1 | /*************************************************************************/ |
---|
2 | /* */ |
---|
3 | /* Copyright (c) 1994 Stanford University */ |
---|
4 | /* */ |
---|
5 | /* All rights reserved. */ |
---|
6 | /* */ |
---|
7 | /* Permission is given to use, copy, and modify this software for any */ |
---|
8 | /* non-commercial purpose as long as this copyright notice is not */ |
---|
9 | /* removed. All other uses, including redistribution in whole or in */ |
---|
10 | /* part, are forbidden without prior written permission. */ |
---|
11 | /* */ |
---|
12 | /* This software is provided with absolutely no warranty and no */ |
---|
13 | /* support. */ |
---|
14 | /* */ |
---|
15 | /*************************************************************************/ |
---|
16 | |
---|
17 | /* **************** |
---|
18 | subroutine slave2 |
---|
19 | **************** */ |
---|
20 | |
---|
21 | EXTERN_ENV |
---|
22 | |
---|
23 | #include <stdio.h> |
---|
24 | #include <math.h> |
---|
25 | #include <stdlib.h> |
---|
26 | |
---|
27 | #include "decs.h" |
---|
28 | |
---|
29 | void slave2(long procid, long firstrow, long lastrow, long numrows, long firstcol, long lastcol, long numcols) |
---|
30 | { |
---|
31 | long i; |
---|
32 | long j; |
---|
33 | long iindex; |
---|
34 | double hh1; |
---|
35 | double hh3; |
---|
36 | double hinv; |
---|
37 | double h1inv; |
---|
38 | long istart; |
---|
39 | long iend; |
---|
40 | long jstart; |
---|
41 | long jend; |
---|
42 | long ist; |
---|
43 | long ien; |
---|
44 | long jst; |
---|
45 | long jen; |
---|
46 | double ressqr; |
---|
47 | double psiaipriv; |
---|
48 | double f4; |
---|
49 | double timst; |
---|
50 | long psiindex; |
---|
51 | long i_off; |
---|
52 | long j_off; |
---|
53 | long multi_start; |
---|
54 | long multi_end; |
---|
55 | double **t2a; |
---|
56 | double **t2b; |
---|
57 | double **t2c; |
---|
58 | double **t2d; |
---|
59 | double **t2e; |
---|
60 | double **t2f; |
---|
61 | double **t2g; |
---|
62 | double **t2h; |
---|
63 | double *t1a; |
---|
64 | double *t1b; |
---|
65 | double *t1c; |
---|
66 | double *t1d; |
---|
67 | double *t1e; |
---|
68 | double *t1f; |
---|
69 | double *t1g; |
---|
70 | double *t1h; |
---|
71 | |
---|
72 | ressqr = lev_res[numlev - 1] * lev_res[numlev - 1]; |
---|
73 | i_off = (*gp[procid].rownum) * numrows; |
---|
74 | j_off = (*gp[procid].colnum) * numcols; |
---|
75 | |
---|
76 | START_PHASE(procid, 1); |
---|
77 | |
---|
78 | /* *************************************************************** |
---|
79 | |
---|
80 | f i r s t p h a s e (of timestep calculation) |
---|
81 | |
---|
82 | ***************************************************************/ |
---|
83 | |
---|
84 | t2a = (double **) ga[procid]; |
---|
85 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
86 | t2a[0][0] = 0.0; |
---|
87 | } |
---|
88 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
89 | t2a[im - 1][0] = 0.0; |
---|
90 | } |
---|
91 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
92 | t2a[0][jm - 1] = 0.0; |
---|
93 | } |
---|
94 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
95 | t2a[im - 1][jm - 1] = 0.0; |
---|
96 | } |
---|
97 | if (gp[procid].neighbors[UP] == -1) { |
---|
98 | t1a = (double *) t2a[0]; |
---|
99 | for (j = firstcol; j <= lastcol; j++) { |
---|
100 | t1a[j] = 0.0; |
---|
101 | } |
---|
102 | } |
---|
103 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
104 | t1a = (double *) t2a[im - 1]; |
---|
105 | for (j = firstcol; j <= lastcol; j++) { |
---|
106 | t1a[j] = 0.0; |
---|
107 | } |
---|
108 | } |
---|
109 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
110 | for (j = firstrow; j <= lastrow; j++) { |
---|
111 | t2a[j][0] = 0.0; |
---|
112 | } |
---|
113 | } |
---|
114 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
115 | for (j = firstrow; j <= lastrow; j++) { |
---|
116 | t2a[j][jm - 1] = 0.0; |
---|
117 | } |
---|
118 | } |
---|
119 | for (i = firstrow; i <= lastrow; i++) { |
---|
120 | t1a = (double *) t2a[i]; |
---|
121 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
122 | t1a[iindex] = 0.0; |
---|
123 | } |
---|
124 | } |
---|
125 | |
---|
126 | t2a = (double **) gb[procid]; |
---|
127 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
128 | t2a[0][0] = 0.0; |
---|
129 | } |
---|
130 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
131 | t2a[im - 1][0] = 0.0; |
---|
132 | } |
---|
133 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
134 | t2a[0][jm - 1] = 0.0; |
---|
135 | } |
---|
136 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
137 | t2a[im - 1][jm - 1] = 0.0; |
---|
138 | } |
---|
139 | if (gp[procid].neighbors[UP] == -1) { |
---|
140 | t1a = (double *) t2a[0]; |
---|
141 | for (j = firstcol; j <= lastcol; j++) { |
---|
142 | t1a[j] = 0.0; |
---|
143 | } |
---|
144 | } |
---|
145 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
146 | t1a = (double *) t2a[im - 1]; |
---|
147 | for (j = firstcol; j <= lastcol; j++) { |
---|
148 | t1a[j] = 0.0; |
---|
149 | } |
---|
150 | } |
---|
151 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
152 | for (j = firstrow; j <= lastrow; j++) { |
---|
153 | t2a[j][0] = 0.0; |
---|
154 | } |
---|
155 | } |
---|
156 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
157 | for (j = firstrow; j <= lastrow; j++) { |
---|
158 | t2a[j][jm - 1] = 0.0; |
---|
159 | } |
---|
160 | } |
---|
161 | for (i = firstrow; i <= lastrow; i++) { |
---|
162 | t1a = (double *) t2a[i]; |
---|
163 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
164 | t1a[iindex] = 0.0; |
---|
165 | } |
---|
166 | } |
---|
167 | |
---|
168 | /* put the laplacian of psi{1,3} in work1{1,2} |
---|
169 | note that psi(i,j,2) represents the psi3 array in |
---|
170 | the original equations */ |
---|
171 | |
---|
172 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
173 | t2a = (double **) work1[procid][psiindex]; |
---|
174 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
175 | t2a[0][0] = 0; |
---|
176 | } |
---|
177 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
178 | t2a[im - 1][0] = 0; |
---|
179 | } |
---|
180 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
181 | t2a[0][jm - 1] = 0; |
---|
182 | } |
---|
183 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
184 | t2a[im - 1][jm - 1] = 0; |
---|
185 | } |
---|
186 | laplacalc(procid, psi, work1, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
187 | } |
---|
188 | |
---|
189 | /* set values of work2 array to psi1 - psi3 */ |
---|
190 | |
---|
191 | t2a = (double **) work2[procid]; |
---|
192 | t2b = (double **) psi[procid][0]; |
---|
193 | t2c = (double **) psi[procid][1]; |
---|
194 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
195 | t2a[0][0] = t2b[0][0] - t2c[0][0]; |
---|
196 | } |
---|
197 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
198 | t2a[im - 1][0] = t2b[im - 1][0] - t2c[im - 1][0]; |
---|
199 | } |
---|
200 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
201 | t2a[0][jm - 1] = t2b[0][jm - 1] - t2c[0][jm - 1]; |
---|
202 | } |
---|
203 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
204 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1] - t2c[im - 1][jm - 1]; |
---|
205 | } |
---|
206 | if (gp[procid].neighbors[UP] == -1) { |
---|
207 | t1a = (double *) t2a[0]; |
---|
208 | t1b = (double *) t2b[0]; |
---|
209 | t1c = (double *) t2c[0]; |
---|
210 | for (j = firstcol; j <= lastcol; j++) { |
---|
211 | t1a[j] = t1b[j] - t1c[j]; |
---|
212 | } |
---|
213 | } |
---|
214 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
215 | t1a = (double *) t2a[im - 1]; |
---|
216 | t1b = (double *) t2b[im - 1]; |
---|
217 | t1c = (double *) t2c[im - 1]; |
---|
218 | for (j = firstcol; j <= lastcol; j++) { |
---|
219 | t1a[j] = t1b[j] - t1c[j]; |
---|
220 | } |
---|
221 | } |
---|
222 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
223 | for (j = firstrow; j <= lastrow; j++) { |
---|
224 | t2a[j][0] = t2b[j][0] - t2c[j][0]; |
---|
225 | } |
---|
226 | } |
---|
227 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
228 | for (j = firstrow; j <= lastrow; j++) { |
---|
229 | t2a[j][jm - 1] = t2b[j][jm - 1] - t2c[j][jm - 1]; |
---|
230 | } |
---|
231 | } |
---|
232 | for (i = firstrow; i <= lastrow; i++) { |
---|
233 | t1a = (double *) t2a[i]; |
---|
234 | t1b = (double *) t2b[i]; |
---|
235 | t1c = (double *) t2c[i]; |
---|
236 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
237 | t1a[iindex] = t1b[iindex] - t1c[iindex]; |
---|
238 | } |
---|
239 | } |
---|
240 | |
---|
241 | /* set values of work3 array to h3/h * psi1 + h1/h * psi3 */ |
---|
242 | |
---|
243 | t2a = (double **) work3[procid]; |
---|
244 | hh3 = h3 / h; |
---|
245 | hh1 = h1 / h; |
---|
246 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
247 | t2a[0][0] = hh3 * t2a[0][0] + hh1 * t2c[0][0]; |
---|
248 | } |
---|
249 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
250 | t2a[im - 1][0] = hh3 * t2a[im - 1][0] + hh1 * t2c[im - 1][0]; |
---|
251 | } |
---|
252 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
253 | t2a[0][jm - 1] = hh3 * t2a[0][jm - 1] + hh1 * t2c[0][jm - 1]; |
---|
254 | } |
---|
255 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
256 | t2a[im - 1][jm - 1] = hh3 * t2a[im - 1][jm - 1] + hh1 * t2c[im - 1][jm - 1]; |
---|
257 | } |
---|
258 | if (gp[procid].neighbors[UP] == -1) { |
---|
259 | for (j = firstcol; j <= lastcol; j++) { |
---|
260 | t2a[0][j] = hh3 * t2a[0][j] + hh1 * t2c[0][j]; |
---|
261 | } |
---|
262 | } |
---|
263 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
264 | for (j = firstcol; j <= lastcol; j++) { |
---|
265 | t2a[im - 1][j] = hh3 * t2a[im - 1][j] + hh1 * t2c[im - 1][j]; |
---|
266 | } |
---|
267 | } |
---|
268 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
269 | for (j = firstrow; j <= lastrow; j++) { |
---|
270 | t2a[j][0] = hh3 * t2a[j][0] + hh1 * t2c[j][0]; |
---|
271 | } |
---|
272 | } |
---|
273 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
274 | for (j = firstrow; j <= lastrow; j++) { |
---|
275 | t2a[j][jm - 1] = hh3 * t2a[j][jm - 1] + hh1 * t2c[j][jm - 1]; |
---|
276 | } |
---|
277 | } |
---|
278 | for (i = firstrow; i <= lastrow; i++) { |
---|
279 | t1a = (double *) t2a[i]; |
---|
280 | t1c = (double *) t2c[i]; |
---|
281 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
282 | t1a[iindex] = hh3 * t1a[iindex] + hh1 * t1c[iindex]; |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | /* set values of temparray{1,3} to psi{1,3} */ |
---|
287 | |
---|
288 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
289 | t2a = (double **) temparray[procid][psiindex]; |
---|
290 | t2b = (double **) psi[procid][psiindex]; |
---|
291 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
292 | t2a[0][0] = t2b[0][0]; |
---|
293 | } |
---|
294 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
295 | t2a[im - 1][0] = t2b[im - 1][0]; |
---|
296 | } |
---|
297 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
298 | t2a[0][jm - 1] = t2b[0][jm - 1]; |
---|
299 | } |
---|
300 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
301 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1]; |
---|
302 | } |
---|
303 | if (gp[procid].neighbors[UP] == -1) { |
---|
304 | for (j = firstcol; j <= lastcol; j++) { |
---|
305 | t2a[0][j] = t2b[0][j]; |
---|
306 | } |
---|
307 | } |
---|
308 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
309 | for (j = firstcol; j <= lastcol; j++) { |
---|
310 | t2a[im - 1][j] = t2b[im - 1][j]; |
---|
311 | } |
---|
312 | } |
---|
313 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
314 | for (j = firstrow; j <= lastrow; j++) { |
---|
315 | t2a[j][0] = t2b[j][0]; |
---|
316 | } |
---|
317 | } |
---|
318 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
319 | for (j = firstrow; j <= lastrow; j++) { |
---|
320 | t2a[j][jm - 1] = t2b[j][jm - 1]; |
---|
321 | } |
---|
322 | } |
---|
323 | |
---|
324 | for (i = firstrow; i <= lastrow; i++) { |
---|
325 | t1a = (double *) t2a[i]; |
---|
326 | t1b = (double *) t2b[i]; |
---|
327 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
328 | t1a[iindex] = t1b[iindex]; |
---|
329 | } |
---|
330 | } |
---|
331 | } |
---|
332 | |
---|
333 | END_PHASE(procid, 1); |
---|
334 | |
---|
335 | #if defined(MULTIPLE_BARRIERS) |
---|
336 | BARRIER(bars->sl_phase_1, nprocs) |
---|
337 | #else |
---|
338 | BARRIER(bars->barrier, nprocs) |
---|
339 | #endif |
---|
340 | |
---|
341 | /* ******************************************************* |
---|
342 | |
---|
343 | s e c o n d p h a s e |
---|
344 | |
---|
345 | ******************************************************* |
---|
346 | |
---|
347 | set values of psi{1,3} to psim{1,3} */ |
---|
348 | |
---|
349 | START_PHASE(procid, 2); |
---|
350 | |
---|
351 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
352 | t2a = (double **) psi[procid][psiindex]; |
---|
353 | t2b = (double **) psim[procid][psiindex]; |
---|
354 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
355 | t2a[0][0] = t2b[0][0]; |
---|
356 | } |
---|
357 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
358 | t2a[0][jm - 1] = t2b[0][jm - 1]; |
---|
359 | } |
---|
360 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
361 | t2a[im - 1][0] = t2b[im - 1][0]; |
---|
362 | } |
---|
363 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
364 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1]; |
---|
365 | } |
---|
366 | if (gp[procid].neighbors[UP] == -1) { |
---|
367 | for (j = firstcol; j <= lastcol; j++) { |
---|
368 | t2a[0][j] = t2b[0][j]; |
---|
369 | } |
---|
370 | } |
---|
371 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
372 | for (j = firstcol; j <= lastcol; j++) { |
---|
373 | t2a[im - 1][j] = t2b[im - 1][j]; |
---|
374 | } |
---|
375 | } |
---|
376 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
377 | for (j = firstrow; j <= lastrow; j++) { |
---|
378 | t2a[j][0] = t2b[j][0]; |
---|
379 | } |
---|
380 | } |
---|
381 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
382 | for (j = firstrow; j <= lastrow; j++) { |
---|
383 | t2a[j][jm - 1] = t2b[j][jm - 1]; |
---|
384 | } |
---|
385 | } |
---|
386 | |
---|
387 | for (i = firstrow; i <= lastrow; i++) { |
---|
388 | t1a = (double *) t2a[i]; |
---|
389 | t1b = (double *) t2b[i]; |
---|
390 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
391 | t1a[iindex] = t1b[iindex]; |
---|
392 | } |
---|
393 | } |
---|
394 | } |
---|
395 | |
---|
396 | /* put the laplacian of the psim array |
---|
397 | into the work7 array; first part of a three-laplacian |
---|
398 | calculation to compute the friction terms */ |
---|
399 | |
---|
400 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
401 | t2a = (double **) work7[procid][psiindex]; |
---|
402 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
403 | t2a[0][0] = 0; |
---|
404 | } |
---|
405 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
406 | t2a[im - 1][0] = 0; |
---|
407 | } |
---|
408 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
409 | t2a[0][jm - 1] = 0; |
---|
410 | } |
---|
411 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
412 | t2a[im - 1][jm - 1] = 0; |
---|
413 | } |
---|
414 | laplacalc(procid, psim, work7, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
415 | } |
---|
416 | |
---|
417 | /* to the values of the work1{1,2} arrays obtained from the |
---|
418 | laplacians of psi{1,2} in the previous phase, add to the |
---|
419 | elements of every column the corresponding value in the |
---|
420 | one-dimenional f array */ |
---|
421 | |
---|
422 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
423 | t2a = (double **) work1[procid][psiindex]; |
---|
424 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
425 | t2a[0][0] = t2a[0][0] + f[0]; |
---|
426 | } |
---|
427 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
428 | t2a[im - 1][0] = t2a[im - 1][0] + f[0]; |
---|
429 | } |
---|
430 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
431 | t2a[0][jm - 1] = t2a[0][jm - 1] + f[jmx[numlev - 1] - 1]; |
---|
432 | } |
---|
433 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
434 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + f[jmx[numlev - 1] - 1]; |
---|
435 | } |
---|
436 | if (gp[procid].neighbors[UP] == -1) { |
---|
437 | for (j = firstcol; j <= lastcol; j++) { |
---|
438 | t2a[0][j] = t2a[0][j] + f[j + j_off]; |
---|
439 | } |
---|
440 | } |
---|
441 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
442 | for (j = firstcol; j <= lastcol; j++) { |
---|
443 | t2a[im - 1][j] = t2a[im - 1][j] + f[j + j_off]; |
---|
444 | } |
---|
445 | } |
---|
446 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
447 | for (j = firstrow; j <= lastrow; j++) { |
---|
448 | t2a[j][0] = t2a[j][0] + f[j + i_off]; |
---|
449 | } |
---|
450 | } |
---|
451 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
452 | for (j = firstrow; j <= lastrow; j++) { |
---|
453 | t2a[j][jm - 1] = t2a[j][jm - 1] + f[j + i_off]; |
---|
454 | } |
---|
455 | } |
---|
456 | for (i = firstrow; i <= lastrow; i++) { |
---|
457 | t1a = (double *) t2a[i]; |
---|
458 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
459 | t1a[iindex] = t1a[iindex] + f[iindex + j_off]; |
---|
460 | } |
---|
461 | } |
---|
462 | } |
---|
463 | |
---|
464 | END_PHASE(procid, 2); |
---|
465 | |
---|
466 | #if defined(MULTIPLE_BARRIERS) |
---|
467 | BARRIER(bars->sl_phase_2, nprocs) |
---|
468 | #else |
---|
469 | BARRIER(bars->barrier, nprocs) |
---|
470 | #endif |
---|
471 | /* ******************************************************* |
---|
472 | |
---|
473 | t h i r d p h a s e |
---|
474 | |
---|
475 | ******************************************************* |
---|
476 | |
---|
477 | put the jacobian of the work1{1,2} and psi{1,3} arrays |
---|
478 | (the latter currently in temparray) in the work5{1,2} arrays */ |
---|
479 | |
---|
480 | START_PHASE(procid, 3); |
---|
481 | |
---|
482 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
483 | jacobcalc2(work1, temparray, work5, psiindex, procid, firstrow, lastrow, firstcol, lastcol); |
---|
484 | } |
---|
485 | |
---|
486 | /* set values of psim{1,3} to temparray{1,3} */ |
---|
487 | |
---|
488 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
489 | t2a = (double **) psim[procid][psiindex]; |
---|
490 | t2b = (double **) temparray[procid][psiindex]; |
---|
491 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
492 | t2a[0][0] = t2b[0][0]; |
---|
493 | } |
---|
494 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
495 | t2a[im - 1][0] = t2b[im - 1][0]; |
---|
496 | } |
---|
497 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
498 | t2a[0][jm - 1] = t2b[0][jm - 1]; |
---|
499 | } |
---|
500 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
501 | t2a[im - 1][jm - 1] = t2b[im - 1][jm - 1]; |
---|
502 | } |
---|
503 | if (gp[procid].neighbors[UP] == -1) { |
---|
504 | t1a = (double *) t2a[0]; |
---|
505 | t1b = (double *) t2b[0]; |
---|
506 | for (j = firstcol; j <= lastcol; j++) { |
---|
507 | t1a[j] = t1b[j]; |
---|
508 | } |
---|
509 | } |
---|
510 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
511 | t1a = (double *) t2a[im - 1]; |
---|
512 | t1b = (double *) t2b[im - 1]; |
---|
513 | for (j = firstcol; j <= lastcol; j++) { |
---|
514 | t1a[j] = t1b[j]; |
---|
515 | } |
---|
516 | } |
---|
517 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
518 | for (j = firstrow; j <= lastrow; j++) { |
---|
519 | t2a[j][0] = t2b[j][0]; |
---|
520 | } |
---|
521 | } |
---|
522 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
523 | for (j = firstrow; j <= lastrow; j++) { |
---|
524 | t2a[j][jm - 1] = t2b[j][jm - 1]; |
---|
525 | } |
---|
526 | } |
---|
527 | for (i = firstrow; i <= lastrow; i++) { |
---|
528 | t1a = (double *) t2a[i]; |
---|
529 | t1b = (double *) t2b[i]; |
---|
530 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
531 | t1a[iindex] = t1b[iindex]; |
---|
532 | } |
---|
533 | } |
---|
534 | } |
---|
535 | |
---|
536 | /* put the laplacian of the work7{1,2} arrays in the work4{1,2} |
---|
537 | arrays; second step in the three-laplacian friction calculation */ |
---|
538 | |
---|
539 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
540 | laplacalc(procid, work7, work4, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
541 | } |
---|
542 | |
---|
543 | END_PHASE(procid, 3); |
---|
544 | |
---|
545 | #if defined(MULTIPLE_BARRIERS) |
---|
546 | BARRIER(bars->sl_phase_3, nprocs) |
---|
547 | #else |
---|
548 | BARRIER(bars->barrier, nprocs) |
---|
549 | #endif |
---|
550 | |
---|
551 | /* ******************************************************* |
---|
552 | |
---|
553 | f o u r t h p h a s e |
---|
554 | |
---|
555 | ******************************************************* |
---|
556 | |
---|
557 | put the jacobian of the work2 and work3 arrays in the work6 |
---|
558 | array */ |
---|
559 | |
---|
560 | START_PHASE(procid, 4); |
---|
561 | |
---|
562 | jacobcalc(work2, work3, work6, procid, firstrow, lastrow, firstcol, lastcol); |
---|
563 | |
---|
564 | /* put the laplacian of the work4{1,2} arrays in the work7{1,2} |
---|
565 | arrays; third step in the three-laplacian friction calculation */ |
---|
566 | |
---|
567 | for (psiindex = 0; psiindex <= 1; psiindex++) { |
---|
568 | laplacalc(procid, work4, work7, psiindex, firstrow, lastrow, firstcol, lastcol); |
---|
569 | } |
---|
570 | |
---|
571 | END_PHASE(procid, 4); |
---|
572 | |
---|
573 | #if defined(MULTIPLE_BARRIERS) |
---|
574 | BARRIER(bars->sl_phase_4, nprocs) |
---|
575 | #else |
---|
576 | BARRIER(bars->barrier, nprocs) |
---|
577 | #endif |
---|
578 | |
---|
579 | /* ******************************************************* |
---|
580 | |
---|
581 | f i f t h p h a s e |
---|
582 | |
---|
583 | ******************************************************* |
---|
584 | |
---|
585 | use the values of the work5, work6 and work7 arrays |
---|
586 | computed in the previous time-steps to compute the |
---|
587 | ga and gb arrays */ |
---|
588 | |
---|
589 | START_PHASE(procid, 5); |
---|
590 | |
---|
591 | hinv = 1.0 / h; |
---|
592 | h1inv = 1.0 / h1; |
---|
593 | |
---|
594 | t2a = (double **) ga[procid]; |
---|
595 | t2b = (double **) gb[procid]; |
---|
596 | t2c = (double **) work5[procid][0]; |
---|
597 | t2d = (double **) work5[procid][1]; |
---|
598 | t2e = (double **) work7[procid][0]; |
---|
599 | t2f = (double **) work7[procid][1]; |
---|
600 | t2g = (double **) work6[procid]; |
---|
601 | t2h = (double **) tauz[procid]; |
---|
602 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
603 | t2a[0][0] = t2c[0][0] - t2d[0][0] + eig2 * t2g[0][0] + h1inv * t2h[0][0] + lf * t2e[0][0] - lf * t2f[0][0]; |
---|
604 | t2b[0][0] = hh1 * t2c[0][0] + hh3 * t2d[0][0] + hinv * t2h[0][0] + lf * hh1 * t2e[0][0] + lf * hh3 * t2f[0][0]; |
---|
605 | } |
---|
606 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
607 | t2a[im - 1][0] = t2c[im - 1][0] - t2d[im - 1][0] + eig2 * t2g[im - 1][0] + h1inv * t2h[im - 1][0] + lf * t2e[im - 1][0] - lf * t2f[im - 1][0]; |
---|
608 | t2b[im - 1][0] = hh1 * t2c[im - 1][0] + hh3 * t2d[im - 1][0] + hinv * t2h[im - 1][0] + lf * hh1 * t2e[im - 1][0] + lf * hh3 * t2f[im - 1][0]; |
---|
609 | } |
---|
610 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
611 | t2a[0][jm - 1] = t2c[0][jm - 1] - t2d[0][jm - 1] + eig2 * t2g[0][jm - 1] + h1inv * t2h[0][jm - 1] + lf * t2e[0][jm - 1] - lf * t2f[0][jm - 1]; |
---|
612 | t2b[0][jm - 1] = hh1 * t2c[0][jm - 1] + hh3 * t2d[0][jm - 1] + hinv * t2h[0][jm - 1] + lf * hh1 * t2e[0][jm - 1] + lf * hh3 * t2f[0][jm - 1]; |
---|
613 | } |
---|
614 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
615 | t2a[im - 1][jm - 1] = t2c[im - 1][jm - 1] - t2d[im - 1][jm - 1] + eig2 * t2g[im - 1][jm - 1] + h1inv * t2h[im - 1][jm - 1] + lf * t2e[im - 1][jm - 1] - lf * t2f[im - 1][jm - 1]; |
---|
616 | t2b[im - 1][jm - 1] = hh1 * t2c[im - 1][jm - 1] + hh3 * t2d[im - 1][jm - 1] + hinv * t2h[im - 1][jm - 1] + lf * hh1 * t2e[im - 1][jm - 1] + lf * hh3 * t2f[im - 1][jm - 1]; |
---|
617 | } |
---|
618 | if (gp[procid].neighbors[UP] == -1) { |
---|
619 | t1a = (double *) t2a[0]; |
---|
620 | t1b = (double *) t2b[0]; |
---|
621 | t1c = (double *) t2c[0]; |
---|
622 | t1d = (double *) t2d[0]; |
---|
623 | t1e = (double *) t2e[0]; |
---|
624 | t1f = (double *) t2f[0]; |
---|
625 | t1g = (double *) t2g[0]; |
---|
626 | t1h = (double *) t2h[0]; |
---|
627 | for (j = firstcol; j <= lastcol; j++) { |
---|
628 | t1a[j] = t1c[j] - t1d[j] + eig2 * t1g[j] + h1inv * t1h[j] + lf * t1e[j] - lf * t1f[j]; |
---|
629 | t1b[j] = hh1 * t1c[j] + hh3 * t1d[j] + hinv * t1h[j] + lf * hh1 * t1e[j] + lf * hh3 * t1f[j]; |
---|
630 | } |
---|
631 | } |
---|
632 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
633 | t1a = (double *) t2a[im - 1]; |
---|
634 | t1b = (double *) t2b[im - 1]; |
---|
635 | t1c = (double *) t2c[im - 1]; |
---|
636 | t1d = (double *) t2d[im - 1]; |
---|
637 | t1e = (double *) t2e[im - 1]; |
---|
638 | t1f = (double *) t2f[im - 1]; |
---|
639 | t1g = (double *) t2g[im - 1]; |
---|
640 | t1h = (double *) t2h[im - 1]; |
---|
641 | for (j = firstcol; j <= lastcol; j++) { |
---|
642 | t1a[j] = t1c[j] - t1d[j] + eig2 * t1g[j] + h1inv * t1h[j] + lf * t1e[j] - lf * t1f[j]; |
---|
643 | t1b[j] = hh1 * t1c[j] + hh3 * t1d[j] + hinv * t1h[j] + lf * hh1 * t1e[j] + lf * hh3 * t1f[j]; |
---|
644 | } |
---|
645 | } |
---|
646 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
647 | for (j = firstrow; j <= lastrow; j++) { |
---|
648 | t2a[j][0] = t2c[j][0] - t2d[j][0] + eig2 * t2g[j][0] + h1inv * t2h[j][0] + lf * t2e[j][0] - lf * t2f[j][0]; |
---|
649 | t2b[j][0] = hh1 * t2c[j][0] + hh3 * t2d[j][0] + hinv * t2h[j][0] + lf * hh1 * t2e[j][0] + lf * hh3 * t2f[j][0]; |
---|
650 | } |
---|
651 | } |
---|
652 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
653 | for (j = firstrow; j <= lastrow; j++) { |
---|
654 | t2a[j][jm - 1] = t2c[j][jm - 1] - t2d[j][jm - 1] + eig2 * t2g[j][jm - 1] + h1inv * t2h[j][jm - 1] + lf * t2e[j][jm - 1] - lf * t2f[j][jm - 1]; |
---|
655 | t2b[j][jm - 1] = hh1 * t2c[j][jm - 1] + hh3 * t2d[j][jm - 1] + hinv * t2h[j][jm - 1] + lf * hh1 * t2e[j][jm - 1] + lf * hh3 * t2f[j][jm - 1]; |
---|
656 | } |
---|
657 | } |
---|
658 | |
---|
659 | for (i = firstrow; i <= lastrow; i++) { |
---|
660 | t1a = (double *) t2a[i]; |
---|
661 | t1b = (double *) t2b[i]; |
---|
662 | t1c = (double *) t2c[i]; |
---|
663 | t1d = (double *) t2d[i]; |
---|
664 | t1e = (double *) t2e[i]; |
---|
665 | t1f = (double *) t2f[i]; |
---|
666 | t1g = (double *) t2g[i]; |
---|
667 | t1h = (double *) t2h[i]; |
---|
668 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
669 | t1a[iindex] = t1c[iindex] - t1d[iindex] + eig2 * t1g[iindex] + h1inv * t1h[iindex] + lf * t1e[iindex] - lf * t1f[iindex]; |
---|
670 | t1b[iindex] = hh1 * t1c[iindex] + hh3 * t1d[iindex] + hinv * t1h[iindex] + lf * hh1 * t1e[iindex] + lf * hh3 * t1f[iindex]; |
---|
671 | } |
---|
672 | } |
---|
673 | |
---|
674 | END_PHASE(procid, 5); |
---|
675 | |
---|
676 | #if defined(MULTIPLE_BARRIERS) |
---|
677 | BARRIER(bars->sl_phase_5, nprocs) |
---|
678 | #else |
---|
679 | BARRIER(bars->barrier, nprocs) |
---|
680 | #endif |
---|
681 | |
---|
682 | /* ******************************************************* |
---|
683 | |
---|
684 | s i x t h p h a s e |
---|
685 | |
---|
686 | ******************************************************* */ |
---|
687 | |
---|
688 | START_PHASE(procid, 6); |
---|
689 | |
---|
690 | istart = 1; |
---|
691 | iend = istart + gp[procid].rel_num_y[numlev - 1] - 1; |
---|
692 | jstart = 1; |
---|
693 | jend = jstart + gp[procid].rel_num_x[numlev - 1] - 1; |
---|
694 | ist = istart; |
---|
695 | ien = iend; |
---|
696 | jst = jstart; |
---|
697 | jen = jend; |
---|
698 | |
---|
699 | if (gp[procid].neighbors[UP] == -1) { |
---|
700 | istart = 0; |
---|
701 | } |
---|
702 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
703 | jstart = 0; |
---|
704 | } |
---|
705 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
706 | iend = im - 1; |
---|
707 | } |
---|
708 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
709 | jend = jm - 1; |
---|
710 | } |
---|
711 | t2a = (double **) rhs_multi[procid][numlev - 1]; |
---|
712 | t2b = (double **) ga[procid]; |
---|
713 | t2c = (double **) oldga[procid]; |
---|
714 | t2d = (double **) q_multi[procid][numlev - 1]; |
---|
715 | for (i = istart; i <= iend; i++) { |
---|
716 | t1a = (double *) t2a[i]; |
---|
717 | t1b = (double *) t2b[i]; |
---|
718 | for (j = jstart; j <= jend; j++) { |
---|
719 | t1a[j] = t1b[j] * ressqr; |
---|
720 | } |
---|
721 | } |
---|
722 | |
---|
723 | if (gp[procid].neighbors[UP] == -1) { |
---|
724 | t1d = (double *) t2d[0]; |
---|
725 | t1b = (double *) t2b[0]; |
---|
726 | for (j = jstart; j <= jend; j++) { |
---|
727 | t1d[j] = t1b[j]; |
---|
728 | } |
---|
729 | } |
---|
730 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
731 | t1d = (double *) t2d[im - 1]; |
---|
732 | t1b = (double *) t2b[im - 1]; |
---|
733 | for (j = jstart; j <= jend; j++) { |
---|
734 | t1d[j] = t1b[j]; |
---|
735 | } |
---|
736 | } |
---|
737 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
738 | for (i = istart; i <= iend; i++) { |
---|
739 | t2d[i][0] = t2b[i][0]; |
---|
740 | } |
---|
741 | } |
---|
742 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
743 | for (i = istart; i <= iend; i++) { |
---|
744 | t2d[i][jm - 1] = t2b[i][jm - 1]; |
---|
745 | } |
---|
746 | } |
---|
747 | //fac = 1.0 / (4.0 - ressqr*eig2); |
---|
748 | for (i = ist; i <= ien; i++) { |
---|
749 | t1d = (double *) t2d[i]; |
---|
750 | t1c = (double *) t2c[i]; |
---|
751 | for (j = jst; j <= jen; j++) { |
---|
752 | t1d[j] = t1c[j]; |
---|
753 | } |
---|
754 | } |
---|
755 | |
---|
756 | if ((procid == MASTER) || (do_stats)) { |
---|
757 | CLOCK(multi_start); |
---|
758 | } |
---|
759 | |
---|
760 | multig(procid); |
---|
761 | |
---|
762 | if ((procid == MASTER) || (do_stats)) { |
---|
763 | CLOCK(multi_end); |
---|
764 | (*gp[procid].multi_time) += (multi_end - multi_start); |
---|
765 | } |
---|
766 | |
---|
767 | /* the shared sum variable psiai is initialized to 0 at |
---|
768 | every time-step */ |
---|
769 | |
---|
770 | if (procid == MASTER) { |
---|
771 | global->psiai = 0.0; |
---|
772 | } |
---|
773 | |
---|
774 | /* copy the solution for use as initial guess in next time-step */ |
---|
775 | |
---|
776 | for (i = istart; i <= iend; i++) { |
---|
777 | t1b = (double *) t2b[i]; |
---|
778 | t1c = (double *) t2c[i]; |
---|
779 | t1d = (double *) t2d[i]; |
---|
780 | for (j = jstart; j <= jend; j++) { |
---|
781 | t1b[j] = t1d[j]; |
---|
782 | t1c[j] = t1d[j]; |
---|
783 | } |
---|
784 | } |
---|
785 | |
---|
786 | END_PHASE(procid, 6); |
---|
787 | |
---|
788 | #if defined(MULTIPLE_BARRIERS) |
---|
789 | BARRIER(bars->sl_phase_6, nprocs) |
---|
790 | #else |
---|
791 | BARRIER(bars->barrier, nprocs) |
---|
792 | #endif |
---|
793 | |
---|
794 | /* ******************************************************* |
---|
795 | |
---|
796 | s e v e n t h p h a s e |
---|
797 | |
---|
798 | ******************************************************* |
---|
799 | |
---|
800 | every process computes the running sum for its assigned portion |
---|
801 | in a private variable psiaipriv */ |
---|
802 | |
---|
803 | START_PHASE(procid, 7); |
---|
804 | |
---|
805 | psiaipriv = 0.0; |
---|
806 | t2a = (double **) ga[procid]; |
---|
807 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
808 | psiaipriv = psiaipriv + 0.25 * (t2a[0][0]); |
---|
809 | } |
---|
810 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
811 | psiaipriv = psiaipriv + 0.25 * (t2a[0][jm - 1]); |
---|
812 | } |
---|
813 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
814 | psiaipriv = psiaipriv + 0.25 * (t2a[im - 1][0]); |
---|
815 | } |
---|
816 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
817 | psiaipriv = psiaipriv + 0.25 * (t2a[im - 1][jm - 1]); |
---|
818 | } |
---|
819 | if (gp[procid].neighbors[UP] == -1) { |
---|
820 | t1a = (double *) t2a[0]; |
---|
821 | for (j = firstcol; j <= lastcol; j++) { |
---|
822 | psiaipriv = psiaipriv + 0.5 * t1a[j]; |
---|
823 | } |
---|
824 | } |
---|
825 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
826 | t1a = (double *) t2a[im - 1]; |
---|
827 | for (j = firstcol; j <= lastcol; j++) { |
---|
828 | psiaipriv = psiaipriv + 0.5 * t1a[j]; |
---|
829 | } |
---|
830 | } |
---|
831 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
832 | for (j = firstrow; j <= lastrow; j++) { |
---|
833 | psiaipriv = psiaipriv + 0.5 * t2a[j][0]; |
---|
834 | } |
---|
835 | } |
---|
836 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
837 | for (j = firstrow; j <= lastrow; j++) { |
---|
838 | psiaipriv = psiaipriv + 0.5 * t2a[j][jm - 1]; |
---|
839 | } |
---|
840 | } |
---|
841 | for (i = firstrow; i <= lastrow; i++) { |
---|
842 | t1a = (double *) t2a[i]; |
---|
843 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
844 | psiaipriv = psiaipriv + t1a[iindex]; |
---|
845 | } |
---|
846 | } |
---|
847 | |
---|
848 | /* after computing its private sum, every process adds that to the |
---|
849 | shared running sum psiai */ |
---|
850 | |
---|
851 | LOCK(locks->psiailock) |
---|
852 | global->psiai = global->psiai + psiaipriv; |
---|
853 | UNLOCK(locks->psiailock) |
---|
854 | |
---|
855 | END_PHASE(procid, 7); |
---|
856 | |
---|
857 | #if defined(MULTIPLE_BARRIERS) |
---|
858 | BARRIER(bars->sl_phase_7, nprocs) |
---|
859 | #else |
---|
860 | BARRIER(bars->barrier, nprocs) |
---|
861 | #endif |
---|
862 | |
---|
863 | /* ******************************************************* |
---|
864 | |
---|
865 | e i g h t h p h a s e |
---|
866 | |
---|
867 | ******************************************************* |
---|
868 | |
---|
869 | augment ga(i,j) with [-psiai/psibi]*psib(i,j) */ |
---|
870 | |
---|
871 | START_PHASE(procid, 8); |
---|
872 | |
---|
873 | f4 = (-global->psiai) /(global->psibi); |
---|
874 | |
---|
875 | t2a = (double **) ga[procid]; |
---|
876 | t2b = (double **) psib[procid]; |
---|
877 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
878 | t2a[0][0] = t2a[0][0] + f4 * t2b[0][0]; |
---|
879 | } |
---|
880 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
881 | t2a[im - 1][0] = t2a[im - 1][0] + f4 * t2b[im - 1][0]; |
---|
882 | } |
---|
883 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
884 | t2a[0][jm - 1] = t2a[0][jm - 1] + f4 * t2b[0][jm - 1]; |
---|
885 | } |
---|
886 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
887 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + f4 * t2b[im - 1][jm - 1]; |
---|
888 | } |
---|
889 | if (gp[procid].neighbors[UP] == -1) { |
---|
890 | t1a = (double *) t2a[0]; |
---|
891 | t1b = (double *) t2b[0]; |
---|
892 | for (j = firstcol; j <= lastcol; j++) { |
---|
893 | t1a[j] = t1a[j] + f4 * t1b[j]; |
---|
894 | } |
---|
895 | } |
---|
896 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
897 | t1a = (double *) t2a[im - 1]; |
---|
898 | t1b = (double *) t2b[im - 1]; |
---|
899 | for (j = firstcol; j <= lastcol; j++) { |
---|
900 | t1a[j] = t1a[j] + f4 * t1b[j]; |
---|
901 | } |
---|
902 | } |
---|
903 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
904 | for (j = firstrow; j <= lastrow; j++) { |
---|
905 | t2a[j][0] = t2a[j][0] + f4 * t2b[j][0]; |
---|
906 | } |
---|
907 | } |
---|
908 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
909 | for (j = firstrow; j <= lastrow; j++) { |
---|
910 | t2a[j][jm - 1] = t2a[j][jm - 1] + f4 * t2b[j][jm - 1]; |
---|
911 | } |
---|
912 | } |
---|
913 | for (i = firstrow; i <= lastrow; i++) { |
---|
914 | t1a = (double *) t2a[i]; |
---|
915 | t1b = (double *) t2b[i]; |
---|
916 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
917 | t1a[iindex] = t1a[iindex] + f4 * t1b[iindex]; |
---|
918 | } |
---|
919 | } |
---|
920 | |
---|
921 | t2a = (double **) rhs_multi[procid][numlev - 1]; |
---|
922 | t2b = (double **) gb[procid]; |
---|
923 | t2c = (double **) oldgb[procid]; |
---|
924 | t2d = (double **) q_multi[procid][numlev - 1]; |
---|
925 | for (i = istart; i <= iend; i++) { |
---|
926 | t1a = (double *) t2a[i]; |
---|
927 | t1b = (double *) t2b[i]; |
---|
928 | for (j = jstart; j <= jend; j++) { |
---|
929 | t1a[j] = t1b[j] * ressqr; |
---|
930 | } |
---|
931 | } |
---|
932 | if (gp[procid].neighbors[UP] == -1) { |
---|
933 | t1d = (double *) t2d[0]; |
---|
934 | t1b = (double *) t2b[0]; |
---|
935 | for (j = jstart; j <= jend; j++) { |
---|
936 | t1d[j] = t1b[j]; |
---|
937 | } |
---|
938 | } |
---|
939 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
940 | t1d = (double *) t2d[im - 1]; |
---|
941 | t1b = (double *) t2b[im - 1]; |
---|
942 | for (j = jstart; j <= jend; j++) { |
---|
943 | t1d[j] = t1b[j]; |
---|
944 | } |
---|
945 | } |
---|
946 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
947 | for (i = istart; i <= iend; i++) { |
---|
948 | t2d[i][0] = t2b[i][0]; |
---|
949 | } |
---|
950 | } |
---|
951 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
952 | for (i = istart; i <= iend; i++) { |
---|
953 | t2d[i][jm - 1] = t2b[i][jm - 1]; |
---|
954 | } |
---|
955 | } |
---|
956 | //fac = 1.0 / (4.0 - ressqr*eig2); |
---|
957 | for (i = ist; i <= ien; i++) { |
---|
958 | t1d = (double *) t2d[i]; |
---|
959 | t1c = (double *) t2c[i]; |
---|
960 | for (j = jst; j <= jen; j++) { |
---|
961 | t1d[j] = t1c[j]; |
---|
962 | } |
---|
963 | } |
---|
964 | |
---|
965 | if ((procid == MASTER) || (do_stats)) { |
---|
966 | CLOCK(multi_start); |
---|
967 | } |
---|
968 | |
---|
969 | multig(procid); |
---|
970 | |
---|
971 | if ((procid == MASTER) || (do_stats)) { |
---|
972 | CLOCK(multi_end); |
---|
973 | (*gp[procid].multi_time) += (multi_end - multi_start); |
---|
974 | } |
---|
975 | |
---|
976 | for (i = istart; i <= iend; i++) { |
---|
977 | t1b = (double *) t2b[i]; |
---|
978 | t1c = (double *) t2c[i]; |
---|
979 | t1d = (double *) t2d[i]; |
---|
980 | for (j = jstart; j <= jend; j++) { |
---|
981 | t1b[j] = t1d[j]; |
---|
982 | t1c[j] = t1d[j]; |
---|
983 | } |
---|
984 | } |
---|
985 | |
---|
986 | END_PHASE(procid, 8); |
---|
987 | |
---|
988 | #if defined(MULTIPLE_BARRIERS) |
---|
989 | BARRIER(bars->sl_phase_8, nprocs) |
---|
990 | #else |
---|
991 | BARRIER(bars->barrier, nprocs) |
---|
992 | #endif |
---|
993 | |
---|
994 | /* ******************************************************* |
---|
995 | |
---|
996 | n i n t h p h a s e |
---|
997 | |
---|
998 | ******************************************************* |
---|
999 | |
---|
1000 | put appropriate linear combinations of ga and gb in work2 and work3; |
---|
1001 | note that here (as in most cases) the constant multipliers are made |
---|
1002 | private variables; the specific order in which things are done is |
---|
1003 | chosen in order to hopefully reuse things brought into the cache |
---|
1004 | |
---|
1005 | note that here again we choose to have all processes share the work |
---|
1006 | on both matrices despite the fact that the work done per element |
---|
1007 | is the same, because the operand matrices are the same in both cases */ |
---|
1008 | |
---|
1009 | START_PHASE(procid, 9); |
---|
1010 | |
---|
1011 | t2a = (double **) ga[procid]; |
---|
1012 | t2b = (double **) gb[procid]; |
---|
1013 | t2c = (double **) work2[procid]; |
---|
1014 | t2d = (double **) work3[procid]; |
---|
1015 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
1016 | t2c[0][0] = t2b[0][0] - hh1 * t2a[0][0]; |
---|
1017 | t2d[0][0] = t2b[0][0] + hh3 * t2a[0][0]; |
---|
1018 | } |
---|
1019 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
1020 | t2c[im - 1][0] = t2b[im - 1][0] - hh1 * t2a[im - 1][0]; |
---|
1021 | t2d[im - 1][0] = t2b[im - 1][0] + hh3 * t2a[im - 1][0]; |
---|
1022 | } |
---|
1023 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
1024 | t2c[0][jm - 1] = t2b[0][jm - 1] - hh1 * t2a[0][jm - 1]; |
---|
1025 | t2d[0][jm - 1] = t2b[0][jm - 1] + hh3 * t2a[0][jm - 1]; |
---|
1026 | } |
---|
1027 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
1028 | t2c[im - 1][jm - 1] = t2b[im - 1][jm - 1] - hh1 * t2a[im - 1][jm - 1]; |
---|
1029 | t2d[im - 1][jm - 1] = t2b[im - 1][jm - 1] + hh3 * t2a[im - 1][jm - 1]; |
---|
1030 | } |
---|
1031 | if (gp[procid].neighbors[UP] == -1) { |
---|
1032 | t1a = (double *) t2a[0]; |
---|
1033 | t1b = (double *) t2b[0]; |
---|
1034 | t1c = (double *) t2c[0]; |
---|
1035 | t1d = (double *) t2d[0]; |
---|
1036 | for (j = firstcol; j <= lastcol; j++) { |
---|
1037 | t1d[j] = t1b[j] + hh3 * t1a[j]; |
---|
1038 | t1c[j] = t1b[j] - hh1 * t1a[j]; |
---|
1039 | } |
---|
1040 | } |
---|
1041 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
1042 | t1a = (double *) t2a[im - 1]; |
---|
1043 | t1b = (double *) t2b[im - 1]; |
---|
1044 | t1c = (double *) t2c[im - 1]; |
---|
1045 | t1d = (double *) t2d[im - 1]; |
---|
1046 | for (j = firstcol; j <= lastcol; j++) { |
---|
1047 | t1d[j] = t1b[j] + hh3 * t1a[j]; |
---|
1048 | t1c[j] = t1b[j] - hh1 * t1a[j]; |
---|
1049 | } |
---|
1050 | } |
---|
1051 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
1052 | for (j = firstrow; j <= lastrow; j++) { |
---|
1053 | t2d[j][0] = t2b[j][0] + hh3 * t2a[j][0]; |
---|
1054 | t2c[j][0] = t2b[j][0] - hh1 * t2a[j][0]; |
---|
1055 | } |
---|
1056 | } |
---|
1057 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
1058 | for (j = firstrow; j <= lastrow; j++) { |
---|
1059 | t2d[j][jm - 1] = t2b[j][jm - 1] + hh3 * t2a[j][jm - 1]; |
---|
1060 | t2c[j][jm - 1] = t2b[j][jm - 1] - hh1 * t2a[j][jm - 1]; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | |
---|
1064 | for (i = firstrow; i <= lastrow; i++) { |
---|
1065 | t1a = (double *) t2a[i]; |
---|
1066 | t1b = (double *) t2b[i]; |
---|
1067 | t1c = (double *) t2c[i]; |
---|
1068 | t1d = (double *) t2d[i]; |
---|
1069 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
1070 | t1d[iindex] = t1b[iindex] + hh3 * t1a[iindex]; |
---|
1071 | t1c[iindex] = t1b[iindex] - hh1 * t1a[iindex]; |
---|
1072 | } |
---|
1073 | } |
---|
1074 | |
---|
1075 | END_PHASE(procid, 9); |
---|
1076 | |
---|
1077 | #if defined(MULTIPLE_BARRIERS) |
---|
1078 | BARRIER(bars->sl_phase_9, nprocs) |
---|
1079 | #else |
---|
1080 | BARRIER(bars->barrier, nprocs) |
---|
1081 | #endif |
---|
1082 | |
---|
1083 | /* ******************************************************* |
---|
1084 | |
---|
1085 | t e n t h p h a s e |
---|
1086 | |
---|
1087 | *******************************************************/ |
---|
1088 | |
---|
1089 | START_PHASE(procid, 10); |
---|
1090 | timst = 2 * dtau; |
---|
1091 | |
---|
1092 | /* update the psi{1,3} matrices by adding 2*dtau*work3 to each */ |
---|
1093 | |
---|
1094 | t2a = (double **) psi[procid][0]; |
---|
1095 | t2b = (double **) work3[procid]; |
---|
1096 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
1097 | t2a[0][0] = t2a[0][0] + timst * t2b[0][0]; |
---|
1098 | } |
---|
1099 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
1100 | t2a[im - 1][0] = t2a[im - 1][0] + timst * t2b[im - 1][0]; |
---|
1101 | } |
---|
1102 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
1103 | t2a[0][jm - 1] = t2a[0][jm - 1] + timst * t2b[0][jm - 1]; |
---|
1104 | } |
---|
1105 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
1106 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + timst * t2b[im - 1][jm - 1]; |
---|
1107 | } |
---|
1108 | if (gp[procid].neighbors[UP] == -1) { |
---|
1109 | t1a = (double *) t2a[0]; |
---|
1110 | t1b = (double *) t2b[0]; |
---|
1111 | for (j = firstcol; j <= lastcol; j++) { |
---|
1112 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
1113 | } |
---|
1114 | } |
---|
1115 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
1116 | t1a = (double *) t2a[im - 1]; |
---|
1117 | t1b = (double *) t2b[im - 1]; |
---|
1118 | for (j = firstcol; j <= lastcol; j++) { |
---|
1119 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
1120 | } |
---|
1121 | } |
---|
1122 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
1123 | for (j = firstrow; j <= lastrow; j++) { |
---|
1124 | t2a[j][0] = t2a[j][0] + timst * t2b[j][0]; |
---|
1125 | } |
---|
1126 | } |
---|
1127 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
1128 | for (j = firstrow; j <= lastrow; j++) { |
---|
1129 | t2a[j][jm - 1] = t2a[j][jm - 1] + timst * t2b[j][jm - 1]; |
---|
1130 | } |
---|
1131 | } |
---|
1132 | for (i = firstrow; i <= lastrow; i++) { |
---|
1133 | t1a = (double *) t2a[i]; |
---|
1134 | t1b = (double *) t2b[i]; |
---|
1135 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
1136 | t1a[iindex] = t1a[iindex] + timst * t1b[iindex]; |
---|
1137 | } |
---|
1138 | } |
---|
1139 | |
---|
1140 | t2a = (double **) psi[procid][1]; |
---|
1141 | t2b = (double **) work2[procid]; |
---|
1142 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
1143 | t2a[0][0] = t2a[0][0] + timst * t2b[0][0]; |
---|
1144 | } |
---|
1145 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[LEFT] == -1)) { |
---|
1146 | t2a[im - 1][0] = t2a[im - 1][0] + timst * t2b[im - 1][0]; |
---|
1147 | } |
---|
1148 | if ((gp[procid].neighbors[UP] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
1149 | t2a[0][jm - 1] = t2a[0][jm - 1] + timst * t2b[0][jm - 1]; |
---|
1150 | } |
---|
1151 | if ((gp[procid].neighbors[DOWN] == -1) && (gp[procid].neighbors[RIGHT] == -1)) { |
---|
1152 | t2a[im - 1][jm - 1] = t2a[im - 1][jm - 1] + timst * t2b[im - 1][jm - 1]; |
---|
1153 | } |
---|
1154 | if (gp[procid].neighbors[UP] == -1) { |
---|
1155 | t1a = (double *) t2a[0]; |
---|
1156 | t1b = (double *) t2b[0]; |
---|
1157 | for (j = firstcol; j <= lastcol; j++) { |
---|
1158 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
1159 | } |
---|
1160 | } |
---|
1161 | if (gp[procid].neighbors[DOWN] == -1) { |
---|
1162 | t1a = (double *) t2a[im - 1]; |
---|
1163 | t1b = (double *) t2b[im - 1]; |
---|
1164 | for (j = firstcol; j <= lastcol; j++) { |
---|
1165 | t1a[j] = t1a[j] + timst * t1b[j]; |
---|
1166 | } |
---|
1167 | } |
---|
1168 | if (gp[procid].neighbors[LEFT] == -1) { |
---|
1169 | for (j = firstrow; j <= lastrow; j++) { |
---|
1170 | t2a[j][0] = t2a[j][0] + timst * t2b[j][0]; |
---|
1171 | } |
---|
1172 | } |
---|
1173 | if (gp[procid].neighbors[RIGHT] == -1) { |
---|
1174 | for (j = firstrow; j <= lastrow; j++) { |
---|
1175 | t2a[j][jm - 1] = t2a[j][jm - 1] + timst * t2b[j][jm - 1]; |
---|
1176 | } |
---|
1177 | } |
---|
1178 | |
---|
1179 | for (i = firstrow; i <= lastrow; i++) { |
---|
1180 | t1a = (double *) t2a[i]; |
---|
1181 | t1b = (double *) t2b[i]; |
---|
1182 | for (iindex = firstcol; iindex <= lastcol; iindex++) { |
---|
1183 | t1a[iindex] = t1a[iindex] + timst * t1b[iindex]; |
---|
1184 | } |
---|
1185 | } |
---|
1186 | |
---|
1187 | END_PHASE(procid, 10); |
---|
1188 | |
---|
1189 | #if defined(MULTIPLE_BARRIERS) |
---|
1190 | BARRIER(bars->sl_phase_10, nprocs) |
---|
1191 | #else |
---|
1192 | BARRIER(bars->barrier, nprocs) |
---|
1193 | #endif |
---|
1194 | } |
---|