(procid, 3); |
---|
| 481 | |
---|
| 482 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 483 | jacobcalc2(work1, temparray, work5, psiindex, procid, firstrow, lastrow, firstcol, lastcol); |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | /* set values of psim{1,3} to temparray{1,3} */ |
---|
| 487 | |
---|
| 488 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 489 | t2a = (double **) psim[procid][psiindex]; |
---|
| 490 | t2b = (double **) temparray[procid][psiindex]; |
---|
| 491 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 492 | t2a[0][0] = t2b[0][0]; |
---|
| 493 | } |
---|
| 494 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 495 | t2a[im - 1][0] = t2b[im - 1][0]; |
---|
| 496 | } |
---|
| 497 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 498 | t2a[0][jm - 1] = t2b[0][jm - 1]; |
---|
| 499 | } |
---|
| 500 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 501 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1]; |
---|
| 502 | } |
---|
| 503 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 504 | t1a = (double *) t2a[0]; |
---|
| 505 | t1b = (double *) t2b[0]; |
---|
| 506 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 507 | t1a[j] = t1b[j]; |
---|
| 508 | } |
---|
| 509 | } |
---|
| 510 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 511 | t1a = (double *) t2a[im - 1]; |
---|
| 512 | t1b = (double *) t2b[im - 1]; |
---|
| 513 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 514 | t1a[j] = t1b[j]; |
---|
| 515 | } |
---|
| 516 | } |
---|
| 517 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 518 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 519 | t2a[j][0] = t2b[j][0]; |
---|
| 520 | } |
---|
| 521 | } |
---|
| 522 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 523 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 524 | t2a[j][jm - 1] = t2b[j][jm - 1]; |
---|
| 525 | } |
---|
| 526 | } |
---|
| 527 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 528 | t1a = (double *) t2a[i]; |
---|
| 529 | t1b = (double *) t2b[i]; |
---|
| 530 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 531 | t1a[iindex] = t1b[iindex]; |
---|
| 532 | } |
---|
| 533 | } |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /* put the laplacian of the work7{1,2} arrays in the work4{1,2} |
---|
| 537 | arrays; second step in the three-laplacian friction calculation */ |
---|
| 538 | |
---|
| 539 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 540 | laplacalc(procid, work7, work4, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
| 541 | } |
---|
| 542 | |
---|
| 543 | END_PHASE(procid, 3); |
---|
| 544 | |
---|
| 545 | #if defined(MULTIPLE_BARRIERS) |
---|
| 546 | BARRIER(bars->sl_phase_3, nprocs) |
---|
| 547 | #else |
---|
| 548 | BARRIER(bars->barrier, nprocs) |
---|
| 549 | #endif |
---|
| 550 | |
---|
| 551 | /* ******************************************************* |
---|
| 552 | |
---|
| 553 | f o u r t h p h a s e |
---|
| 554 | |
---|
| 555 | ******************************************************* |
---|
| 556 | |
---|
| 557 | put the jacobian of the work2 and work3 arrays in the work6 |
---|
| 558 | array */ |
---|
| 559 | |
---|
| 560 | START_PHASE(procid, 4); |
---|
| 561 | |
---|
| 562 | jacobcalc(work2, work3, work6, procid, firstrow, lastrow, firstcol, lastcol); |
---|
| 563 | |
---|
| 564 | /* put the laplacian of the work4{1,2} arrays in the work7{1,2} |
---|
| 565 | arrays; third step in the three-laplacian friction calculation */ |
---|
| 566 | |
---|
| 567 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
| 568 | laplacalc(procid, work4, work7, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
| 569 | } |
---|
| 570 | |
---|
| 571 | END_PHASE(procid, 4); |
---|
| 572 | |
---|
| 573 | #if defined(MULTIPLE_BARRIERS) |
---|
| 574 | BARRIER(bars->sl_phase_4, nprocs) |
---|
| 575 | #else |
---|
| 576 | BARRIER(bars->barrier, nprocs) |
---|
| 577 | #endif |
---|
| 578 | |
---|
| 579 | /* ******************************************************* |
---|
| 580 | |
---|
| 581 | f i f t h p h a s e |
---|
| 582 | |
---|
| 583 | ******************************************************* |
---|
| 584 | |
---|
| 585 | use the values of the work5, work6 and work7 arrays |
---|
| 586 | computed in the previous time-steps to compute the |
---|
| 587 | ga and gb arrays */ |
---|
| 588 | |
---|
| 589 | START_PHASE(procid, 5); |
---|
| 590 | |
---|
| 591 | hinv = 1.0 / h; |
---|
| 592 | h1inv = 1.0 / h1; |
---|
| 593 | |
---|
| 594 | t2a = (double **) ga[procid]; |
---|
| 595 | t2b = (double **) gb[procid]; |
---|
| 596 | t2c = (double **) work5[procid][0]; |
---|
| 597 | t2d = (double **) work5[procid][1]; |
---|
| 598 | t2e = (double **) work7[procid][0]; |
---|
| 599 | t2f = (double **) work7[procid][1]; |
---|
| 600 | t2g = (double **) work6[procid]; |
---|
| 601 | t2h = (double **) tauz[procid]; |
---|
| 602 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 603 | t2a[0][0] = t2c[0][0] - t2d[0][0] + eig2 * t2g[0][0] + h1inv * t2h[0][0] + lf * t2e[0][0] - lf * t2f[0][0]; |
---|
| 604 | t2b[0][0] = hh1 * t2c[0][0] + hh3 * t2d[0][0] + hinv * t2h[0][0] + lf * hh1 * t2e[0][0] + lf * hh3 * t2f[0][0]; |
---|
| 605 | } |
---|
| 606 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 607 | t2a[im - 1][0] = t2c[im - 1][0] - t2d[im - 1][0] + eig2 * t2g[im - 1][0] + h1inv * t2h[im - 1][0] + lf * t2e[im - 1][0] - lf * t2f[im - 1][0]; |
---|
| 608 | t2b[im - 1][0] = hh1 * t2c[im - 1][0] + hh3 * t2d[im - 1][0] + hinv * t2h[im - 1][0] + lf * hh1 * t2e[im - 1][0] + lf * hh3 * t2f[im - 1][0]; |
---|
| 609 | } |
---|
| 610 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 611 | t2a[0][jm - 1] = t2c[0][jm - 1] - t2d[0][jm - 1] + eig2 * t2g[0][jm - 1] + h1inv * t2h[0][jm - 1] + lf * t2e[0][jm - 1] - lf * t2f[0][jm - 1]; |
---|
| 612 | t2b[0][jm - 1] = hh1 * t2c[0][jm - 1] + hh3 * t2d[0][jm - 1] + hinv * t2h[0][jm - 1] + lf * hh1 * t2e[0][jm - 1] + lf * hh3 * t2f[0][jm - 1]; |
---|
| 613 | } |
---|
| 614 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 615 | t2a[im - 1][jm - 1] = t2c[im - 1][jm - 1] - t2d[im - 1][jm - 1] + eig2 * t2g[im - 1][jm - 1] + h1inv * t2h[im - 1][jm - 1] + lf * t2e[im - 1][jm - 1] - lf * t2f[im - 1][jm - 1]; |
---|
| 616 | t2b[im - 1][jm - 1] = hh1 * t2c[im - 1][jm - 1] + hh3 * t2d[im - 1][jm - 1] + hinv * t2h[im - 1][jm - 1] + lf * hh1 * t2e[im - 1][jm - 1] + lf * hh3 * t2f[im - 1][jm - 1]; |
---|
| 617 | } |
---|
| 618 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 619 | t1a = (double *) t2a[0]; |
---|
| 620 | t1b = (double *) t2b[0]; |
---|
| 621 | t1c = (double *) t2c[0]; |
---|
| 622 | t1d = (double *) t2d[0]; |
---|
| 623 | t1e = (double *) t2e[0]; |
---|
| 624 | t1f = (double *) t2f[0]; |
---|
| 625 | t1g = (double *) t2g[0]; |
---|
| 626 | t1h = (double *) t2h[0]; |
---|
| 627 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 628 | t1a[j] = t1c[j] - t1d[j] + eig2 * t1g[j] + h1inv * t1h[j] + lf * t1e[j] - lf * t1f[j]; |
---|
| 629 | t1b[j] = hh1 * t1c[j] + hh3 * t1d[j] + hinv * t1h[j] + lf * hh1 * t1e[j] + lf * hh3 * t1f[j]; |
---|
| 630 | } |
---|
| 631 | } |
---|
| 632 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 633 | t1a = (double *) t2a[im - 1]; |
---|
| 634 | t1b = (double *) t2b[im - 1]; |
---|
| 635 | t1c = (double *) t2c[im - 1]; |
---|
| 636 | t1d = (double *) t2d[im - 1]; |
---|
| 637 | t1e = (double *) t2e[im - 1]; |
---|
| 638 | t1f = (double *) t2f[im - 1]; |
---|
| 639 | t1g = (double *) t2g[im - 1]; |
---|
| 640 | t1h = (double *) t2h[im - 1]; |
---|
| 641 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 642 | t1a[j] = t1c[j] - t1d[j] + eig2 * t1g[j] + h1inv * t1h[j] + lf * t1e[j] - lf * t1f[j]; |
---|
| 643 | t1b[j] = hh1 * t1c[j] + hh3 * t1d[j] + hinv * t1h[j] + lf * hh1 * t1e[j] + lf * hh3 * t1f[j]; |
---|
| 644 | } |
---|
| 645 | } |
---|
| 646 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 647 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 648 | t2a[j][0] = t2c[j][0] - t2d[j][0] + eig2 * t2g[j][0] + h1inv * t2h[j][0] + lf * t2e[j][0] - lf * t2f[j][0]; |
---|
| 649 | t2b[j][0] = hh1 * t2c[j][0] + hh3 * t2d[j][0] + hinv * t2h[j][0] + lf * hh1 * t2e[j][0] + lf * hh3 * t2f[j][0]; |
---|
| 650 | } |
---|
| 651 | } |
---|
| 652 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 653 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 654 | t2a[j][jm - 1] = t2c[j][jm - 1] - t2d[j][jm - 1] + eig2 * t2g[j][jm - 1] + h1inv * t2h[j][jm - 1] + lf * t2e[j][jm - 1] - lf * t2f[j][jm - 1]; |
---|
| 655 | t2b[j][jm - 1] = hh1 * t2c[j][jm - 1] + hh3 * t2d[j][jm - 1] + hinv * t2h[j][jm - 1] + lf * hh1 * t2e[j][jm - 1] + lf * hh3 * t2f[j][jm - 1]; |
---|
| 656 | } |
---|
| 657 | } |
---|
| 658 | |
---|
| 659 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 660 | t1a = (double *) t2a[i]; |
---|
| 661 | t1b = (double *) t2b[i]; |
---|
| 662 | t1c = (double *) t2c[i]; |
---|
| 663 | t1d = (double *) t2d[i]; |
---|
| 664 | t1e = (double *) t2e[i]; |
---|
| 665 | t1f = (double *) t2f[i]; |
---|
| 666 | t1g = (double *) t2g[i]; |
---|
| 667 | t1h = (double *) t2h[i]; |
---|
| 668 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 669 | t1a[iindex] = t1c[iindex] - t1d[iindex] + eig2 * t1g[iindex] + h1inv * t1h[iindex] + lf * t1e[iindex] - lf * t1f[iindex]; |
---|
| 670 | t1b[iindex] = hh1 * t1c[iindex] + hh3 * t1d[iindex] + hinv * t1h[iindex] + lf * hh1 * t1e[iindex] + lf * hh3 * t1f[iindex]; |
---|
| 671 | } |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | END_PHASE(procid, 5); |
---|
| 675 | |
---|
| 676 | #if defined(MULTIPLE_BARRIERS) |
---|
| 677 | BARRIER(bars->sl_phase_5, nprocs) |
---|
| 678 | #else |
---|
| 679 | BARRIER(bars->barrier, nprocs) |
---|
| 680 | #endif |
---|
| 681 | |
---|
| 682 | /* ******************************************************* |
---|
| 683 | |
---|
| 684 | s i x t h p h a s e |
---|
| 685 | |
---|
| 686 | ******************************************************* */ |
---|
| 687 | |
---|
| 688 | START_PHASE(procid, 6); |
---|
| 689 | |
---|
| 690 | istart = 1; |
---|
| 691 | iend = istart + gp[procid].rel_num_y[numlev - 1] - 1; |
---|
| 692 | jstart = 1; |
---|
| 693 | jend = jstart + gp[procid].rel_num_x[numlev - 1] - 1; |
---|
| 694 | ist = istart; |
---|
| 695 | ien = iend; |
---|
| 696 | jst = jstart; |
---|
| 697 | jen = jend; |
---|
| 698 | |
---|
| 699 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 700 | istart = 0; |
---|
| 701 | } |
---|
| 702 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 703 | jstart = 0; |
---|
| 704 | } |
---|
| 705 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 706 | iend = im - 1; |
---|
| 707 | } |
---|
| 708 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 709 | jend = jm - 1; |
---|
| 710 | } |
---|
| 711 | t2a = (double **) rhs_multi[procid][numlev - 1]; |
---|
| 712 | t2b = (double **) ga[procid]; |
---|
| 713 | t2c = (double **) oldga[procid]; |
---|
| 714 | t2d = (double **) q_multi[procid][numlev - 1]; |
---|
| 715 | for (i = istart; i <= iend; i++) { |
---|
| 716 | t1a = (double *) t2a[i]; |
---|
| 717 | t1b = (double *) t2b[i]; |
---|
| 718 | for (j = jstart; j <= jend; j++) { |
---|
| 719 | t1a[j] = t1b[j] * ressqr; |
---|
| 720 | } |
---|
| 721 | } |
---|
| 722 | |
---|
| 723 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 724 | t1d = (double *) t2d[0]; |
---|
| 725 | t1b = (double *) t2b[0]; |
---|
| 726 | for (j = jstart; j <= jend; j++) { |
---|
| 727 | t1d[j] = t1b[j]; |
---|
| 728 | } |
---|
| 729 | } |
---|
| 730 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 731 | t1d = (double *) t2d[im - 1]; |
---|
| 732 | t1b = (double *) t2b[im - 1]; |
---|
| 733 | for (j = jstart; j <= jend; j++) { |
---|
| 734 | t1d[j] = t1b[j]; |
---|
| 735 | } |
---|
| 736 | } |
---|
| 737 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 738 | for (i = istart; i <= iend; i++) { |
---|
| 739 | t2d[i][0] = t2b[i][0]; |
---|
| 740 | } |
---|
| 741 | } |
---|
| 742 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 743 | for (i = istart; i <= iend; i++) { |
---|
| 744 | t2d[i][jm - 1] = t2b[i][jm - 1]; |
---|
| 745 | } |
---|
| 746 | } |
---|
| 747 | //fac = 1.0 / (4.0 - ressqr*eig2); |
---|
| 748 | for (i = ist; i <= ien; i++) { |
---|
| 749 | t1d = (double *) t2d[i]; |
---|
| 750 | t1c = (double *) t2c[i]; |
---|
| 751 | for (j = jst; j <= jen; j++) { |
---|
| 752 | t1d[j] = t1c[j]; |
---|
| 753 | } |
---|
| 754 | } |
---|
| 755 | |
---|
| 756 | if ((procid == MASTER) || (do_stats)) { |
---|
| 757 | CLOCK(multi_start); |
---|
| 758 | } |
---|
| 759 | |
---|
| 760 | multig(procid); |
---|
| 761 | |
---|
| 762 | if ((procid == MASTER) || (do_stats)) { |
---|
| 763 | CLOCK(multi_end); |
---|
| 764 | (*gp[procid].multi_time) += (multi_end - multi_start); |
---|
| 765 | } |
---|
| 766 | |
---|
| 767 | /* the shared sum variable psiai is initialized to 0 at |
---|
| 768 | every time-step */ |
---|
| 769 | |
---|
| 770 | if (procid == MASTER) { |
---|
| 771 | global->psiai = 0.0; |
---|
| 772 | } |
---|
| 773 | |
---|
| 774 | /* copy the solution for use as initial guess in next time-step */ |
---|
| 775 | |
---|
| 776 | for (i = istart; i <= iend; i++) { |
---|
| 777 | t1b = (double *) t2b[i]; |
---|
| 778 | t1c = (double *) t2c[i]; |
---|
| 779 | t1d = (double *) t2d[i]; |
---|
| 780 | for (j = jstart; j <= jend; j++) { |
---|
| 781 | t1b[j] = t1d[j]; |
---|
| 782 | t1c[j] = t1d[j]; |
---|
| 783 | } |
---|
| 784 | } |
---|
| 785 | |
---|
| 786 | END_PHASE(procid, 6); |
---|
| 787 | |
---|
| 788 | #if defined(MULTIPLE_BARRIERS) |
---|
| 789 | BARRIER(bars->sl_phase_6, nprocs) |
---|
| 790 | #else |
---|
| 791 | BARRIER(bars->barrier, nprocs) |
---|
| 792 | #endif |
---|
| 793 | |
---|
| 794 | /* ******************************************************* |
---|
| 795 | |
---|
| 796 | s e v e n t h p h a s e |
---|
| 797 | |
---|
| 798 | ******************************************************* |
---|
| 799 | |
---|
| 800 | every process computes the running sum for its assigned portion |
---|
| 801 | in a private variable psiaipriv */ |
---|
| 802 | |
---|
| 803 | START_PHASE(procid, 7); |
---|
| 804 | |
---|
| 805 | psiaipriv = 0.0; |
---|
| 806 | t2a = (double **) ga[procid]; |
---|
| 807 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 808 | psiaipriv = psiaipriv + 0.25 * (t2a[0][0]); |
---|
| 809 | } |
---|
| 810 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 811 | psiaipriv = psiaipriv + 0.25 * (t2a[0][jm - 1]); |
---|
| 812 | } |
---|
| 813 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 814 | psiaipriv = psiaipriv + 0.25 * (t2a[im - 1][0]); |
---|
| 815 | } |
---|
| 816 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 817 | psiaipriv = psiaipriv + 0.25 * (t2a[im - 1][jm - 1]); |
---|
| 818 | } |
---|
| 819 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 820 | t1a = (double *) t2a[0]; |
---|
| 821 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 822 | psiaipriv = psiaipriv + 0.5 * t1a[j]; |
---|
| 823 | } |
---|
| 824 | } |
---|
| 825 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 826 | t1a = (double *) t2a[im - 1]; |
---|
| 827 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 828 | psiaipriv = psiaipriv + 0.5 * t1a[j]; |
---|
| 829 | } |
---|
| 830 | } |
---|
| 831 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 832 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 833 | psiaipriv = psiaipriv + 0.5 * t2a[j][0]; |
---|
| 834 | } |
---|
| 835 | } |
---|
| 836 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 837 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 838 | psiaipriv = psiaipriv + 0.5 * t2a[j][jm - 1]; |
---|
| 839 | } |
---|
| 840 | } |
---|
| 841 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 842 | t1a = (double *) t2a[i]; |
---|
| 843 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 844 | psiaipriv = psiaipriv + t1a[iindex]; |
---|
| 845 | } |
---|
| 846 | } |
---|
| 847 | |
---|
| 848 | /* after computing its private sum, every process adds that to the |
---|
| 849 | shared running sum psiai */ |
---|
| 850 | |
---|
| 851 | LOCK(locks->psiailock) |
---|
| 852 | global->psiai = global->psiai + psiaipriv; |
---|
| 853 | UNLOCK(locks->psiailock) |
---|
| 854 | |
---|
| 855 | END_PHASE(procid, 7); |
---|
| 856 | |
---|
| 857 | #if defined(MULTIPLE_BARRIERS) |
---|
| 858 | BARRIER(bars->sl_phase_7, nprocs) |
---|
| 859 | #else |
---|
| 860 | BARRIER(bars->barrier, nprocs) |
---|
| 861 | #endif |
---|
| 862 | |
---|
| 863 | /* ******************************************************* |
---|
| 864 | |
---|
| 865 | e i g h t h p h a s e |
---|
| 866 | |
---|
| 867 | ******************************************************* |
---|
| 868 | |
---|
| 869 | augment ga(i,j) with [-psiai/psibi]*psib(i,j) */ |
---|
| 870 | |
---|
| 871 | START_PHASE(procid, 8); |
---|
| 872 | |
---|
| 873 | f4 = (-global->psiai) /(global->psibi); |
---|
| 874 | |
---|
| 875 | t2a = (double **) ga[procid]; |
---|
| 876 | t2b = (double **) psib[procid]; |
---|
| 877 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 878 | t2a[0][0] = t2a[0][0] + f4 * t2b[0][0]; |
---|
| 879 | } |
---|
| 880 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 881 | t2a[im - 1][0] = t2a[im - 1][0] + f4 * t2b[im - 1][0]; |
---|
| 882 | } |
---|
| 883 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 884 | t2a[0][jm - 1] = t2a[0][jm - 1] + f4 * t2b[0][jm - 1]; |
---|
| 885 | } |
---|
| 886 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 887 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + f4 * t2b[im - 1][jm - 1]; |
---|
| 888 | } |
---|
| 889 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 890 | t1a = (double *) t2a[0]; |
---|
| 891 | t1b = (double *) t2b[0]; |
---|
| 892 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 893 | t1a[j] = t1a[j] + f4 * t1b[j]; |
---|
| 894 | } |
---|
| 895 | } |
---|
| 896 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 897 | t1a = (double *) t2a[im - 1]; |
---|
| 898 | t1b = (double *) t2b[im - 1]; |
---|
| 899 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 900 | t1a[j] = t1a[j] + f4 * t1b[j]; |
---|
| 901 | } |
---|
| 902 | } |
---|
| 903 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 904 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 905 | t2a[j][0] = t2a[j][0] + f4 * t2b[j][0]; |
---|
| 906 | } |
---|
| 907 | } |
---|
| 908 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 909 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 910 | t2a[j][jm - 1] = t2a[j][jm - 1] + f4 * t2b[j][jm - 1]; |
---|
| 911 | } |
---|
| 912 | } |
---|
| 913 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 914 | t1a = (double *) t2a[i]; |
---|
| 915 | t1b = (double *) t2b[i]; |
---|
| 916 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 917 | t1a[iindex] = t1a[iindex] + f4 * t1b[iindex]; |
---|
| 918 | } |
---|
| 919 | } |
---|
| 920 | |
---|
| 921 | t2a = (double **) rhs_multi[procid][numlev - 1]; |
---|
| 922 | t2b = (double **) gb[procid]; |
---|
| 923 | t2c = (double **) oldgb[procid]; |
---|
| 924 | t2d = (double **) q_multi[procid][numlev - 1]; |
---|
| 925 | for (i = istart; i <= iend; i++) { |
---|
| 926 | t1a = (double *) t2a[i]; |
---|
| 927 | t1b = (double *) t2b[i]; |
---|
| 928 | for (j = jstart; j <= jend; j++) { |
---|
| 929 | t1a[j] = t1b[j] * ressqr; |
---|
| 930 | } |
---|
| 931 | } |
---|
| 932 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 933 | t1d = (double *) t2d[0]; |
---|
| 934 | t1b = (double *) t2b[0]; |
---|
| 935 | for (j = jstart; j <= jend; j++) { |
---|
| 936 | t1d[j] = t1b[j]; |
---|
| 937 | } |
---|
| 938 | } |
---|
| 939 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 940 | t1d = (double *) t2d[im - 1]; |
---|
| 941 | t1b = (double *) t2b[im - 1]; |
---|
| 942 | for (j = jstart; j <= jend; j++) { |
---|
| 943 | t1d[j] = t1b[j]; |
---|
| 944 | } |
---|
| 945 | } |
---|
| 946 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 947 | for (i = istart; i <= iend; i++) { |
---|
| 948 | t2d[i][0] = t2b[i][0]; |
---|
| 949 | } |
---|
| 950 | } |
---|
| 951 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 952 | for (i = istart; i <= iend; i++) { |
---|
| 953 | t2d[i][jm - 1] = t2b[i][jm - 1]; |
---|
| 954 | } |
---|
| 955 | } |
---|
| 956 | //fac = 1.0 / (4.0 - ressqr*eig2); |
---|
| 957 | for (i = ist; i <= ien; i++) { |
---|
| 958 | t1d = (double *) t2d[i]; |
---|
| 959 | t1c = (double *) t2c[i]; |
---|
| 960 | for (j = jst; j <= jen; j++) { |
---|
| 961 | t1d[j] = t1c[j]; |
---|
| 962 | } |
---|
| 963 | } |
---|
| 964 | |
---|
| 965 | if ((procid == MASTER) || (do_stats)) { |
---|
| 966 | CLOCK(multi_start); |
---|
| 967 | } |
---|
| 968 | |
---|
| 969 | multig(procid); |
---|
| 970 | |
---|
| 971 | if ((procid == MASTER) || (do_stats)) { |
---|
| 972 | CLOCK(multi_end); |
---|
| 973 | (*gp[procid].multi_time) += (multi_end - multi_start); |
---|
| 974 | } |
---|
| 975 | |
---|
| 976 | for (i = istart; i <= iend; i++) { |
---|
| 977 | t1b = (double *) t2b[i]; |
---|
| 978 | t1c = (double *) t2c[i]; |
---|
| 979 | t1d = (double *) t2d[i]; |
---|
| 980 | for (j = jstart; j <= jend; j++) { |
---|
| 981 | t1b[j] = t1d[j]; |
---|
| 982 | t1c[j] = t1d[j]; |
---|
| 983 | } |
---|
| 984 | } |
---|
| 985 | |
---|
| 986 | END_PHASE(procid, 8); |
---|
| 987 | |
---|
| 988 | #if defined(MULTIPLE_BARRIERS) |
---|
| 989 | BARRIER(bars->sl_phase_8, nprocs) |
---|
| 990 | #else |
---|
| 991 | BARRIER(bars->barrier, nprocs) |
---|
| 992 | #endif |
---|
| 993 | |
---|
| 994 | /* ******************************************************* |
---|
| 995 | |
---|
| 996 | n i n t h p h a s e |
---|
| 997 | |
---|
| 998 | ******************************************************* |
---|
| 999 | |
---|
| 1000 | put appropriate linear combinations of ga and gb in work2 and work3; |
---|
| 1001 | note that here (as in most cases) the constant multipliers are made |
---|
| 1002 | private variables; the specific order in which things are done is |
---|
| 1003 | chosen in order to hopefully reuse things brought into the cache |
---|
| 1004 | |
---|
| 1005 | note that here again we choose to have all processes share the work |
---|
| 1006 | on both matrices despite the fact that the work done per element |
---|
| 1007 | is the same, because the operand matrices are the same in both cases */ |
---|
| 1008 | |
---|
| 1009 | START_PHASE(procid, 9); |
---|
| 1010 | |
---|
| 1011 | t2a = (double **) ga[procid]; |
---|
| 1012 | t2b = (double **) gb[procid]; |
---|
| 1013 | t2c = (double **) work2[procid]; |
---|
| 1014 | t2d = (double **) work3[procid]; |
---|
| 1015 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 1016 | t2c[0][0] = t2b[0][0] - hh1 * t2a[0][0]; |
---|
| 1017 | t2d[0][0] = t2b[0][0] + hh3 * t2a[0][0]; |
---|
| 1018 | } |
---|
| 1019 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 1020 | t2c[im - 1][0] = t2b[im - 1][0] - hh1 * t2a[im - 1][0]; |
---|
| 1021 | t2d[im - 1][0] = t2b[im - 1][0] + hh3 * t2a[im - 1][0]; |
---|
| 1022 | } |
---|
| 1023 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 1024 | t2c[0][jm - 1] = t2b[0][jm - 1] - hh1 * t2a[0][jm - 1]; |
---|
| 1025 | t2d[0][jm - 1] = t2b[0][jm - 1] + hh3 * t2a[0][jm - 1]; |
---|
| 1026 | } |
---|
| 1027 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 1028 | t2c[im - 1][jm - 1] = t2b[im - 1][jm - 1] - hh1 * t2a[im - 1][jm - 1]; |
---|
| 1029 | t2d[im - 1][jm - 1] = t2b[im - 1][jm - 1] + hh3 * t2a[im - 1][jm - 1]; |
---|
| 1030 | } |
---|
| 1031 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 1032 | t1a = (double *) t2a[0]; |
---|
| 1033 | t1b = (double *) t2b[0]; |
---|
| 1034 | t1c = (double *) t2c[0]; |
---|
| 1035 | t1d = (double *) t2d[0]; |
---|
| 1036 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 1037 | t1d[j] = t1b[j] + hh3 * t1a[j]; |
---|
| 1038 | t1c[j] = t1b[j] - hh1 * t1a[j]; |
---|
| 1039 | } |
---|
| 1040 | } |
---|
| 1041 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 1042 | t1a = (double *) t2a[im - 1]; |
---|
| 1043 | t1b = (double *) t2b[im - 1]; |
---|
| 1044 | t1c = (double *) t2c[im - 1]; |
---|
| 1045 | t1d = (double *) t2d[im - 1]; |
---|
| 1046 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 1047 | t1d[j] = t1b[j] + hh3 * t1a[j]; |
---|
| 1048 | t1c[j] = t1b[j] - hh1 * t1a[j]; |
---|
| 1049 | } |
---|
| 1050 | } |
---|
| 1051 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 1052 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 1053 | t2d[j][0] = t2b[j][0] + hh3 * t2a[j][0]; |
---|
| 1054 | t2c[j][0] = t2b[j][0] - hh1 * t2a[j][0]; |
---|
| 1055 | } |
---|
| 1056 | } |
---|
| 1057 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 1058 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 1059 | t2d[j][jm - 1] = t2b[j][jm - 1] + hh3 * t2a[j][jm - 1]; |
---|
| 1060 | t2c[j][jm - 1] = t2b[j][jm - 1] - hh1 * t2a[j][jm - 1]; |
---|
| 1061 | } |
---|
| 1062 | } |
---|
| 1063 | |
---|
| 1064 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 1065 | t1a = (double *) t2a[i]; |
---|
| 1066 | t1b = (double *) t2b[i]; |
---|
| 1067 | t1c = (double *) t2c[i]; |
---|
| 1068 | t1d = (double *) t2d[i]; |
---|
| 1069 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 1070 | t1d[iindex] = t1b[iindex] + hh3 * t1a[iindex]; |
---|
| 1071 | t1c[iindex] = t1b[iindex] - hh1 * t1a[iindex]; |
---|
| 1072 | } |
---|
| 1073 | } |
---|
| 1074 | |
---|
| 1075 | END_PHASE(procid, 9); |
---|
| 1076 | |
---|
| 1077 | #if defined(MULTIPLE_BARRIERS) |
---|
| 1078 | BARRIER(bars->sl_phase_9, nprocs) |
---|
| 1079 | #else |
---|
| 1080 | BARRIER(bars->barrier, nprocs) |
---|
| 1081 | #endif |
---|
| 1082 | |
---|
| 1083 | /* ******************************************************* |
---|
| 1084 | |
---|
| 1085 | t e n t h p h a s e |
---|
| 1086 | |
---|
| 1087 | *******************************************************/ |
---|
| 1088 | |
---|
| 1089 | START_PHASE(procid, 10); |
---|
| 1090 | timst = 2 * dtau; |
---|
| 1091 | |
---|
| 1092 | /* update the psi{1,3} matrices by adding 2*dtau*work3 to each */ |
---|
| 1093 | |
---|
| 1094 | t2a = (double **) psi[procid][0]; |
---|
| 1095 | t2b = (double **) work3[procid]; |
---|
| 1096 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 1097 | t2a[0][0] = t2a[0][0] + timst * t2b[0][0]; |
---|
| 1098 | } |
---|
| 1099 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 1100 | t2a[im - 1][0] = t2a[im - 1][0] + timst * t2b[im - 1][0]; |
---|
| 1101 | } |
---|
| 1102 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 1103 | t2a[0][jm - 1] = t2a[0][jm - 1] + timst * t2b[0][jm - 1]; |
---|
| 1104 | } |
---|
| 1105 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 1106 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + timst * t2b[im - 1][jm - 1]; |
---|
| 1107 | } |
---|
| 1108 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 1109 | t1a = (double *) t2a[0]; |
---|
| 1110 | t1b = (double *) t2b[0]; |
---|
| 1111 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 1112 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
| 1113 | } |
---|
| 1114 | } |
---|
| 1115 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 1116 | t1a = (double *) t2a[im - 1]; |
---|
| 1117 | t1b = (double *) t2b[im - 1]; |
---|
| 1118 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 1119 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
| 1120 | } |
---|
| 1121 | } |
---|
| 1122 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 1123 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 1124 | t2a[j][0] = t2a[j][0] + timst * t2b[j][0]; |
---|
| 1125 | } |
---|
| 1126 | } |
---|
| 1127 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 1128 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 1129 | t2a[j][jm - 1] = t2a[j][jm - 1] + timst * t2b[j][jm - 1]; |
---|
| 1130 | } |
---|
| 1131 | } |
---|
| 1132 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 1133 | t1a = (double *) t2a[i]; |
---|
| 1134 | t1b = (double *) t2b[i]; |
---|
| 1135 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 1136 | t1a[iindex] = t1a[iindex] + timst * t1b[iindex]; |
---|
| 1137 | } |
---|
| 1138 | } |
---|
| 1139 | |
---|
| 1140 | t2a = (double **) psi[procid][1]; |
---|
| 1141 | t2b = (double **) work2[procid]; |
---|
| 1142 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 1143 | t2a[0][0] = t2a[0][0] + timst * t2b[0][0]; |
---|
| 1144 | } |
---|
| 1145 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
| 1146 | t2a[im - 1][0] = t2a[im - 1][0] + timst * t2b[im - 1][0]; |
---|
| 1147 | } |
---|
| 1148 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 1149 | t2a[0][jm - 1] = t2a[0][jm - 1] + timst * t2b[0][jm - 1]; |
---|
| 1150 | } |
---|
| 1151 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
| 1152 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + timst * t2b[im - 1][jm - 1]; |
---|
| 1153 | } |
---|
| 1154 | if (gp[procid].neighbors[UP] == -1) { |
---|
| 1155 | t1a = (double *) t2a[0]; |
---|
| 1156 | t1b = (double *) t2b[0]; |
---|
| 1157 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 1158 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
| 1159 | } |
---|
| 1160 | } |
---|
| 1161 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
| 1162 | t1a = (double *) t2a[im - 1]; |
---|
| 1163 | t1b = (double *) t2b[im - 1]; |
---|
| 1164 | for (j = firstcol; j <= lastcol; j++) { |
---|
| 1165 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
| 1166 | } |
---|
| 1167 | } |
---|
| 1168 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
| 1169 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 1170 | t2a[j][0] = t2a[j][0] + timst * t2b[j][0]; |
---|
| 1171 | } |
---|
| 1172 | } |
---|
| 1173 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
| 1174 | for (j = firstrow; j <= lastrow; j++) { |
---|
| 1175 | t2a[j][jm - 1] = t2a[j][jm - 1] + timst * t2b[j][jm - 1]; |
---|
| 1176 | } |
---|
| 1177 | } |
---|
| 1178 | |
---|
| 1179 | for (i = firstrow; i <= lastrow; i++) { |
---|
| 1180 | t1a = (double *) t2a[i]; |
---|
| 1181 | t1b = (double *) t2b[i]; |
---|
| 1182 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
| 1183 | t1a[iindex] = t1a[iindex] + timst * t1b[iindex]; |
---|
| 1184 | } |
---|
| 1185 | } |
---|
| 1186 | |
---|
| 1187 | END_PHASE(procid, 10); |
---|
| 1188 | |
---|
| 1189 | #if defined(MULTIPLE_BARRIERS) |
---|
| 1190 | BARRIER(bars->sl_phase_10, nprocs) |
---|
| 1191 | #else |
---|
| 1192 | BARRIER(bars->barrier, nprocs) |
---|
| 1193 | #endif |
---|
| 1194 | } |
---|