/////////////////////////////////////////////////////////////////////////////////////// // File : main.c (for transpose application) // Date : february 2014 // author : Alain Greiner /////////////////////////////////////////////////////////////////////////////////////// // This multi-threaded application makes a transpose for a NN*NN pixels image. // It can run on a multi-processors, multi-clusters architecture, with one thread // per processor. // // The image is read from a file (one byte per pixel), transposed and // saved in a second file. Then the transposed image is read from the second file, // transposed again and saved in a third file. // // The input and output buffers containing the image are distributed in all clusters. // // - The image size NN must fit the frame buffer size. // - The block size in block device must be 512 bytes. // - The number of clusters must be a power of 2 no larger than 64. // - The number of processors per cluster must be a power of 2 no larger than 4. // // For each image the application makes a self test (checksum for each line). // The actual display on the frame buffer depends on frame buffer availability. /////////////////////////////////////////////////////////////////////////////////////// #include "stdio.h" #include "user_barrier.h" #include "malloc.h" #define BLOCK_SIZE 512 // block size on disk #define X_MAX 8 // max number of clusters in row #define Y_MAX 8 // max number of clusters in column #define PROCS_MAX 4 // max number of procs per cluster #define CLUSTER_MAX (X_MAX * Y_MAX) // max number of clusters #define NN 256 // image size : nlines = npixels #define INITIAL_FILE_PATH "/misc/lena_256.raw" // pathname on virtual disk #define TRANSPOSED_FILE_PATH "/home/lena_transposed.raw" // pathname on virtual disk #define RESTORED_FILE_PATH "/home/lena_restored.raw" // pathname on virtual disk #define INSTRUMENTATION_OK 1 // display statistics on TTY // macro to use a shared TTY #define printf(...) lock_acquire( &tty_lock ); \ giet_tty_printf(__VA_ARGS__); \ lock_release( &tty_lock ) /////////////////////////////////////////////////////// // global variables stored in seg_data in cluster(0,0) /////////////////////////////////////////////////////// // instrumentation counters for each processor in each cluster unsigned int LOAD_START[X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; unsigned int LOAD_END [X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; unsigned int TRSP_START[X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; unsigned int TRSP_END [X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; unsigned int DISP_START[X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; unsigned int DISP_END [X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; unsigned int STOR_START[X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; unsigned int STOR_END [X_MAX][Y_MAX][PROCS_MAX] = {{{ 0 }}}; // arrays of pointers on distributed buffers // one input buffer & one output buffer per cluster unsigned char* buf_in [CLUSTER_MAX]; unsigned char* buf_out[CLUSTER_MAX]; // checksum variables unsigned check_line_before[NN]; unsigned check_line_after[NN]; // lock protecting shared TTY user_lock_t tty_lock; // global & local synchronisation variables giet_sqt_barrier_t barrier; volatile unsigned int global_init_ok = 0; volatile unsigned int local_init_ok[X_MAX][Y_MAX] = {{ 0 }}; ////////////////////////////////////////// __attribute__ ((constructor)) void main() ////////////////////////////////////////// { unsigned int l; // line index for loops unsigned int p; // pixel index for loops // processor identifiers unsigned int x; // x cluster coordinate unsigned int y; // y cluster coordinate unsigned int lpid; // local processor index // plat-form parameters unsigned int x_size; // number of clusters in a row unsigned int y_size; // number of clusters in a column unsigned int nprocs; // number of processors per cluster giet_proc_xyp( &x, &y, &lpid); giet_procs_number( &x_size , &y_size , &nprocs ); unsigned int nclusters = x_size * y_size; // number of clusters unsigned int ntasks = x_size * y_size * nprocs; // number of tasks unsigned int npixels = NN * NN; // pixels per image unsigned int iteration = 0; // iiteration iter int fd_initial = 0; // initial file descriptor int fd_transposed = 0; // transposed file descriptor int fd_restored = 0; // restored file descriptor unsigned int cluster_id = (x * y_size) + y; // "continuous" index unsigned int task_id = (cluster_id * nprocs) + lpid; // "continuous" task index // checking parameters giet_assert( ((nprocs == 1) || (nprocs == 2) || (nprocs == 4)), "[TRANSPOSE ERROR] number of procs per cluster must be 1, 2 or 4"); giet_assert( ((x_size == 1) || (x_size == 2) || (x_size == 4) || (x_size == 8) || (x_size == 16)), "[TRANSPOSE ERROR] x_size must be 1,2,4,8,16"); giet_assert( ((y_size == 1) || (y_size == 2) || (y_size == 4) || (y_size == 8) || (y_size == 16)), "[TRANSPOSE ERROR] y_size must be 1,2,4,8,16"); giet_assert( (ntasks <= NN ), "[TRANSPOSE ERROR] number of tasks larger than number of lines"); /////////////////////////////////////////////////////////////////////// // Processor [0,0,0] makes global initialisation // It includes parameters checking, heap and barrier initialization. // Others processors wait initialisation completion /////////////////////////////////////////////////////////////////////// if ( (x==0) && (y==0) && (lpid==0) ) { // shared TTY allocation giet_tty_alloc( 1 ); // TTY lock initialisation lock_init( &tty_lock); // distributed heap initialisation unsigned int cx , cy; for ( cx = 0 ; cx < x_size ; cx++ ) { for ( cy = 0 ; cy < y_size ; cy++ ) { heap_init( cx , cy ); } } // barrier initialisation sqt_barrier_init( &barrier, x_size , y_size , nprocs ); printf("\n[TRANSPOSE] Proc [0,0,0] completes initialisation at cycle %d\n", giet_proctime() ); global_init_ok = 1; } else { while ( global_init_ok == 0 ); } /////////////////////////////////////////////////////////////////////// // In each cluster, only task running on processor[x,y,0] allocates // the local buffers containing the images in the distributed heap // (one buf_in and one buf_out per cluster). // Other processors in cluster wait completion. /////////////////////////////////////////////////////////////////////// if ( lpid == 0 ) { buf_in[cluster_id] = remote_malloc( npixels/nclusters, x, y ); buf_out[cluster_id] = remote_malloc( npixels/nclusters, x, y ); if ( (x==0) && (y==0) ) printf("\n[TRANSPOSE] Proc [%d,%d,%d] completes buffer allocation" " for cluster[%d,%d] at cycle %d\n" " - buf_in = %x\n" " - buf_out = %x\n", x, y, lpid, x, y, giet_proctime(), (unsigned int)buf_in[cluster_id], (unsigned int)buf_out[cluster_id] ); /////////////////////////////////////////////////////////////////////// // In each cluster, only task running on procesor[x,y,0] open the // three private file descriptors for the three files /////////////////////////////////////////////////////////////////////// // open initial file fd_initial = giet_fat_open( INITIAL_FILE_PATH , O_RDONLY ); // read_only if ( fd_initial < 0 ) { printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d] cannot open file %s\n", x , y , lpid , INITIAL_FILE_PATH ); giet_exit(" open() failure"); } else if ( (x==0) && (y==0) && (lpid==0) ) { printf("\n[TRANSPOSE] Proc [0,0,0] open file %s / fd = %d\n", INITIAL_FILE_PATH , fd_initial ); } // open transposed file fd_transposed = giet_fat_open( TRANSPOSED_FILE_PATH , O_CREATE ); // create if required if ( fd_transposed < 0 ) { printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d] cannot open file %s\n", x , y , lpid , TRANSPOSED_FILE_PATH ); giet_exit(" open() failure"); } else if ( (x==0) && (y==0) && (lpid==0) ) { printf("\n[TRANSPOSE] Proc [0,0,0] open file %s / fd = %d\n", TRANSPOSED_FILE_PATH , fd_transposed ); } // open restored file fd_restored = giet_fat_open( RESTORED_FILE_PATH , O_CREATE ); // create if required if ( fd_restored < 0 ) { printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d] cannot open file %s\n", x , y , lpid , RESTORED_FILE_PATH ); giet_exit(" open() failure"); } else if ( (x==0) && (y==0) && (lpid==0) ) { printf("\n[TRANSPOSE] Proc [0,0,0] open file %s / fd = %d\n", RESTORED_FILE_PATH , fd_restored ); } local_init_ok[x][y] = 1; } else { while( local_init_ok[x][y] == 0 ); } /////////////////////////////////////////////////////////////////////// // Main loop / two iterations: // - first makes initial => transposed // - second makes transposed => restored // All processors execute this main loop. /////////////////////////////////////////////////////////////////////// unsigned int fd_in = fd_initial; unsigned int fd_out = fd_transposed; while (iteration < 2) { /////////////////////////////////////////////////////////////////////// // pseudo parallel load from disk to buf_in buffers: npixels/nclusters // only task running on processor(x,y,0) does it /////////////////////////////////////////////////////////////////////// LOAD_START[x][y][lpid] = giet_proctime(); if (lpid == 0) { unsigned int offset = ((npixels*cluster_id)/nclusters); if ( giet_fat_lseek( fd_in, offset, SEEK_SET ) != offset ) { printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d] cannot seek fd = %d\n", x , y , lpid , fd_in ); giet_exit(" seek() failure"); } unsigned int pixels = npixels / nclusters; if ( giet_fat_read( fd_in, buf_in[cluster_id], pixels ) != pixels ) { printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d] cannot read fd = %d\n", x , y , lpid , fd_in ); giet_exit(" read() failure"); } if ( (x==0) && (y==0) ) printf("\n[TRANSPOSE] Proc [%d,%d,%d] completes load" " for iteration %d at cycle %d\n", x, y, lpid, iteration, giet_proctime() ); } LOAD_END[x][y][lpid] = giet_proctime(); ///////////////////////////// sqt_barrier_wait( &barrier ); /////////////////////////////////////////////////////////////////////// // parallel transpose from buf_in to buf_out // each task makes the transposition for nlt lines (nlt = NN/ntasks) // from line [task_id*nlt] to line [(task_id + 1)*nlt - 1] // (p,l) are the absolute pixel coordinates in the source image /////////////////////////////////////////////////////////////////////// TRSP_START[x][y][lpid] = giet_proctime(); unsigned int nlt = NN / ntasks; // number of lines per task unsigned int nlc = NN / nclusters; // number of lines per cluster unsigned int src_cluster; unsigned int src_index; unsigned int dst_cluster; unsigned int dst_index; unsigned char byte; unsigned int first = task_id * nlt; // first line index for a given task unsigned int last = first + nlt; // last line index for a given task for ( l = first ; l < last ; l++ ) { check_line_before[l] = 0; // in each iteration we transfer one byte for ( p = 0 ; p < NN ; p++ ) { // read one byte from local buf_in src_cluster = l / nlc; src_index = (l % nlc)*NN + p; byte = buf_in[src_cluster][src_index]; // compute checksum check_line_before[l] = check_line_before[l] + byte; // write one byte to remote buf_out dst_cluster = p / nlc; dst_index = (p % nlc)*NN + l; buf_out[dst_cluster][dst_index] = byte; } } // if ( lpid == 0 ) { // if ( (x==0) && (y==0) ) printf("\n[TRANSPOSE] proc [%d,%d,0] completes transpose" " for iteration %d at cycle %d\n", x, y, iteration, giet_proctime() ); } TRSP_END[x][y][lpid] = giet_proctime(); ///////////////////////////// sqt_barrier_wait( &barrier ); /////////////////////////////////////////////////////////////////////// // parallel display from local buf_out to frame buffer // all tasks contribute to display using memcpy... /////////////////////////////////////////////////////////////////////// DISP_START[x][y][lpid] = giet_proctime(); unsigned int npt = npixels / ntasks; // number of pixels per task giet_fbf_sync_write( npt * task_id, &buf_out[cluster_id][lpid*npt], npt ); // if ( (x==0) && (y==0) && (lpid==0) ) printf("\n[TRANSPOSE] Proc [%d,%d,%d] completes display" " for iteration %d at cycle %d\n", x, y, lpid, iteration, giet_proctime() ); DISP_END[x][y][lpid] = giet_proctime(); ///////////////////////////// sqt_barrier_wait( &barrier ); /////////////////////////////////////////////////////////////////////// // pseudo parallel store : buf_out buffers to disk : npixels/nclusters // only task running on processor(x,y,0) does it /////////////////////////////////////////////////////////////////////// STOR_START[x][y][lpid] = giet_proctime(); if ( lpid == 0 ) { unsigned int offset = ((npixels*cluster_id)/nclusters); if ( giet_fat_lseek( fd_out, offset, SEEK_SET ) != offset ) { printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d] cannot seek fr = %d\n", x , y , lpid , fd_out ); giet_exit(" seek() failure"); } unsigned int pixels = npixels / nclusters; if ( giet_fat_write( fd_out, buf_out[cluster_id], pixels ) != pixels ) { printf("\n[TRANSPOSE ERROR] Proc [%d,%d,%d] cannot write fd = %d\n", x , y , lpid , fd_out ); giet_exit(" write() failure"); } if ( (x==0) && (y==0) ) printf("\n[TRANSPOSE] Proc [%d,%d,%d] completes store" " for iteration %d at cycle %d\n", x, y, lpid, iteration, giet_proctime() ); } STOR_END[x][y][lpid] = giet_proctime(); ///////////////////////////// sqt_barrier_wait( &barrier ); // instrumentation done by processor [0,0,0] if ( (x==0) && (y==0) && (lpid==0) && INSTRUMENTATION_OK ) { int cx , cy , pp ; unsigned int min_load_start = 0xFFFFFFFF; unsigned int max_load_start = 0; unsigned int min_load_ended = 0xFFFFFFFF; unsigned int max_load_ended = 0; unsigned int min_trsp_start = 0xFFFFFFFF; unsigned int max_trsp_start = 0; unsigned int min_trsp_ended = 0xFFFFFFFF; unsigned int max_trsp_ended = 0; unsigned int min_disp_start = 0xFFFFFFFF; unsigned int max_disp_start = 0; unsigned int min_disp_ended = 0xFFFFFFFF; unsigned int max_disp_ended = 0; unsigned int min_stor_start = 0xFFFFFFFF; unsigned int max_stor_start = 0; unsigned int min_stor_ended = 0xFFFFFFFF; unsigned int max_stor_ended = 0; for (cx = 0; cx < x_size; cx++) { for (cy = 0; cy < y_size; cy++) { for (pp = 0; pp < NB_PROCS_MAX; pp++) { if (LOAD_START[cx][cy][pp] < min_load_start) min_load_start = LOAD_START[cx][cy][pp]; if (LOAD_START[cx][cy][pp] > max_load_start) max_load_start = LOAD_START[cx][cy][pp]; if (LOAD_END[cx][cy][pp] < min_load_ended) min_load_ended = LOAD_END[cx][cy][pp]; if (LOAD_END[cx][cy][pp] > max_load_ended) max_load_ended = LOAD_END[cx][cy][pp]; if (TRSP_START[cx][cy][pp] < min_trsp_start) min_trsp_start = TRSP_START[cx][cy][pp]; if (TRSP_START[cx][cy][pp] > max_trsp_start) max_trsp_start = TRSP_START[cx][cy][pp]; if (TRSP_END[cx][cy][pp] < min_trsp_ended) min_trsp_ended = TRSP_END[cx][cy][pp]; if (TRSP_END[cx][cy][pp] > max_trsp_ended) max_trsp_ended = TRSP_END[cx][cy][pp]; if (DISP_START[cx][cy][pp] < min_disp_start) min_disp_start = DISP_START[cx][cy][pp]; if (DISP_START[cx][cy][pp] > max_disp_start) max_disp_start = DISP_START[cx][cy][pp]; if (DISP_END[cx][cy][pp] < min_disp_ended) min_disp_ended = DISP_END[cx][cy][pp]; if (DISP_END[cx][cy][pp] > max_disp_ended) max_disp_ended = DISP_END[cx][cy][pp]; if (STOR_START[cx][cy][pp] < min_stor_start) min_stor_start = STOR_START[cx][cy][pp]; if (STOR_START[cx][cy][pp] > max_stor_start) max_stor_start = STOR_START[cx][cy][pp]; if (STOR_END[cx][cy][pp] < min_stor_ended) min_stor_ended = STOR_END[cx][cy][pp]; if (STOR_END[cx][cy][pp] > max_stor_ended) max_stor_ended = STOR_END[cx][cy][pp]; } } } printf("\n ---------------- Instrumentation Results ---------------------\n"); printf(" - LOAD_START : min = %d / max = %d / med = %d / delta = %d\n", min_load_start, max_load_start, (min_load_start+max_load_start)/2, max_load_start-min_load_start); printf(" - LOAD_END : min = %d / max = %d / med = %d / delta = %d\n", min_load_ended, max_load_ended, (min_load_ended+max_load_ended)/2, max_load_ended-min_load_ended); printf(" - TRSP_START : min = %d / max = %d / med = %d / delta = %d\n", min_trsp_start, max_trsp_start, (min_trsp_start+max_trsp_start)/2, max_trsp_start-min_trsp_start); printf(" - TRSP_END : min = %d / max = %d / med = %d / delta = %d\n", min_trsp_ended, max_trsp_ended, (min_trsp_ended+max_trsp_ended)/2, max_trsp_ended-min_trsp_ended); printf(" - DISP_START : min = %d / max = %d / med = %d / delta = %d\n", min_disp_start, max_disp_start, (min_disp_start+max_disp_start)/2, max_disp_start-min_disp_start); printf(" - DISP_END : min = %d / max = %d / med = %d / delta = %d\n", min_disp_ended, max_disp_ended, (min_disp_ended+max_disp_ended)/2, max_disp_ended-min_disp_ended); printf(" - STOR_START : min = %d / max = %d / med = %d / delta = %d\n", min_stor_start, max_stor_start, (min_stor_start+max_stor_start)/2, max_stor_start-min_stor_start); printf(" - STOR_END : min = %d / max = %d / med = %d / delta = %d\n", min_stor_ended, max_stor_ended, (min_stor_ended+max_stor_ended)/2, max_stor_ended-min_stor_ended); } ///////////////////////////// sqt_barrier_wait( &barrier ); // update iteration variables fd_in = fd_transposed; fd_out = fd_restored; iteration++; } // end while /////////////////////////////////////////////////////////////////////// // In each cluster, only task running on Processor[x,y,0] releases // the distributed buffers and close the file descriptors. /////////////////////////////////////////////////////////////////////// if ( lpid==0 ) { free( buf_in[cluster_id] ); free( buf_out[cluster_id] ); giet_fat_close( fd_initial ); giet_fat_close( fd_transposed ); giet_fat_close( fd_restored ); } giet_exit("Completed"); } // end main() // Local Variables: // tab-width: 3 // c-basic-offset: // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3