///////////////////////////////////////////////////////////////////////////////////////////// // File : main.c (for transpose application) // Date : february 2014 // author : Alain Greiner ///////////////////////////////////////////////////////////////////////////////////////////// // This multi-threaded application makes a transpose for a NN*NN pixels sequence of images. // It can run on a multi-processors, multi-clusters architecture, with one thread // per processor. It uses the he following hardware parameters, that must be defined // in the hard_config.h file: // - X_SIZE : number of clusters in a row // - Y_SIZE : number of clusters in a column // - NB_PROCS_MAX : number of processors per cluster // - FBUF_X_SIZE : number of pixels per line in frame buffer // - FBUF_Y_SIZE : number of lines in frame buffer // // The image sequence is read from a file (one byte per pixel). // The input and output buffers containing the image are distributed in all clusters. // // - The image size NN must be a power of 2 and must fit the frame buffer size. // - The number of clusters containing processors must be a power of 2. // - The number of processors per cluster must be a power of 2. // - The image size NN must be larger or equal to the total number of processor. // // For each image the application makes a self test (checksum for each line). // The actual display on the frame buffer depends on frame buffer availability. ///////////////////////////////////////////////////////////////////////////////////////////// #include "hard_config.h" #include "stdio.h" #include "barrier.h" #include "malloc.h" #define NN 128 // image size : nlines = npixels = 128 #define NB_IMAGES 5 // number of images to be handled #define FILE_PATHNAME "misc/images.raw" // file pathname on disk #define NB_CLUSTERS (X_SIZE * Y_SIZE) // number of clusters #define INSTRUMENTATION_OK 0 // display statistics on TTY when non zero /////////////////////////////////////////////////////// // global variables stored in seg_data in cluster(0,0) /////////////////////////////////////////////////////// // instrumentation counters // for each processor (up to 4 processors) // in each cluster (up to 32 clusters) unsigned int LOAD_START[NB_CLUSTERS][NB_PROCS_MAX]; unsigned int LOAD_END [NB_CLUSTERS][NB_PROCS_MAX]; unsigned int TRSP_START[NB_CLUSTERS][NB_PROCS_MAX]; unsigned int TRSP_END [NB_CLUSTERS][NB_PROCS_MAX]; unsigned int DISP_START[NB_CLUSTERS][NB_PROCS_MAX]; unsigned int DISP_END [NB_CLUSTERS][NB_PROCS_MAX]; // arrays of pointers on distributed buffers // one input buffer & one output buffer per cluster unsigned char* buf_in [NB_CLUSTERS]; unsigned char* buf_out[NB_CLUSTERS]; // checksum variables unsigned check_line_before[NN]; unsigned check_line_after[NN]; // global synchronisation barrier giet_barrier_t barrier; volatile unsigned int init_ok = 0; ////////////////////////////////////////// __attribute__ ((constructor)) void main() ////////////////////////////////////////// { int file = 0; // file descriptor unsigned int l; // line index for loops unsigned int p; // pixel index for loops unsigned int c; // cluster index for loops // get processor identifiers unsigned int x; // x cluster coordinate unsigned int y; // y cluster coordinate unsigned int lpid; // local processor index giet_proc_xyp( &x, &y, &lpid); unsigned int npixels = NN * NN; // pixels per image unsigned int nblocks = npixels / 512; // blocks per image unsigned int image = 0; // image counter unsigned int cluster_id = (x * Y_SIZE) + y; // "continuous" index unsigned int ntasks = NB_CLUSTERS * NB_PROCS_MAX; // number of tasks unsigned int task_id = (cluster_id * NB_PROCS_MAX) + lpid; // "continuous" task index // Processor [0,0,0] makes initialisation // It includes parameters checking, barriers initialization, // distributed buffers allocation, and file open if ( (x==0) && (y==0) && (lpid==0) ) { // Parameters checking if ( (NN != FBUF_X_SIZE) || (NN != FBUF_Y_SIZE) ) { giet_exit("[TRANSPOSE ERROR] Frame buffer size does not fit image size"); } if ((NB_PROCS_MAX != 1) && (NB_PROCS_MAX != 2) && (NB_PROCS_MAX != 4)) { giet_exit("[TRANSPOSE ERROR] NB_PROCS_MAX must be 1, 2 or 4"); } if ((NB_CLUSTERS != 1) && (NB_CLUSTERS != 2) && (NB_CLUSTERS != 4) && (NB_CLUSTERS != 8) && (NB_CLUSTERS != 16) && (NB_CLUSTERS != 32) ) { giet_exit("[TRANSPOSE ERROR] number of clusters must be 1,2,4,8,16,32"); } if ( ntasks > NN ) { giet_exit("[TRANSPOSE ERROR] number of tasks larger than number of lines"); } giet_shr_printf("\n[TRANSPOSE] Processor[0,0,0] starts at cycle %d\n" " - x_size = %d\n" " - y_size = %d\n" " - nprocs = %d\n" " - nclusters = %d\n" " - ntasks = %d\n", giet_proctime(), X_SIZE, Y_SIZE, NB_PROCS_MAX, NB_CLUSTERS, ntasks ); // Barrier initialisation barrier_init( &barrier, ntasks ); giet_shr_printf("\n[TRANSPOSE] Proc [0,0,0] completes barrier init at cycle %d\n", giet_proctime() ); // Distributed buffers allocation // The buffers containing one image are distributed in clusters // (one buf_in and one buf_out per cluster). // Each buffer contains (NN*NN / NB_CLUSTERS) bytes. for ( c = 0 ; c < NB_CLUSTERS ; c++ ) { unsigned int rx = c / Y_SIZE; unsigned int ry = c % Y_SIZE; buf_in[c] = remote_malloc( npixels/NB_CLUSTERS, rx, ry ); buf_out[c] = remote_malloc( npixels/NB_CLUSTERS, rx, ry ); giet_shr_printf("\n[TRANSPOSE] Proc [0,0,0] completes buffer allocation" " for cluster[%d,%d] at cycle %d\n" " - buf_in = %x\n" " - buf_out = %x\n", rx, ry, giet_proctime(), (unsigned int)buf_in[c], (unsigned int)buf_out[c] ); } // open file containing images file = giet_fat_open( "misc/images.raw", 0); if (file < 0) { giet_shr_printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d]" " cannot open file misc/images.raw", x, y, lpid ); giet_exit(" open() failure"); } else { giet_shr_printf("\n[TRANSPOSE] Proc [0,0,0] open file misc/images.raw\n"); } init_ok = 1; } else // others processors wait initialisation completion { while ( init_ok == 0 ); giet_shr_printf("\n[TRANSPOSE] Processor[%d,%d,%d] starts at cycle %d\n", x, y, lpid, giet_proctime() ); } ///////////////////////// // Main loop (on images) while (image < NB_IMAGES) { // pseudo parallel load from disk to buf_in buffer : nblocks/NB_CLUSTERS blocks // only task running on processor with (lpid == 0) does it LOAD_START[cluster_id][lpid] = giet_proctime(); if (lpid == 0) { giet_fat_read( file, buf_in[cluster_id], (nblocks / NB_CLUSTERS), ((image*nblocks) + ((nblocks*cluster_id)/NB_CLUSTERS)) ); giet_shr_printf("\n[TRANSPOSE] Proc [%d,%d,%d] completes load" " for image %d at cycle %d\n", x, y, lpid, image, giet_proctime() ); } LOAD_END[cluster_id][lpid] = giet_proctime(); ///////////////////////// barrier_wait( &barrier ); // parallel transpose from buf_in to buf_out // each task makes the transposition for nlt lines (nlt = NN/ntasks) // from line [task_id*nlt] to line [(task_id + 1)*nlt - 1] // (p,l) are the absolute pixel coordinates in the source image TRSP_START[cluster_id][lpid] = giet_proctime(); unsigned int nlt = NN / ntasks; // number of lines per task unsigned int nlc = NN / NB_CLUSTERS; // number of lines per cluster unsigned int src_cluster; unsigned int src_index; unsigned int dst_cluster; unsigned int dst_index; unsigned char byte; unsigned int first = task_id * nlt; // first line index for a given task unsigned int last = first + nlt; // last line index for a given task for ( l = first ; l < last ; l++ ) { check_line_before[l] = 0; // in each iteration we transfer one byte for ( p = 0 ; p < NN ; p++ ) { // read one byte from local buf_in src_cluster = l / nlc; src_index = (l % nlc)*NN + p; byte = buf_in[src_cluster][src_index]; // compute checksum check_line_before[l] = check_line_before[l] + byte; // write one byte to remote buf_out dst_cluster = p / nlc; dst_index = (p % nlc)*NN + l; buf_out[dst_cluster][dst_index] = byte; } } if ( lpid == 0 ) { giet_shr_printf("\n[TRANSPOSE] proc [%d,%d,0] completes transpose" " for image %d at cycle %d\n", x, y, image, giet_proctime() ); } TRSP_END[cluster_id][lpid] = giet_proctime(); ///////////////////////// barrier_wait( &barrier ); // optional parallel display from local buf_out to frame buffer // all processors contribute to display using memcpy... if ( USE_FBF ) // external frame buffer available { DISP_START[cluster_id][lpid] = giet_proctime(); unsigned int npt = npixels / ntasks; // number of pixels per task giet_fbf_sync_write( npt * task_id, &buf_out[cluster_id][lpid*npt], npt ); if ( lpid == 0 ) { giet_shr_printf("\n[TRANSPOSE] Proc [%d,%d,0] completes display" " for image %d at cycle %d\n", x, y, image, giet_proctime() ); } DISP_END[cluster_id][lpid] = giet_proctime(); ///////////////////////// barrier_wait( &barrier ); } // checksum done by processor (lpid == 0) in each cluster if ( lpid == 0 ) { unsigned int success = 1; unsigned int start = cluster_id * nlc; unsigned int stop = start + nlc; for ( l = start ; l < stop ; l++ ) { check_line_after[l] = 0; for ( p = 0 ; p < NN ; p++ ) { // read one byte in remote buffer src_cluster = p / nlc; src_index = (p % nlc)*NN + l; unsigned char byte = buf_out[src_cluster][src_index]; check_line_after[l] = check_line_after[l] + byte; } if ( check_line_before[l] != check_line_after[l] ) success = 0; } if ( success ) { giet_shr_printf("\n[TRANSPOSE] proc [%d,%d,0] checksum OK" " for image %d at cycle %d\n", x, y, image, giet_proctime() ); } else { giet_shr_printf("\n[TRANSPOSE] proc [%d,%d,0] checksum KO" " for image %d at cycle %d\n", x, y, image, giet_proctime() ); } } ///////////////////////// barrier_wait( &barrier ); // instrumentation done by processor [0,0,0] if ( (x==0) && (y==0) && (lpid==0) && INSTRUMENTATION_OK ) { int cc, pp; unsigned int min_load_start = 0xFFFFFFFF; unsigned int max_load_start = 0; unsigned int min_load_ended = 0xFFFFFFFF; unsigned int max_load_ended = 0; unsigned int min_trsp_start = 0xFFFFFFFF; unsigned int max_trsp_start = 0; unsigned int min_trsp_ended = 0xFFFFFFFF; unsigned int max_trsp_ended = 0; unsigned int min_disp_start = 0xFFFFFFFF; unsigned int max_disp_start = 0; unsigned int min_disp_ended = 0xFFFFFFFF; unsigned int max_disp_ended = 0; for (cc = 0; cc < NB_CLUSTERS; cc++) { for (pp = 0; pp < NB_PROCS_MAX; pp++) { if (LOAD_START[cc][pp] < min_load_start) min_load_start = LOAD_START[cc][pp]; if (LOAD_START[cc][pp] > max_load_start) max_load_start = LOAD_START[cc][pp]; if (LOAD_END[cc][pp] < min_load_ended) min_load_ended = LOAD_END[cc][pp]; if (LOAD_END[cc][pp] > max_load_ended) max_load_ended = LOAD_END[cc][pp]; if (TRSP_START[cc][pp] < min_trsp_start) min_trsp_start = TRSP_START[cc][pp]; if (TRSP_START[cc][pp] > max_trsp_start) max_trsp_start = TRSP_START[cc][pp]; if (TRSP_END[cc][pp] < min_trsp_ended) min_trsp_ended = TRSP_END[cc][pp]; if (TRSP_END[cc][pp] > max_trsp_ended) max_trsp_ended = TRSP_END[cc][pp]; if (DISP_START[cc][pp] < min_disp_start) min_disp_start = DISP_START[cc][pp]; if (DISP_START[cc][pp] > max_disp_start) max_disp_start = DISP_START[cc][pp]; if (DISP_END[cc][pp] < min_disp_ended) min_disp_ended = DISP_END[cc][pp]; if (DISP_END[cc][pp] > max_disp_ended) max_disp_ended = DISP_END[cc][pp]; } } giet_shr_printf(" - LOAD_START : min = %d / max = %d / med = %d / delta = %d\n", min_load_start, max_load_start, (min_load_start+max_load_start)/2, max_load_start-min_load_start); giet_shr_printf(" - LOAD_END : min = %d / max = %d / med = %d / delta = %d\n", min_load_ended, max_load_ended, (min_load_ended+max_load_ended)/2, max_load_ended-min_load_ended); giet_shr_printf(" - TRSP_START : min = %d / max = %d / med = %d / delta = %d\n", min_trsp_start, max_trsp_start, (min_trsp_start+max_trsp_start)/2, max_trsp_start-min_trsp_start); giet_shr_printf(" - TRSP_END : min = %d / max = %d / med = %d / delta = %d\n", min_trsp_ended, max_trsp_ended, (min_trsp_ended+max_trsp_ended)/2, max_trsp_ended-min_trsp_ended); giet_shr_printf(" - DISP_START : min = %d / max = %d / med = %d / delta = %d\n", min_disp_start, max_disp_start, (min_disp_start+max_disp_start)/2, max_disp_start-min_disp_start); giet_shr_printf(" - DISP_END : min = %d / max = %d / med = %d / delta = %d\n", min_disp_ended, max_disp_ended, (min_disp_ended+max_disp_ended)/2, max_disp_ended-min_disp_ended); } image++; ///////////////////////// barrier_wait( &barrier ); } // end while image // Processor[0,0,0] releases the Distributed buffers if ( (x==0) && (y==0) && (lpid==0) ) { for ( c = 0 ; c < NB_CLUSTERS ; c++ ) { free( buf_in[c] ); free( buf_in[c] ); } } giet_exit("Completed"); } // end main() // Local Variables: // tab-width: 3 // c-basic-offset: // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3