1 | ////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : boot_init.c |
---|
3 | // Date : 01/04/2012 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The boot_init.c file is part of the GIET-VM nano-kernel. |
---|
8 | // This code is executed in the boot phase by proc[0] to initialize the |
---|
9 | // peripherals and the kernel data structures: |
---|
10 | // - pages tables for the various vspaces |
---|
11 | // - shedulers for processors (including the tasks contexts and interrupt vectors) |
---|
12 | // |
---|
13 | // The GIET-VM uses the paged virtual memory and the MAPPING_INFO binary file |
---|
14 | // to provides two services: |
---|
15 | // 1) classical memory protection, when several independant applications compiled |
---|
16 | // in different virtual spaces are executing on the same hardware platform. |
---|
17 | // 2) data placement in NUMA architectures, when we want to control the placement |
---|
18 | // of the software objects (virtual segments) on the physical memory banks. |
---|
19 | // |
---|
20 | // The MAPPING_INFO binary data structure must be loaded in the the seg_boot_mapping |
---|
21 | // segment (at address seg_mapping_base). |
---|
22 | // This MAPPING_INFO data structure defines both the hardware architecture |
---|
23 | // and the mapping: |
---|
24 | // - physical segmentation of the physical address space, |
---|
25 | // - virtual spaces definition (one multi-task application per vspace), |
---|
26 | // - placement of virtual objects (vobj) in the virtual segments (vseg). |
---|
27 | // - placement of virtual segments (vseg) in the physical segments (pseg). |
---|
28 | // - placement of tasks on the processors, |
---|
29 | // |
---|
30 | // The page table are statically build in the boot phase, and they do not |
---|
31 | // change during execution. The GIET uses only 4 Kbytes pages. |
---|
32 | // As most applications use only a limited number of segments, the number of PT2s |
---|
33 | // actually used by a given virtual space is generally smaller than 2048, and is |
---|
34 | // computed during the boot phase. |
---|
35 | // The max number of virtual spaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
36 | // |
---|
37 | // Each page table (one page table per virtual space) is monolithic, and |
---|
38 | // contains one PT1 and (GIET_NB_PT2_MAX) PT2s. The PT1 is addressed using the ix1 field |
---|
39 | // (11 bits) of the VPN, and the selected PT2 is addressed using the ix2 field (9 bits). |
---|
40 | // - PT1[2048] : a first 8K aligned array of unsigned int, indexed by the (ix1) field of VPN. |
---|
41 | // Each entry in the PT1 contains a 32 bits PTD. The MSB bit PTD[31] is |
---|
42 | // the PTD valid bit, and LSB bits PTD[19:0] are the 20 MSB bits of the physical base |
---|
43 | // address of the selected PT2. |
---|
44 | // The PT1 contains 2048 PTD of 4 bytes => 8K bytes. |
---|
45 | // - PT2[1024][GIET_NB_PT2_MAX] : an array of array of unsigned int. |
---|
46 | // Each PT2[1024] must be 4K aligned, and each entry in a PT2 contains two unsigned int: |
---|
47 | // the first word contains the protection flags, and the second word contains the PPN. |
---|
48 | // Each PT2 contains 512 PTE2 of 8bytes => 4K bytes. |
---|
49 | // The total size of a page table is finally = 8K + (GIET_NB_PT2_MAX)*4K bytes. |
---|
50 | //////////////////////////////////////////////////////////////////////////////////// |
---|
51 | |
---|
52 | #include <common.h> |
---|
53 | #include <mips32_registers.h> |
---|
54 | #include <giet_config.h> |
---|
55 | #include <mapping_info.h> |
---|
56 | #include <mwmr_channel.h> |
---|
57 | #include <barrier.h> |
---|
58 | #include <memspace.h> |
---|
59 | #include <irq_handler.h> |
---|
60 | #include <ctx_handler.h> |
---|
61 | #include <vm_handler.h> |
---|
62 | #include <hwr_mapping.h> |
---|
63 | |
---|
64 | #include <stdarg.h> |
---|
65 | |
---|
66 | |
---|
67 | #if !defined(NB_CLUSTERS) |
---|
68 | # error The NB_CLUSTERS value must be defined in the 'giet_config.h' file ! |
---|
69 | #endif |
---|
70 | |
---|
71 | #if !defined(NB_PROCS_MAX) |
---|
72 | # error The NB_PROCS_MAX value must be defined in the 'giet_config.h' file ! |
---|
73 | #endif |
---|
74 | |
---|
75 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
76 | # error The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
77 | #endif |
---|
78 | |
---|
79 | //////////////////////////////////////////////////////////////////////////// |
---|
80 | // Global variables for boot code |
---|
81 | // As both the page tables and the schedulers are physically distributed, |
---|
82 | // these global variables are just arrays of pointers. |
---|
83 | //////////////////////////////////////////////////////////////////////////// |
---|
84 | |
---|
85 | // Page table pointers array |
---|
86 | page_table_t * boot_ptabs_vaddr[GIET_NB_VSPACE_MAX]; |
---|
87 | page_table_t * boot_ptabs_paddr[GIET_NB_VSPACE_MAX]; |
---|
88 | |
---|
89 | // Scheduler pointers array |
---|
90 | static_scheduler_t * boot_schedulers_paddr[NB_CLUSTERS * NB_PROCS_MAX]; |
---|
91 | |
---|
92 | // Next free PT2 index array |
---|
93 | unsigned int boot_next_free_pt2[GIET_NB_VSPACE_MAX] = |
---|
94 | { [0 ... GIET_NB_VSPACE_MAX - 1] = 0 }; |
---|
95 | |
---|
96 | // Max PT2 index |
---|
97 | unsigned int boot_max_pt2[GIET_NB_VSPACE_MAX] = |
---|
98 | { [0 ... GIET_NB_VSPACE_MAX - 1] = 0 }; |
---|
99 | |
---|
100 | |
---|
101 | ////////////////////////////////////////////////////////////////////////////// |
---|
102 | // boot_procid() |
---|
103 | ////////////////////////////////////////////////////////////////////////////// |
---|
104 | inline unsigned int boot_procid() { |
---|
105 | unsigned int ret; |
---|
106 | asm volatile ("mfc0 %0, $15, 1":"=r" (ret)); |
---|
107 | return (ret & 0x3FF); |
---|
108 | } |
---|
109 | |
---|
110 | |
---|
111 | ////////////////////////////////////////////////////////////////////////////// |
---|
112 | // boot_proctime() |
---|
113 | ////////////////////////////////////////////////////////////////////////////// |
---|
114 | inline unsigned int boot_proctime() { |
---|
115 | unsigned int ret; |
---|
116 | asm volatile ("mfc0 %0, $9":"=r" (ret)); |
---|
117 | return ret; |
---|
118 | } |
---|
119 | |
---|
120 | |
---|
121 | ////////////////////////////////////////////////////////////////////////////// |
---|
122 | // boot_exit() |
---|
123 | ////////////////////////////////////////////////////////////////////////////// |
---|
124 | void boot_exit() { |
---|
125 | while (1) { |
---|
126 | asm volatile ("nop"); |
---|
127 | } |
---|
128 | } |
---|
129 | |
---|
130 | |
---|
131 | ////////////////////////////////////////////////////////////////////////////// |
---|
132 | // boot_eret() |
---|
133 | // The address of this function is used to initialise the return address (RA) |
---|
134 | // in all task contexts (when the task has never been executed. |
---|
135 | /////////////////////////////////"///////////////////////////////////////////// |
---|
136 | void boot_eret() { |
---|
137 | asm volatile ("eret"); |
---|
138 | } |
---|
139 | |
---|
140 | |
---|
141 | ////////////////////////////////////////////////////////////////////////////// |
---|
142 | // boot_scheduler_set_context() |
---|
143 | // This function set a context slot in a scheduler, after a temporary |
---|
144 | // desactivation of the DTLB (because we use the scheduler physical address). |
---|
145 | // - gpid : global processor/scheduler index |
---|
146 | // - ltid : local task index |
---|
147 | // - slotid : context slot index |
---|
148 | // - value : value to be written |
---|
149 | ////////////////////////////////////////////////////////////////////////////// |
---|
150 | inline void boot_scheduler_set_context(unsigned int gpid, |
---|
151 | unsigned int ltid, |
---|
152 | unsigned int slotid, |
---|
153 | unsigned int value) { |
---|
154 | // get scheduler physical address |
---|
155 | static_scheduler_t * psched = boot_schedulers_paddr[gpid]; |
---|
156 | |
---|
157 | // get slot physical address |
---|
158 | unsigned int * pslot = &(psched->context[ltid][slotid]); |
---|
159 | |
---|
160 | asm volatile ("li $26, 0xB \n" |
---|
161 | "mtc2 $26, $1 \n" /* desactivate DTLB */ |
---|
162 | "sw %1, 0(%0) \n" /* *pslot <= value */ |
---|
163 | "li $26, 0xF \n" |
---|
164 | "mtc2 $26, $1 \n" /* activate DTLB */ |
---|
165 | : |
---|
166 | :"r" (pslot), "r"(value) |
---|
167 | :"$26"); |
---|
168 | } |
---|
169 | |
---|
170 | |
---|
171 | ////////////////////////////////////////////////////////////////////////////// |
---|
172 | // boot_scheduler_set_itvector() |
---|
173 | // This function set an interrupt vector slot in a scheduler, after a temporary |
---|
174 | // desactivation of the DTLB (because we use the scheduler physical address). |
---|
175 | // - gpid : global processor/scheduler index |
---|
176 | // - slotid : context slot index |
---|
177 | // - value : value to be written |
---|
178 | ////////////////////////////////////////////////////////////////////////////// |
---|
179 | inline void boot_scheduler_set_itvector(unsigned int gpid, |
---|
180 | unsigned int slotid, |
---|
181 | unsigned int value) { |
---|
182 | // get scheduler physical address |
---|
183 | static_scheduler_t * psched = boot_schedulers_paddr[gpid]; |
---|
184 | |
---|
185 | // get slot physical address |
---|
186 | unsigned int * pslot = &(psched->interrupt_vector[slotid]); |
---|
187 | |
---|
188 | asm volatile ("li $26, 0xB \n" |
---|
189 | "mtc2 $26, $1 \n" /* desactivate DTLB */ |
---|
190 | "sw %1, 0(%0) \n" /* *pslot <= value */ |
---|
191 | "li $26, 0xF \n" |
---|
192 | "mtc2 $26, $1 \n" /* activate DTLB */ |
---|
193 | : |
---|
194 | :"r" (pslot), "r"(value) |
---|
195 | :"$26"); |
---|
196 | } |
---|
197 | |
---|
198 | |
---|
199 | ////////////////////////////////////////////////////////////////////////////// |
---|
200 | // boot_scheduler_get_itvector() |
---|
201 | // This function get an interrupt vector slot in a scheduler, after a temporary |
---|
202 | // desactivation of the DTLB (because we use the scheduler physical address). |
---|
203 | // - gpid : global processor/scheduler index |
---|
204 | // - slotid : context slot index |
---|
205 | // - return the content of the slot |
---|
206 | ////////////////////////////////////////////////////////////////////////////// |
---|
207 | unsigned int boot_scheduler_get_itvector(unsigned int gpid, unsigned int slotid) { |
---|
208 | unsigned int value; |
---|
209 | |
---|
210 | // get scheduler physical address |
---|
211 | static_scheduler_t * psched = boot_schedulers_paddr[gpid]; |
---|
212 | |
---|
213 | // get slot physical address |
---|
214 | unsigned int * pslot = &(psched->interrupt_vector[slotid]); |
---|
215 | |
---|
216 | asm volatile ("li $26, 0xB \n" |
---|
217 | "mtc2 $26, $1 \n" /* desactivate DTLB */ |
---|
218 | "lw %0, 0(%1) \n" /* *pslot <= value */ |
---|
219 | "li $26, 0xF \n" |
---|
220 | "mtc2 $26, $1 \n" /* activate DTLB */ |
---|
221 | :"=r" (value) |
---|
222 | :"r"(pslot) |
---|
223 | :"$26"); |
---|
224 | return value; |
---|
225 | } |
---|
226 | |
---|
227 | |
---|
228 | ////////////////////////////////////////////////////////////////////////////// |
---|
229 | // boot_scheduler_get_tasks() |
---|
230 | // This function returns the "tasks" field of a scheduler, after temporary |
---|
231 | // desactivation of the DTLB (because we use the scheduler physical address). |
---|
232 | // - gpid : global processor/scheduler index |
---|
233 | ////////////////////////////////////////////////////////////////////////////// |
---|
234 | inline unsigned int boot_scheduler_get_tasks(unsigned int gpid) { |
---|
235 | unsigned int ret; |
---|
236 | |
---|
237 | // get scheduler physical address |
---|
238 | static_scheduler_t * psched = boot_schedulers_paddr[gpid]; |
---|
239 | |
---|
240 | // get tasks physical address |
---|
241 | unsigned int * ptasks = &(psched->tasks); |
---|
242 | |
---|
243 | asm volatile ("li $26, 0xB \n" |
---|
244 | "mtc2 $26, $1 \n" /* desactivate DTLB */ |
---|
245 | "lw %0, 0(%1) \n" /* ret <= *ptasks */ |
---|
246 | "li $26, 0xF \n" |
---|
247 | "mtc2 $26, $1 \n" /* activate DTLB */ |
---|
248 | :"=r" (ret) |
---|
249 | :"r"(ptasks) |
---|
250 | :"$26"); |
---|
251 | return ret; |
---|
252 | } |
---|
253 | |
---|
254 | |
---|
255 | ////////////////////////////////////////////////////////////////////////////// |
---|
256 | // boot_scheduler_set_tasks() |
---|
257 | // This function set the "tasks" field of a scheduler, after temporary |
---|
258 | // desactivation of the DTLB (because we use the scheduler physical address). |
---|
259 | // - gpid : global processor/scheduler index |
---|
260 | // - value : value to be written |
---|
261 | ////////////////////////////////////////////////////////////////////////////// |
---|
262 | inline void boot_scheduler_set_tasks(unsigned int gpid, unsigned int value) { |
---|
263 | // get scheduler physical address |
---|
264 | static_scheduler_t * psched = boot_schedulers_paddr[gpid]; |
---|
265 | |
---|
266 | // get tasks physical address |
---|
267 | unsigned int * ptasks = &(psched->tasks); |
---|
268 | |
---|
269 | asm volatile ("li $26, 0xB \n" |
---|
270 | "mtc2 $26, $1 \n" /* desactivate DTLB */ |
---|
271 | "sw %1, 0(%0) \n" /* *ptasks <= value */ |
---|
272 | "li $26, 0xF \n" |
---|
273 | "mtc2 $26, $1 \n" /* activate DTLB */ |
---|
274 | : |
---|
275 | :"r" (ptasks), "r"(value) |
---|
276 | :"$26"); |
---|
277 | } |
---|
278 | |
---|
279 | |
---|
280 | ////////////////////////////////////////////////////////////////////////////// |
---|
281 | // boot_scheduler_set_current() |
---|
282 | // This function set the "current" field of a scheduler, after temporary |
---|
283 | // desactivation of the DTLB (because we use the scheduler physical address). |
---|
284 | // - gpid : global processor/scheduler index |
---|
285 | // - value : value to be written |
---|
286 | ////////////////////////////////////////////////////////////////////////////// |
---|
287 | inline void boot_scheduler_set_current(unsigned int gpid, unsigned int value) { |
---|
288 | // get scheduler physical address |
---|
289 | static_scheduler_t *psched = boot_schedulers_paddr[gpid]; |
---|
290 | |
---|
291 | // get tasks physical address |
---|
292 | unsigned int * pcur = &(psched->current); |
---|
293 | |
---|
294 | asm volatile ("li $26, 0xB \n" |
---|
295 | "mtc2 $26, $1 \n" /* desactivate DTLB */ |
---|
296 | "sw %1, 0(%0) \n" /* *pcur <= value */ |
---|
297 | "li $26, 0xF \n" |
---|
298 | "mtc2 $26, $1 \n" /* activate DTLB */ |
---|
299 | : |
---|
300 | :"r" (pcur), "r"(value) |
---|
301 | :"$26"); |
---|
302 | } |
---|
303 | |
---|
304 | |
---|
305 | ////////////////////////////////////////////////////////////////////////////// |
---|
306 | // boot_set_mmu_ptpr() |
---|
307 | // This function set a new value for the MMU PTPR register. |
---|
308 | ////////////////////////////////////////////////////////////////////////////// |
---|
309 | inline void boot_set_mmu_ptpr(unsigned int val) { |
---|
310 | asm volatile ("mtc2 %0, $0"::"r" (val)); |
---|
311 | } |
---|
312 | |
---|
313 | |
---|
314 | ////////////////////////////////////////////////////////////////////////////// |
---|
315 | // boot_set_mmu_mode() |
---|
316 | // This function set a new value for the MMU MODE register. |
---|
317 | ////////////////////////////////////////////////////////////////////////////// |
---|
318 | inline void boot_set_mmu_mode(unsigned int val) { |
---|
319 | asm volatile ("mtc2 %0, $1"::"r" (val)); |
---|
320 | } |
---|
321 | |
---|
322 | |
---|
323 | //////////////////////////////////////////////////////////////////////////// |
---|
324 | // boot_puts() |
---|
325 | // (it uses TTY0) |
---|
326 | //////////////////////////////////////////////////////////////////////////// |
---|
327 | void boot_puts(const char * buffer) { |
---|
328 | unsigned int *tty_address = (unsigned int *) &seg_tty_base; |
---|
329 | unsigned int n; |
---|
330 | |
---|
331 | for (n = 0; n < 100; n++) { |
---|
332 | if (buffer[n] == 0) { |
---|
333 | break; |
---|
334 | } |
---|
335 | tty_address[TTY_WRITE] = (unsigned int) buffer[n]; |
---|
336 | } |
---|
337 | } |
---|
338 | |
---|
339 | |
---|
340 | //////////////////////////////////////////////////////////////////////////// |
---|
341 | // boot_putx() |
---|
342 | // (it uses TTY0) |
---|
343 | //////////////////////////////////////////////////////////////////////////// |
---|
344 | void boot_putx(unsigned int val) { |
---|
345 | static const char HexaTab[] = "0123456789ABCDEF"; |
---|
346 | char buf[11]; |
---|
347 | unsigned int c; |
---|
348 | |
---|
349 | buf[0] = '0'; |
---|
350 | buf[1] = 'x'; |
---|
351 | buf[10] = 0; |
---|
352 | |
---|
353 | for (c = 0; c < 8; c++) { |
---|
354 | buf[9 - c] = HexaTab[val & 0xF]; |
---|
355 | val = val >> 4; |
---|
356 | } |
---|
357 | boot_puts(buf); |
---|
358 | } |
---|
359 | |
---|
360 | |
---|
361 | //////////////////////////////////////////////////////////////////////////// |
---|
362 | // boot_putd() |
---|
363 | // (it uses TTY0) |
---|
364 | //////////////////////////////////////////////////////////////////////////// |
---|
365 | void boot_putd(unsigned int val) { |
---|
366 | static const char DecTab[] = "0123456789"; |
---|
367 | char buf[11]; |
---|
368 | unsigned int i; |
---|
369 | unsigned int first; |
---|
370 | |
---|
371 | buf[10] = 0; |
---|
372 | |
---|
373 | for (i = 0; i < 10; i++) { |
---|
374 | if ((val != 0) || (i == 0)) { |
---|
375 | buf[9 - i] = DecTab[val % 10]; |
---|
376 | first = 9 - i; |
---|
377 | } |
---|
378 | else { |
---|
379 | break; |
---|
380 | } |
---|
381 | val /= 10; |
---|
382 | } |
---|
383 | boot_puts(&buf[first]); |
---|
384 | } |
---|
385 | |
---|
386 | |
---|
387 | ///////////////////////////////////////////////////////////////////////////// |
---|
388 | // mapping_info data structure access functions |
---|
389 | ///////////////////////////////////////////////////////////////////////////// |
---|
390 | inline mapping_cluster_t *boot_get_cluster_base(mapping_header_t * header) { |
---|
391 | return (mapping_cluster_t *) ((char *) header + MAPPING_HEADER_SIZE); |
---|
392 | } |
---|
393 | |
---|
394 | |
---|
395 | ///////////////////////////////////////////////////////////////////////////// |
---|
396 | inline mapping_pseg_t *boot_get_pseg_base(mapping_header_t * header) { |
---|
397 | return (mapping_pseg_t *) ((char *) header + |
---|
398 | MAPPING_HEADER_SIZE + |
---|
399 | MAPPING_CLUSTER_SIZE * header->clusters); |
---|
400 | } |
---|
401 | |
---|
402 | |
---|
403 | ///////////////////////////////////////////////////////////////////////////// |
---|
404 | inline mapping_vspace_t *boot_get_vspace_base(mapping_header_t * header) { |
---|
405 | return (mapping_vspace_t *) ((char *) header + |
---|
406 | MAPPING_HEADER_SIZE + |
---|
407 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
408 | MAPPING_PSEG_SIZE * header->psegs); |
---|
409 | } |
---|
410 | |
---|
411 | |
---|
412 | ///////////////////////////////////////////////////////////////////////////// |
---|
413 | inline mapping_vseg_t *boot_get_vseg_base(mapping_header_t * header) { |
---|
414 | return (mapping_vseg_t *) ((char *) header + |
---|
415 | MAPPING_HEADER_SIZE + |
---|
416 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
417 | MAPPING_PSEG_SIZE * header->psegs + |
---|
418 | MAPPING_VSPACE_SIZE * header->vspaces); |
---|
419 | } |
---|
420 | |
---|
421 | |
---|
422 | ///////////////////////////////////////////////////////////////////////////// |
---|
423 | inline mapping_vobj_t *boot_get_vobj_base(mapping_header_t * header) { |
---|
424 | return (mapping_vobj_t *) ((char *) header + |
---|
425 | MAPPING_HEADER_SIZE + |
---|
426 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
427 | MAPPING_PSEG_SIZE * header->psegs + |
---|
428 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
429 | MAPPING_VSEG_SIZE * header->vsegs); |
---|
430 | } |
---|
431 | |
---|
432 | |
---|
433 | ///////////////////////////////////////////////////////////////////////////// |
---|
434 | inline mapping_task_t *boot_get_task_base(mapping_header_t * header) { |
---|
435 | return (mapping_task_t *) ((char *) header + |
---|
436 | MAPPING_HEADER_SIZE + |
---|
437 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
438 | MAPPING_PSEG_SIZE * header->psegs + |
---|
439 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
440 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
441 | MAPPING_VOBJ_SIZE * header->vobjs); |
---|
442 | } |
---|
443 | |
---|
444 | |
---|
445 | ///////////////////////////////////////////////////////////////////////////// |
---|
446 | inline mapping_proc_t *boot_get_proc_base(mapping_header_t * header) { |
---|
447 | return (mapping_proc_t *) ((char *) header + |
---|
448 | MAPPING_HEADER_SIZE + |
---|
449 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
450 | MAPPING_PSEG_SIZE * header->psegs + |
---|
451 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
452 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
453 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
454 | MAPPING_TASK_SIZE * header->tasks); |
---|
455 | } |
---|
456 | |
---|
457 | |
---|
458 | ///////////////////////////////////////////////////////////////////////////// |
---|
459 | inline mapping_irq_t *boot_get_irq_base(mapping_header_t * header) { |
---|
460 | return (mapping_irq_t *) ((char *) header + |
---|
461 | MAPPING_HEADER_SIZE + |
---|
462 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
463 | MAPPING_PSEG_SIZE * header->psegs + |
---|
464 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
465 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
466 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
467 | MAPPING_TASK_SIZE * header->tasks + |
---|
468 | MAPPING_PROC_SIZE * header->procs); |
---|
469 | } |
---|
470 | |
---|
471 | |
---|
472 | ///////////////////////////////////////////////////////////////////////////// |
---|
473 | inline mapping_coproc_t *boot_get_coproc_base(mapping_header_t * header) { |
---|
474 | return (mapping_coproc_t *) ((char *) header + |
---|
475 | MAPPING_HEADER_SIZE + |
---|
476 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
477 | MAPPING_PSEG_SIZE * header->psegs + |
---|
478 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
479 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
480 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
481 | MAPPING_TASK_SIZE * header->tasks + |
---|
482 | MAPPING_PROC_SIZE * header->procs + |
---|
483 | MAPPING_IRQ_SIZE * header->irqs); |
---|
484 | } |
---|
485 | |
---|
486 | |
---|
487 | /////////////////////////////////////////////////////////////////////////////////// |
---|
488 | inline mapping_cp_port_t *boot_get_cp_port_base(mapping_header_t * header) { |
---|
489 | return (mapping_cp_port_t *) ((char *) header + |
---|
490 | MAPPING_HEADER_SIZE + |
---|
491 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
492 | MAPPING_PSEG_SIZE * header->psegs + |
---|
493 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
494 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
495 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
496 | MAPPING_TASK_SIZE * header->tasks + |
---|
497 | MAPPING_PROC_SIZE * header->procs + |
---|
498 | MAPPING_IRQ_SIZE * header->irqs + |
---|
499 | MAPPING_COPROC_SIZE * header->coprocs); |
---|
500 | } |
---|
501 | |
---|
502 | |
---|
503 | /////////////////////////////////////////////////////////////////////////////////// |
---|
504 | inline mapping_periph_t *boot_get_periph_base(mapping_header_t * header) { |
---|
505 | return (mapping_periph_t *) ((char *) header + |
---|
506 | MAPPING_HEADER_SIZE + |
---|
507 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
508 | MAPPING_PSEG_SIZE * header->psegs + |
---|
509 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
510 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
511 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
512 | MAPPING_TASK_SIZE * header->tasks + |
---|
513 | MAPPING_PROC_SIZE * header->procs + |
---|
514 | MAPPING_IRQ_SIZE * header->irqs + |
---|
515 | MAPPING_COPROC_SIZE * header->coprocs + |
---|
516 | MAPPING_CP_PORT_SIZE * header->cp_ports); |
---|
517 | } |
---|
518 | |
---|
519 | |
---|
520 | ////////////////////////////////////////////////////////////////////////////// |
---|
521 | // boot_pseg_get() |
---|
522 | // This function returns the pointer on a physical segment |
---|
523 | // identified by the pseg index. |
---|
524 | ////////////////////////////////////////////////////////////////////////////// |
---|
525 | mapping_pseg_t *boot_pseg_get(unsigned int seg_id) { |
---|
526 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
527 | mapping_pseg_t * pseg = boot_get_pseg_base(header); |
---|
528 | |
---|
529 | // checking argument |
---|
530 | if (seg_id >= header->psegs) { |
---|
531 | boot_puts("\n[BOOT ERROR] : seg_id argument too large\n"); |
---|
532 | boot_puts(" in function boot_pseg_get()\n"); |
---|
533 | boot_exit(); |
---|
534 | } |
---|
535 | |
---|
536 | return &pseg[seg_id]; |
---|
537 | } // end boot_pseg_get() |
---|
538 | |
---|
539 | |
---|
540 | ////////////////////////////////////////////////////////////////////////////// |
---|
541 | // boot_add_pte() |
---|
542 | // This function registers a new PTE in the page table pointed |
---|
543 | // by the vspace_id argument, and updates both PT1 and PT2. |
---|
544 | // A new PT2 is used when required. |
---|
545 | // As the set of PT2s is implemented as a fixed size array (no dynamic |
---|
546 | // allocation), this function checks a possible overflow of the PT2 array. |
---|
547 | // |
---|
548 | // The global parameter is a boolean indicating wether a global vseg is |
---|
549 | // being mapped. |
---|
550 | ////////////////////////////////////////////////////////////////////////////// |
---|
551 | void boot_add_pte(unsigned int vspace_id, |
---|
552 | unsigned int vpn, unsigned int flags, unsigned int ppn) { |
---|
553 | unsigned int ix1; |
---|
554 | unsigned int ix2; |
---|
555 | unsigned int ptba; // PT2 base address |
---|
556 | unsigned int pt2_id; // PT2 index |
---|
557 | unsigned int *pt_flags; // pointer on the pte_flags = &PT2[2*ix2] |
---|
558 | unsigned int *pt_ppn; // pointer on the pte_ppn = &PT2[2*ix2+1] |
---|
559 | |
---|
560 | ix1 = vpn >> 9; // 11 bits |
---|
561 | ix2 = vpn & 0x1FF; // 9 bits |
---|
562 | |
---|
563 | // check that the boot_max_pt2[vspace_id] has been set |
---|
564 | unsigned int max_pt2 = boot_max_pt2[vspace_id]; |
---|
565 | |
---|
566 | if (max_pt2 == 0) { |
---|
567 | boot_puts("Unfound page table for vspace "); |
---|
568 | boot_putd(vspace_id); |
---|
569 | boot_puts("\n"); |
---|
570 | boot_exit(); |
---|
571 | } |
---|
572 | // get page table physical address |
---|
573 | page_table_t *pt = boot_ptabs_paddr[vspace_id]; |
---|
574 | |
---|
575 | if ((pt->pt1[ix1] & PTE_V) == 0) { // set a new PTD in PT1 |
---|
576 | pt2_id = boot_next_free_pt2[vspace_id]; |
---|
577 | if (pt2_id == max_pt2) { |
---|
578 | boot_puts("\n[BOOT ERROR] in boot_add_pte() function\n"); |
---|
579 | boot_puts("the length of the ptab vobj is too small\n"); |
---|
580 | boot_exit(); |
---|
581 | } |
---|
582 | else { |
---|
583 | ptba = (unsigned int) pt + PT1_SIZE + PT2_SIZE * pt2_id; |
---|
584 | pt->pt1[ix1] = PTE_V | PTE_T | (ptba >> 12); |
---|
585 | boot_next_free_pt2[vspace_id] = pt2_id + 1; |
---|
586 | } |
---|
587 | } |
---|
588 | else { |
---|
589 | ptba = pt->pt1[ix1] << 12; |
---|
590 | } |
---|
591 | |
---|
592 | // set PTE2 after checking double mapping error |
---|
593 | pt_flags = (unsigned int *) (ptba + 8 * ix2); |
---|
594 | pt_ppn = (unsigned int *) (ptba + 8 * ix2 + 4); |
---|
595 | |
---|
596 | if ((*pt_flags & PTE_V) != 0) { // page already mapped |
---|
597 | boot_puts("\n[BOOT ERROR] double mapping in vspace "); |
---|
598 | boot_putd(vspace_id); |
---|
599 | boot_puts(" for vpn = "); |
---|
600 | boot_putx(vpn); |
---|
601 | boot_puts("\n"); |
---|
602 | boot_exit(); |
---|
603 | } |
---|
604 | // set PTE2 |
---|
605 | *pt_flags = flags; |
---|
606 | *pt_ppn = ppn; |
---|
607 | |
---|
608 | } // end boot_add_pte() |
---|
609 | |
---|
610 | |
---|
611 | ///////////////////////////////////////////////////////////////////// |
---|
612 | // This function build the page table for a given vspace. |
---|
613 | // The physical base addresses for all vsegs (global and private) |
---|
614 | // must have been previously computed. |
---|
615 | // It initializes the MWMR channels. |
---|
616 | ///////////////////////////////////////////////////////////////////// |
---|
617 | void boot_vspace_pt_build(unsigned int vspace_id) { |
---|
618 | unsigned int vseg_id; |
---|
619 | unsigned int npages; |
---|
620 | unsigned int ppn; |
---|
621 | unsigned int vpn; |
---|
622 | unsigned int flags; |
---|
623 | unsigned int page_id; |
---|
624 | |
---|
625 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
626 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
627 | mapping_vseg_t * vseg = boot_get_vseg_base(header); |
---|
628 | |
---|
629 | // private segments |
---|
630 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
631 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
632 | vseg_id++) { |
---|
633 | vpn = vseg[vseg_id].vbase >> 12; |
---|
634 | ppn = vseg[vseg_id].pbase >> 12; |
---|
635 | npages = vseg[vseg_id].length >> 12; |
---|
636 | if ((vseg[vseg_id].length & 0xFFF) != 0) { |
---|
637 | npages++; |
---|
638 | } |
---|
639 | |
---|
640 | flags = PTE_V; |
---|
641 | if (vseg[vseg_id].mode & C_MODE_MASK) { |
---|
642 | flags = flags | PTE_C; |
---|
643 | } |
---|
644 | if (vseg[vseg_id].mode & X_MODE_MASK) { |
---|
645 | flags = flags | PTE_X; |
---|
646 | } |
---|
647 | if (vseg[vseg_id].mode & W_MODE_MASK) { |
---|
648 | flags = flags | PTE_W; |
---|
649 | } |
---|
650 | if (vseg[vseg_id].mode & U_MODE_MASK) { |
---|
651 | flags = flags | PTE_U; |
---|
652 | } |
---|
653 | |
---|
654 | #if BOOT_DEBUG_PT |
---|
655 | boot_puts(vseg[vseg_id].name); |
---|
656 | boot_puts(" : flags = "); |
---|
657 | boot_putx(flags); |
---|
658 | boot_puts(" / npages = "); |
---|
659 | boot_putd(npages); |
---|
660 | boot_puts(" / pbase = "); |
---|
661 | boot_putx(vseg[vseg_id].pbase); |
---|
662 | boot_puts("\n"); |
---|
663 | #endif |
---|
664 | // loop on 4K pages |
---|
665 | for (page_id = 0; page_id < npages; page_id++) { |
---|
666 | boot_add_pte(vspace_id, vpn, flags, ppn); |
---|
667 | vpn++; |
---|
668 | ppn++; |
---|
669 | } |
---|
670 | } |
---|
671 | |
---|
672 | // global segments |
---|
673 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) { |
---|
674 | vpn = vseg[vseg_id].vbase >> 12; |
---|
675 | ppn = vseg[vseg_id].pbase >> 12; |
---|
676 | npages = vseg[vseg_id].length >> 12; |
---|
677 | if ((vseg[vseg_id].length & 0xFFF) != 0) { |
---|
678 | npages++; |
---|
679 | } |
---|
680 | |
---|
681 | flags = PTE_V; |
---|
682 | if (vseg[vseg_id].mode & C_MODE_MASK) { |
---|
683 | flags = flags | PTE_C; |
---|
684 | } |
---|
685 | if (vseg[vseg_id].mode & X_MODE_MASK) { |
---|
686 | flags = flags | PTE_X; |
---|
687 | } |
---|
688 | if (vseg[vseg_id].mode & W_MODE_MASK) { |
---|
689 | flags = flags | PTE_W; |
---|
690 | } |
---|
691 | if (vseg[vseg_id].mode & U_MODE_MASK) { |
---|
692 | flags = flags | PTE_U; |
---|
693 | } |
---|
694 | |
---|
695 | #if BOOT_DEBUG_PT |
---|
696 | boot_puts(vseg[vseg_id].name); |
---|
697 | boot_puts(" / flags = "); |
---|
698 | boot_putx(flags); |
---|
699 | boot_puts(" / npages = "); |
---|
700 | boot_putd(npages); |
---|
701 | boot_puts(" / pbase = "); |
---|
702 | boot_putx(vseg[vseg_id].pbase); |
---|
703 | boot_puts("\n"); |
---|
704 | #endif |
---|
705 | // loop on 4K pages |
---|
706 | for (page_id = 0; page_id < npages; page_id++) { |
---|
707 | boot_add_pte(vspace_id, vpn, flags, ppn); |
---|
708 | vpn++; |
---|
709 | ppn++; |
---|
710 | } |
---|
711 | } |
---|
712 | } // end boot_vspace_pt_build() |
---|
713 | |
---|
714 | |
---|
715 | /////////////////////////////////////////////////////////////////////////// |
---|
716 | // Align the value "toAlign" to the required alignement indicated by |
---|
717 | // alignPow2 ( the logarithme of 2 the alignement). |
---|
718 | /////////////////////////////////////////////////////////////////////////// |
---|
719 | unsigned int align_to(unsigned int toAlign, unsigned int alignPow2) { |
---|
720 | unsigned int mask = (1 << alignPow2) - 1; |
---|
721 | return ((toAlign + mask) & ~mask); |
---|
722 | } |
---|
723 | |
---|
724 | |
---|
725 | /////////////////////////////////////////////////////////////////////////// |
---|
726 | // This function compute the physical base address for a vseg |
---|
727 | // as specified in the mapping info data structure. |
---|
728 | // It updates the pbase and the length fields of the vseg. |
---|
729 | // It updates the pbase and vbase fields of all vobjs in the vseg. |
---|
730 | // It updates the next_base field of the pseg, and checks overflow. |
---|
731 | // It updates the boot_ptabs_paddr[] and boot_ptabs_vaddr[] arrays. |
---|
732 | // It is a global vseg if vspace_id = (-1). |
---|
733 | /////////////////////////////////////////////////////////////////////////// |
---|
734 | void boot_vseg_map(mapping_vseg_t * vseg, unsigned int vspace_id) { |
---|
735 | unsigned int vobj_id; |
---|
736 | unsigned int cur_vaddr; |
---|
737 | unsigned int cur_paddr; |
---|
738 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
739 | mapping_vobj_t * vobj = boot_get_vobj_base(header); |
---|
740 | |
---|
741 | // get physical segment pointer |
---|
742 | mapping_pseg_t *pseg = boot_pseg_get(vseg->psegid); |
---|
743 | |
---|
744 | // compute vseg physical base address |
---|
745 | if (vseg->ident != 0) { // identity mapping required |
---|
746 | vseg->pbase = vseg->vbase; |
---|
747 | } |
---|
748 | else { // unconstrained mapping |
---|
749 | vseg->pbase = pseg->next_base; |
---|
750 | |
---|
751 | // test alignment constraint |
---|
752 | if (vobj[vseg->vobj_offset].align) { |
---|
753 | vseg->pbase = align_to(vseg->pbase, vobj[vseg->vobj_offset].align); |
---|
754 | } |
---|
755 | } |
---|
756 | |
---|
757 | // loop on vobjs contained in vseg to : |
---|
758 | // (1) computes the length of the vseg, |
---|
759 | // (2) initialise the vaddr and paddr fields of all vobjs, |
---|
760 | // (3) initialise the page table pointers arrays |
---|
761 | |
---|
762 | cur_vaddr = vseg->vbase; |
---|
763 | cur_paddr = vseg->pbase; |
---|
764 | |
---|
765 | for (vobj_id = vseg->vobj_offset; vobj_id < (vseg->vobj_offset + vseg->vobjs); vobj_id++) { |
---|
766 | if (vobj[vobj_id].align) { |
---|
767 | cur_paddr = align_to(cur_paddr, vobj[vobj_id].align); |
---|
768 | } |
---|
769 | // set vaddr/paddr for current vobj |
---|
770 | vobj[vobj_id].vaddr = cur_vaddr; |
---|
771 | vobj[vobj_id].paddr = cur_paddr; |
---|
772 | |
---|
773 | // initialise boot_ptabs_vaddr[] if current vobj is a PTAB |
---|
774 | if (vobj[vobj_id].type == VOBJ_TYPE_PTAB) { |
---|
775 | if (vspace_id == ((unsigned int) -1)) { // global vseg |
---|
776 | boot_puts("\n[BOOT ERROR] in boot_vseg_map() function: "); |
---|
777 | boot_puts("a PTAB vobj cannot be global"); |
---|
778 | boot_exit(); |
---|
779 | } |
---|
780 | // we need at least one PT2 => ( boot_max_pt2[vspace_id] >= 1) |
---|
781 | if (vobj[vobj_id].length < (PT1_SIZE + PT2_SIZE)) { |
---|
782 | boot_puts("\n[BOOT ERROR] in boot_vseg_map() function, "); |
---|
783 | boot_puts("PTAB too small, minumum size is: "); |
---|
784 | boot_putx(PT1_SIZE + PT2_SIZE); |
---|
785 | boot_exit(); |
---|
786 | } |
---|
787 | // register both physical and virtual page table address |
---|
788 | boot_ptabs_vaddr[vspace_id] = (page_table_t *) vobj[vobj_id].vaddr; |
---|
789 | boot_ptabs_paddr[vspace_id] = (page_table_t *) vobj[vobj_id].paddr; |
---|
790 | |
---|
791 | /* computing the number of second level page */ |
---|
792 | boot_max_pt2[vspace_id] = (vobj[vobj_id].length - PT1_SIZE) / PT2_SIZE; |
---|
793 | } |
---|
794 | // set next vaddr/paddr |
---|
795 | cur_vaddr += vobj[vobj_id].length; |
---|
796 | cur_paddr += vobj[vobj_id].length; |
---|
797 | |
---|
798 | } // end for vobjs |
---|
799 | |
---|
800 | //set the vseg length |
---|
801 | vseg->length = align_to((cur_paddr - vseg->pbase), 12); |
---|
802 | |
---|
803 | // checking pseg overflow |
---|
804 | if ((vseg->pbase < pseg->base) || |
---|
805 | ((vseg->pbase + vseg->length) > (pseg->base + pseg->length))) { |
---|
806 | boot_puts("\n[BOOT ERROR] in boot_vseg_map() function\n"); |
---|
807 | boot_puts("impossible mapping for virtual segment: "); |
---|
808 | boot_puts(vseg->name); |
---|
809 | boot_puts("\n"); |
---|
810 | boot_puts("vseg pbase = "); |
---|
811 | boot_putx(vseg->pbase); |
---|
812 | boot_puts("\n"); |
---|
813 | boot_puts("vseg length = "); |
---|
814 | boot_putx(vseg->length); |
---|
815 | boot_puts("\n"); |
---|
816 | boot_puts("pseg pbase = "); |
---|
817 | boot_putx(pseg->base); |
---|
818 | boot_puts("\n"); |
---|
819 | boot_puts("pseg length = "); |
---|
820 | boot_putx(pseg->length); |
---|
821 | boot_puts("\n"); |
---|
822 | boot_exit(); |
---|
823 | } |
---|
824 | |
---|
825 | #if BOOT_DEBUG_PT |
---|
826 | boot_puts(vseg->name); |
---|
827 | boot_puts(" : len = "); |
---|
828 | boot_putx(vseg->length); |
---|
829 | boot_puts(" / vbase = "); |
---|
830 | boot_putx(vseg->vbase); |
---|
831 | boot_puts(" / pbase = "); |
---|
832 | boot_putx(vseg->pbase); |
---|
833 | boot_puts("\n"); |
---|
834 | #endif |
---|
835 | |
---|
836 | // set the next_base field in vseg |
---|
837 | if (vseg->ident == 0 && pseg->type != PSEG_TYPE_PERI) { |
---|
838 | pseg->next_base = vseg->pbase + vseg->length; |
---|
839 | } |
---|
840 | |
---|
841 | } // end boot_vseg_map() |
---|
842 | |
---|
843 | ///////////////////////////////////////////////////////////////////// |
---|
844 | // This function checks consistence beween the mapping_info data |
---|
845 | // structure (soft), and the giet_config file (hard). |
---|
846 | ///////////////////////////////////////////////////////////////////// |
---|
847 | void boot_check_mapping() { |
---|
848 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
849 | mapping_cluster_t * cluster = boot_get_cluster_base(header); |
---|
850 | mapping_periph_t * periph = boot_get_periph_base(header); |
---|
851 | |
---|
852 | // checking mapping availability |
---|
853 | if (header->signature != IN_MAPPING_SIGNATURE) { |
---|
854 | boot_puts("\n[BOOT ERROR] Illegal mapping signature: "); |
---|
855 | boot_putx(header->signature); |
---|
856 | boot_puts("\n"); |
---|
857 | boot_exit(); |
---|
858 | } |
---|
859 | // checking number of clusters |
---|
860 | if (header->clusters != NB_CLUSTERS) { |
---|
861 | boot_puts("\n[BOOT ERROR] Incoherent NB_CLUSTERS"); |
---|
862 | boot_puts("\n - In giet_config, value = "); |
---|
863 | boot_putd(NB_CLUSTERS); |
---|
864 | boot_puts("\n - In mapping_info, value = "); |
---|
865 | boot_putd(header->clusters); |
---|
866 | boot_puts("\n"); |
---|
867 | boot_exit(); |
---|
868 | } |
---|
869 | // checking number of virtual spaces |
---|
870 | if (header->vspaces > GIET_NB_VSPACE_MAX) { |
---|
871 | boot_puts("\n[BOOT ERROR] : number of vspaces > GIET_NB_VSPACE_MAX\n"); |
---|
872 | boot_puts("\n"); |
---|
873 | boot_exit(); |
---|
874 | } |
---|
875 | // checking hardware |
---|
876 | unsigned int periph_id; |
---|
877 | unsigned int cluster_id; |
---|
878 | unsigned int tty_found = 0; |
---|
879 | unsigned int nic_found = 0; |
---|
880 | for (cluster_id = 0; cluster_id < NB_CLUSTERS; cluster_id++) { |
---|
881 | // NB_PROCS_MAX |
---|
882 | if (cluster[cluster_id].procs > NB_PROCS_MAX) { |
---|
883 | boot_puts("\n[BOOT ERROR] too many processors in cluster "); |
---|
884 | boot_putd(cluster_id); |
---|
885 | boot_puts(" : procs = "); |
---|
886 | boot_putd(cluster[cluster_id].procs); |
---|
887 | boot_puts("\n"); |
---|
888 | boot_exit(); |
---|
889 | } |
---|
890 | |
---|
891 | for (periph_id = cluster[cluster_id].periph_offset; |
---|
892 | periph_id < cluster[cluster_id].periph_offset + cluster[cluster_id].periphs; |
---|
893 | periph_id++) { |
---|
894 | // NB_TTYS |
---|
895 | if (periph[periph_id].type == PERIPH_TYPE_TTY) { |
---|
896 | if (tty_found) { |
---|
897 | boot_puts("\n[BOOT ERROR] TTY component should not be replicated\n"); |
---|
898 | boot_exit(); |
---|
899 | } |
---|
900 | if (periph[periph_id].channels > NB_TTYS) { |
---|
901 | boot_puts("\n[BOOT ERROR] Wrong NB_TTYS in cluster "); |
---|
902 | boot_putd(cluster_id); |
---|
903 | boot_puts(" : ttys = "); |
---|
904 | boot_putd(periph[periph_id].channels); |
---|
905 | boot_puts("\n"); |
---|
906 | boot_exit(); |
---|
907 | } |
---|
908 | tty_found = 1; |
---|
909 | } |
---|
910 | // NB_NICS |
---|
911 | if (periph[periph_id].type == PERIPH_TYPE_NIC) { |
---|
912 | if (nic_found) { |
---|
913 | boot_puts("\n[BOOT ERROR] NIC component should not be replicated\n"); |
---|
914 | boot_exit(); |
---|
915 | } |
---|
916 | if (periph[periph_id].channels != NB_NICS) { |
---|
917 | boot_puts("\n[BOOT ERROR] Wrong NB_NICS in cluster "); |
---|
918 | boot_putd(cluster_id); |
---|
919 | boot_puts(" : nics = "); |
---|
920 | boot_putd(periph[periph_id].channels); |
---|
921 | boot_puts("\n"); |
---|
922 | boot_exit(); |
---|
923 | } |
---|
924 | nic_found = 1; |
---|
925 | } |
---|
926 | // NB_TIMERS |
---|
927 | if (periph[periph_id].type == PERIPH_TYPE_TIM) { |
---|
928 | if (periph[periph_id].channels > NB_TIMERS_MAX) { |
---|
929 | boot_puts("\n[BOOT ERROR] Too much user timers in cluster "); |
---|
930 | boot_putd(cluster_id); |
---|
931 | boot_puts(" : timers = "); |
---|
932 | boot_putd(periph[periph_id].channels); |
---|
933 | boot_puts("\n"); |
---|
934 | boot_exit(); |
---|
935 | } |
---|
936 | } |
---|
937 | // NB_DMAS |
---|
938 | if (periph[periph_id].type == PERIPH_TYPE_DMA) { |
---|
939 | if (periph[periph_id].channels != NB_DMAS_MAX) { |
---|
940 | boot_puts("\n[BOOT ERROR] Too much DMA channels in cluster "); |
---|
941 | boot_putd(cluster_id); |
---|
942 | boot_puts(" : channels = "); |
---|
943 | boot_putd(periph[periph_id].channels); |
---|
944 | boot_puts(" - NB_DMAS_MAX : "); |
---|
945 | boot_putd(NB_DMAS_MAX); |
---|
946 | boot_puts("\n"); |
---|
947 | boot_exit(); |
---|
948 | } |
---|
949 | } |
---|
950 | } // end for periphs |
---|
951 | } // end for clusters |
---|
952 | } // end boot_check_mapping() |
---|
953 | |
---|
954 | |
---|
955 | ///////////////////////////////////////////////////////////////////// |
---|
956 | // This function initialises the physical pages table allocators |
---|
957 | // for all psegs (i.e. next_base field of the pseg). |
---|
958 | // In each cluster containing processors, it reserve space for the |
---|
959 | // schedulers in the first RAM pseg found (4k bytes per processor). |
---|
960 | ///////////////////////////////////////////////////////////////////// |
---|
961 | void boot_psegs_init() { |
---|
962 | mapping_header_t * header = (mapping_header_t *) &seg_mapping_base; |
---|
963 | |
---|
964 | mapping_cluster_t * cluster = boot_get_cluster_base(header); |
---|
965 | mapping_pseg_t * pseg = boot_get_pseg_base(header); |
---|
966 | |
---|
967 | unsigned int cluster_id; |
---|
968 | unsigned int pseg_id; |
---|
969 | unsigned int found; |
---|
970 | |
---|
971 | #if BOOT_DEBUG_PT |
---|
972 | boot_puts |
---|
973 | ("\n[BOOT DEBUG] ****** psegs allocators nitialisation ******\n"); |
---|
974 | #endif |
---|
975 | |
---|
976 | for (cluster_id = 0; cluster_id < header->clusters; cluster_id++) { |
---|
977 | if (cluster[cluster_id].procs > NB_PROCS_MAX) { |
---|
978 | boot_puts("\n[BOOT ERROR] The number of processors in cluster "); |
---|
979 | boot_putd(cluster_id); |
---|
980 | boot_puts(" is larger than NB_PROCS_MAX \n"); |
---|
981 | boot_exit(); |
---|
982 | } |
---|
983 | |
---|
984 | found = 0; |
---|
985 | |
---|
986 | for (pseg_id = cluster[cluster_id].pseg_offset; |
---|
987 | pseg_id < cluster[cluster_id].pseg_offset + cluster[cluster_id].psegs; |
---|
988 | pseg_id++) { |
---|
989 | unsigned int free = pseg[pseg_id].base; |
---|
990 | |
---|
991 | if ((pseg[pseg_id].type == PSEG_TYPE_RAM) && (found == 0)) { |
---|
992 | free = free + (cluster[cluster_id].procs << 12); |
---|
993 | found = 1; |
---|
994 | } |
---|
995 | pseg[pseg_id].next_base = free; |
---|
996 | |
---|
997 | #if BOOT_DEBUG_PT |
---|
998 | boot_puts("cluster "); |
---|
999 | boot_putd(cluster_id); |
---|
1000 | boot_puts(" / pseg "); |
---|
1001 | boot_puts(pseg[pseg_id].name); |
---|
1002 | boot_puts(" : next_base = "); |
---|
1003 | boot_putx(pseg[pseg_id].next_base); |
---|
1004 | boot_puts("\n"); |
---|
1005 | #endif |
---|
1006 | } |
---|
1007 | } |
---|
1008 | } // end boot_pseg_init() |
---|
1009 | |
---|
1010 | |
---|
1011 | ///////////////////////////////////////////////////////////////////// |
---|
1012 | // This function builds the page tables for all virtual spaces |
---|
1013 | // defined in the mapping_info data structure. |
---|
1014 | // For each virtual space, it maps both the global vsegs |
---|
1015 | // (replicated in all vspaces), and the private vsegs. |
---|
1016 | ///////////////////////////////////////////////////////////////////// |
---|
1017 | void boot_pt_init() { |
---|
1018 | mapping_header_t * header = (mapping_header_t *) &seg_mapping_base; |
---|
1019 | |
---|
1020 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
1021 | mapping_vseg_t * vseg = boot_get_vseg_base(header); |
---|
1022 | |
---|
1023 | unsigned int vspace_id; |
---|
1024 | unsigned int vseg_id; |
---|
1025 | |
---|
1026 | #if BOOT_DEBUG_PT |
---|
1027 | boot_puts("\n[BOOT DEBUG] ****** mapping global vsegs ******\n"); |
---|
1028 | #endif |
---|
1029 | |
---|
1030 | // step 1 : first loop on virtual spaces to map global vsegs |
---|
1031 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) { |
---|
1032 | boot_vseg_map(&vseg[vseg_id], ((unsigned int) (-1))); |
---|
1033 | } |
---|
1034 | |
---|
1035 | // step 2 : loop on virtual vspaces to map private vsegs |
---|
1036 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) { |
---|
1037 | |
---|
1038 | #if BOOT_DEBUG_PT |
---|
1039 | boot_puts |
---|
1040 | ("\n[BOOT DEBUG] ****** mapping private vsegs in vspace "); |
---|
1041 | boot_puts(vspace[vspace_id].name); |
---|
1042 | boot_puts(" ******\n"); |
---|
1043 | #endif |
---|
1044 | |
---|
1045 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
1046 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
1047 | vseg_id++) { |
---|
1048 | boot_vseg_map(&vseg[vseg_id], vspace_id); |
---|
1049 | } |
---|
1050 | } |
---|
1051 | |
---|
1052 | // step 3 : loop on the vspaces to build the page tables |
---|
1053 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) { |
---|
1054 | |
---|
1055 | #if BOOT_DEBUG_PT |
---|
1056 | boot_puts("\n[BOOT DEBUG] ****** building page table for vspace "); |
---|
1057 | boot_puts(vspace[vspace_id].name); |
---|
1058 | boot_puts(" ******\n"); |
---|
1059 | #endif |
---|
1060 | |
---|
1061 | boot_vspace_pt_build(vspace_id); |
---|
1062 | |
---|
1063 | #if BOOT_DEBUG_PT |
---|
1064 | boot_puts("\n>>> page table physical address = "); |
---|
1065 | boot_putx((unsigned int) boot_ptabs_paddr[vspace_id]); |
---|
1066 | boot_puts(", page table number of PT2 = "); |
---|
1067 | boot_putd((unsigned int) boot_max_pt2[vspace_id]); |
---|
1068 | boot_puts("\n"); |
---|
1069 | #endif |
---|
1070 | } |
---|
1071 | } // end boot_pt_init() |
---|
1072 | |
---|
1073 | |
---|
1074 | /////////////////////////////////////////////////////////////////////////////// |
---|
1075 | // This function initializes all private vobjs defined in the vspaces, |
---|
1076 | // such as mwmr channels, barriers and locks, because these vobjs |
---|
1077 | // are not known, and not initialized by the compiler. |
---|
1078 | /////////////////////////////////////////////////////////////////////////////// |
---|
1079 | void boot_vobjs_init() { |
---|
1080 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
1081 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
1082 | mapping_vobj_t * vobj = boot_get_vobj_base(header); |
---|
1083 | |
---|
1084 | unsigned int vspace_id; |
---|
1085 | unsigned int vobj_id; |
---|
1086 | |
---|
1087 | // loop on the vspaces |
---|
1088 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) { |
---|
1089 | |
---|
1090 | #if BOOT_DEBUG_VOBJS |
---|
1091 | boot_puts("\n[BOOT DEBUG] ****** vobjs initialisation in vspace "); |
---|
1092 | boot_puts(vspace[vspace_id].name); |
---|
1093 | boot_puts(" ******\n"); |
---|
1094 | #endif |
---|
1095 | |
---|
1096 | unsigned int ptab_found = 0; |
---|
1097 | |
---|
1098 | // loop on the vobjs |
---|
1099 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
1100 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
1101 | vobj_id++) { |
---|
1102 | switch (vobj[vobj_id].type) { |
---|
1103 | case VOBJ_TYPE_MWMR: // storage capacity is (vobj.length/4 - 5) words |
---|
1104 | { |
---|
1105 | mwmr_channel_t * mwmr = (mwmr_channel_t *) (vobj[vobj_id].paddr); |
---|
1106 | mwmr->ptw = 0; |
---|
1107 | mwmr->ptr = 0; |
---|
1108 | mwmr->sts = 0; |
---|
1109 | mwmr->width = vobj[vobj_id].init; |
---|
1110 | mwmr->depth = (vobj[vobj_id].length >> 2) - 6; |
---|
1111 | mwmr->lock = 0; |
---|
1112 | #if BOOT_DEBUG_VOBJS |
---|
1113 | boot_puts("MWMR : "); |
---|
1114 | boot_puts(vobj[vobj_id].name); |
---|
1115 | boot_puts(" / depth = "); |
---|
1116 | boot_putd(mwmr->depth); |
---|
1117 | boot_puts(" / width = "); |
---|
1118 | boot_putd(mwmr->width); |
---|
1119 | boot_puts("\n"); |
---|
1120 | #endif |
---|
1121 | break; |
---|
1122 | } |
---|
1123 | case VOBJ_TYPE_ELF: // initialisation done by the loader |
---|
1124 | { |
---|
1125 | #if BOOT_DEBUG_VOBJS |
---|
1126 | boot_puts("ELF : "); |
---|
1127 | boot_puts(vobj[vobj_id].name); |
---|
1128 | boot_puts(" / length = "); |
---|
1129 | boot_putx(vobj[vobj_id].length); |
---|
1130 | boot_puts("\n"); |
---|
1131 | #endif |
---|
1132 | break; |
---|
1133 | } |
---|
1134 | case VOBJ_TYPE_BLOB: // initialisation done by the loader |
---|
1135 | { |
---|
1136 | #if BOOT_DEBUG_VOBJS |
---|
1137 | boot_puts("BLOB : "); |
---|
1138 | boot_puts(vobj[vobj_id].name); |
---|
1139 | boot_puts(" / length = "); |
---|
1140 | boot_putx(vobj[vobj_id].length); |
---|
1141 | boot_puts("\n"); |
---|
1142 | #endif |
---|
1143 | break; |
---|
1144 | } |
---|
1145 | case VOBJ_TYPE_BARRIER: // init is the number of participants |
---|
1146 | { |
---|
1147 | giet_barrier_t * barrier = (giet_barrier_t *) (vobj[vobj_id].paddr); |
---|
1148 | barrier->count = vobj[vobj_id].init; |
---|
1149 | barrier->init = vobj[vobj_id].init; |
---|
1150 | #if BOOT_DEBUG_VOBJS |
---|
1151 | boot_puts("BARRIER : "); |
---|
1152 | boot_puts(vobj[vobj_id].name); |
---|
1153 | boot_puts(" / init_value = "); |
---|
1154 | boot_putd(barrier->init); |
---|
1155 | boot_puts("\n"); |
---|
1156 | #endif |
---|
1157 | break; |
---|
1158 | } |
---|
1159 | case VOBJ_TYPE_LOCK: // init is "not taken" |
---|
1160 | { |
---|
1161 | unsigned int * lock = (unsigned int *) (vobj[vobj_id].paddr); |
---|
1162 | *lock = 0; |
---|
1163 | #if BOOT_DEBUG_VOBJS |
---|
1164 | boot_puts("LOCK : "); |
---|
1165 | boot_puts(vobj[vobj_id].name); |
---|
1166 | boot_puts("\n"); |
---|
1167 | #endif |
---|
1168 | break; |
---|
1169 | } |
---|
1170 | case VOBJ_TYPE_BUFFER: // nothing to initialise |
---|
1171 | { |
---|
1172 | #if BOOT_DEBUG_VOBJS |
---|
1173 | boot_puts("BUFFER : "); |
---|
1174 | boot_puts(vobj[vobj_id].name); |
---|
1175 | boot_puts(" / paddr = "); |
---|
1176 | boot_putx(vobj[vobj_id].paddr); |
---|
1177 | boot_puts(" / length = "); |
---|
1178 | boot_putx(vobj[vobj_id].length); |
---|
1179 | boot_puts("\n"); |
---|
1180 | #endif |
---|
1181 | break; |
---|
1182 | } |
---|
1183 | case VOBJ_TYPE_MEMSPACE: |
---|
1184 | { |
---|
1185 | giet_memspace_t * memspace = (giet_memspace_t *) vobj[vobj_id].paddr; |
---|
1186 | memspace->buffer = (void *) vobj[vobj_id].vaddr + 8; |
---|
1187 | memspace->size = vobj[vobj_id].length - 8; |
---|
1188 | #if BOOT_DEBUG_VOBJS |
---|
1189 | boot_puts("MEMSPACE : "); |
---|
1190 | boot_puts(vobj[vobj_id].name); |
---|
1191 | boot_puts(" / paddr = "); |
---|
1192 | boot_putx(vobj[vobj_id].paddr); |
---|
1193 | boot_puts(" / length = "); |
---|
1194 | boot_putx(vobj[vobj_id].length); |
---|
1195 | boot_puts("\n"); |
---|
1196 | #endif |
---|
1197 | break; |
---|
1198 | } |
---|
1199 | case VOBJ_TYPE_PTAB: // nothing to initialise |
---|
1200 | { |
---|
1201 | ptab_found = 1; |
---|
1202 | #if BOOT_DEBUG_VOBJS |
---|
1203 | boot_puts("PTAB : "); |
---|
1204 | boot_puts(vobj[vobj_id].name); |
---|
1205 | boot_puts(" / length = "); |
---|
1206 | boot_putx(vobj[vobj_id].length); |
---|
1207 | boot_puts("\n"); |
---|
1208 | #endif |
---|
1209 | break; |
---|
1210 | } |
---|
1211 | case VOBJ_TYPE_CONST: |
---|
1212 | { |
---|
1213 | #if BOOT_DEBUG_VOBJS |
---|
1214 | boot_puts("CONST : "); |
---|
1215 | boot_puts(vobj[vobj_id].name); |
---|
1216 | boot_puts(" / Paddr :"); |
---|
1217 | boot_putx(vobj[vobj_id].paddr); |
---|
1218 | boot_puts(" / init = "); |
---|
1219 | boot_putx(vobj[vobj_id].init); |
---|
1220 | boot_puts("\n"); |
---|
1221 | #endif |
---|
1222 | unsigned int *addr = (unsigned int *) vobj[vobj_id].paddr; |
---|
1223 | *addr = vobj[vobj_id].init; |
---|
1224 | break; |
---|
1225 | } |
---|
1226 | default: |
---|
1227 | { |
---|
1228 | boot_puts("\n[INIT ERROR] illegal vobj type: "); |
---|
1229 | boot_putd(vobj[vobj_id].type); |
---|
1230 | boot_puts("\n "); |
---|
1231 | boot_exit(); |
---|
1232 | } |
---|
1233 | } // end switch type |
---|
1234 | } // end loop on vobjs |
---|
1235 | if (ptab_found == 0) { |
---|
1236 | boot_puts("\n[INIT ERROR] Missing PTAB for vspace "); |
---|
1237 | boot_putd(vspace_id); |
---|
1238 | boot_exit(); |
---|
1239 | } |
---|
1240 | } // end loop on vspaces |
---|
1241 | } // end boot_vobjs_init() |
---|
1242 | |
---|
1243 | |
---|
1244 | void mwmr_hw_init(void * coproc, enum mwmrPortDirection way, |
---|
1245 | unsigned int no, const mwmr_channel_t * pmwmr) { |
---|
1246 | volatile unsigned int *cbase = (unsigned int *) coproc; |
---|
1247 | |
---|
1248 | cbase[MWMR_CONFIG_FIFO_WAY] = way; |
---|
1249 | cbase[MWMR_CONFIG_FIFO_NO] = no; |
---|
1250 | cbase[MWMR_CONFIG_STATUS_ADDR] = (unsigned int) pmwmr; |
---|
1251 | cbase[MWMR_CONFIG_WIDTH] = pmwmr->width; |
---|
1252 | cbase[MWMR_CONFIG_DEPTH] = pmwmr->depth; |
---|
1253 | cbase[MWMR_CONFIG_BUFFER_ADDR] = (unsigned int) &pmwmr->data; |
---|
1254 | cbase[MWMR_CONFIG_RUNNING] = 1; |
---|
1255 | } |
---|
1256 | |
---|
1257 | |
---|
1258 | //////////////////////////////////////////////////////////////////////////////// |
---|
1259 | // This function intializes the periherals and coprocessors, as specified |
---|
1260 | // in the mapping_info file. |
---|
1261 | //////////////////////////////////////////////////////////////////////////////// |
---|
1262 | void boot_peripherals_init() { |
---|
1263 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
1264 | mapping_cluster_t * cluster = boot_get_cluster_base(header); |
---|
1265 | mapping_periph_t * periph = boot_get_periph_base(header); |
---|
1266 | mapping_pseg_t * pseg = boot_get_pseg_base(header); |
---|
1267 | mapping_vobj_t * vobj = boot_get_vobj_base(header); |
---|
1268 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
1269 | mapping_coproc_t * coproc = boot_get_coproc_base(header); |
---|
1270 | mapping_cp_port_t * cp_port = boot_get_cp_port_base(header); |
---|
1271 | |
---|
1272 | unsigned int cluster_id; |
---|
1273 | unsigned int periph_id; |
---|
1274 | unsigned int coproc_id; |
---|
1275 | unsigned int cp_port_id; |
---|
1276 | unsigned int channel_id; |
---|
1277 | |
---|
1278 | for (cluster_id = 0; cluster_id < header->clusters; cluster_id++) { |
---|
1279 | |
---|
1280 | #if BOOT_DEBUG_PERI |
---|
1281 | boot_puts |
---|
1282 | ("\n[BOOT DEBUG] ****** peripheral initialisation in cluster "); |
---|
1283 | boot_putd(cluster_id); |
---|
1284 | boot_puts(" ******\n"); |
---|
1285 | #endif |
---|
1286 | |
---|
1287 | for (periph_id = cluster[cluster_id].periph_offset; |
---|
1288 | periph_id < cluster[cluster_id].periph_offset + |
---|
1289 | cluster[cluster_id].periphs; periph_id++) { |
---|
1290 | unsigned int type = periph[periph_id].type; |
---|
1291 | unsigned int channels = periph[periph_id].channels; |
---|
1292 | unsigned int pseg_id = periph[periph_id].psegid; |
---|
1293 | |
---|
1294 | unsigned int * pseg_base = (unsigned int *) pseg[pseg_id].base; |
---|
1295 | |
---|
1296 | #if BOOT_DEBUG_PERI |
---|
1297 | boot_puts("- peripheral type : "); |
---|
1298 | boot_putd(type); |
---|
1299 | boot_puts(" / address = "); |
---|
1300 | boot_putx((unsigned int) pseg_base); |
---|
1301 | boot_puts(" / channels = "); |
---|
1302 | boot_putd(channels); |
---|
1303 | boot_puts("\n"); |
---|
1304 | #endif |
---|
1305 | |
---|
1306 | switch (type) { |
---|
1307 | case PERIPH_TYPE_IOC: // vci_block_device component |
---|
1308 | pseg_base[BLOCK_DEVICE_IRQ_ENABLE] = 1; |
---|
1309 | #if BOOT_DEBUG_PERI |
---|
1310 | boot_puts("- IOC initialised\n"); |
---|
1311 | #endif |
---|
1312 | break; |
---|
1313 | |
---|
1314 | case PERIPH_TYPE_DMA: // vci_multi_dma component |
---|
1315 | for (channel_id = 0; channel_id < channels; channel_id++) { |
---|
1316 | pseg_base[DMA_IRQ_DISABLE + channel_id * DMA_SPAN] = 0; |
---|
1317 | } |
---|
1318 | #if BOOT_DEBUG_PERI |
---|
1319 | boot_puts("- DMA initialised\n"); |
---|
1320 | #endif |
---|
1321 | break; |
---|
1322 | |
---|
1323 | case PERIPH_TYPE_NIC: // vci_multi_nic component |
---|
1324 | for (channel_id = 0; channel_id < channels; channel_id++) { |
---|
1325 | // TODO |
---|
1326 | } |
---|
1327 | #if BOOT_DEBUG_PERI |
---|
1328 | boot_puts("- NIC initialised\n"); |
---|
1329 | #endif |
---|
1330 | break; |
---|
1331 | |
---|
1332 | case PERIPH_TYPE_TTY: // vci_multi_tty component |
---|
1333 | #if BOOT_DEBUG_PERI |
---|
1334 | boot_puts("- TTY initialised\n"); |
---|
1335 | #endif |
---|
1336 | break; |
---|
1337 | |
---|
1338 | case PERIPH_TYPE_IOB: // vci_io_bridge component |
---|
1339 | if (IOMMU_ACTIVE) { |
---|
1340 | // TODO |
---|
1341 | // get the iommu page table physical address |
---|
1342 | // define IPI address mapping the IOC interrupt |
---|
1343 | // set IOMMU page table address |
---|
1344 | // pseg_base[IOB_IOMMU_PTPR] = ptab_pbase; |
---|
1345 | // activate IOMMU |
---|
1346 | // pseg_base[IOB_IOMMU_ACTIVE] = 1; |
---|
1347 | } |
---|
1348 | #if BOOT_DEBUG_PERI |
---|
1349 | boot_puts("- IOB initialised\n"); |
---|
1350 | #endif |
---|
1351 | break; |
---|
1352 | } // end switch periph type |
---|
1353 | } // end for periphs |
---|
1354 | |
---|
1355 | #if BOOT_DEBUG_PERI |
---|
1356 | boot_puts |
---|
1357 | ("\n[BOOT DEBUG] ****** coprocessors initialisation in cluster "); |
---|
1358 | boot_putd(cluster_id); |
---|
1359 | boot_puts(" ******\n"); |
---|
1360 | #endif |
---|
1361 | |
---|
1362 | for (coproc_id = cluster[cluster_id].coproc_offset; |
---|
1363 | coproc_id < cluster[cluster_id].coproc_offset + |
---|
1364 | cluster[cluster_id].coprocs; coproc_id++) { |
---|
1365 | unsigned no_fifo_to = 0; //FIXME: should it be the map.xml who define the order? |
---|
1366 | unsigned no_fifo_from = 0; |
---|
1367 | unsigned int cpseg = pseg[coproc[coproc_id].psegid].base; |
---|
1368 | |
---|
1369 | #if BOOT_DEBUG_PERI |
---|
1370 | boot_puts("- coprocessor name : "); |
---|
1371 | boot_puts(coproc[coproc_id].name); |
---|
1372 | boot_puts(" / nb ports = "); |
---|
1373 | boot_putd((unsigned int) coproc[coproc_id].ports); |
---|
1374 | boot_puts("\n"); |
---|
1375 | #endif |
---|
1376 | |
---|
1377 | for (cp_port_id = coproc[coproc_id].port_offset; |
---|
1378 | cp_port_id < coproc[coproc_id].port_offset + coproc[coproc_id].ports; |
---|
1379 | cp_port_id++) { |
---|
1380 | //FIXME: the vspace_id should be the same for all ports: put it in the coproc? |
---|
1381 | unsigned int vspace_id = cp_port[cp_port_id].vspaceid; |
---|
1382 | unsigned int vobj_id = cp_port[cp_port_id].vobjlocid + vspace[vspace_id].vobj_offset; |
---|
1383 | |
---|
1384 | mwmr_channel_t * pmwmr = (mwmr_channel_t *) (vobj[vobj_id].paddr); |
---|
1385 | |
---|
1386 | if (cp_port[cp_port_id].direction == PORT_TO_COPROC) { |
---|
1387 | #if BOOT_DEBUG_PERI |
---|
1388 | boot_puts(" port direction: PORT_TO_COPROC"); |
---|
1389 | #endif |
---|
1390 | mwmr_hw_init((void *) cpseg, PORT_TO_COPROC, no_fifo_to, pmwmr); |
---|
1391 | no_fifo_to++; |
---|
1392 | } |
---|
1393 | else { |
---|
1394 | #if BOOT_DEBUG_PERI |
---|
1395 | boot_puts(" port direction: PORT_FROM_COPROC"); |
---|
1396 | #endif |
---|
1397 | mwmr_hw_init((void *) cpseg, PORT_FROM_COPROC, no_fifo_from, pmwmr); |
---|
1398 | no_fifo_from++; |
---|
1399 | } |
---|
1400 | #if BOOT_DEBUG_PERI |
---|
1401 | boot_puts(", with mwmr: "); |
---|
1402 | boot_puts(vobj[vobj_id].name); |
---|
1403 | boot_puts(" of vspace: "); |
---|
1404 | boot_puts(vspace[vspace_id].name); |
---|
1405 | #endif |
---|
1406 | } |
---|
1407 | } // end for coprocs |
---|
1408 | } // end for clusters |
---|
1409 | } // end boot_peripherals_init() |
---|
1410 | |
---|
1411 | |
---|
1412 | /////////////////////////////////////////////////////////////////////////////// |
---|
1413 | // This function initialises all processors schedulers. |
---|
1414 | // This is done by processor 0, and the MMU must be activated. |
---|
1415 | // It initialises the boot_schedulers_paddr[gpid] pointers array. |
---|
1416 | // Finally, it scan all tasks in all vspaces to initialise the tasks contexts, |
---|
1417 | // as specified in the mapping_info data structure. |
---|
1418 | // For each task, a TTY channel, a TIMER channel, a FBDMA channel, and a NIC |
---|
1419 | // channel can be allocated if required. |
---|
1420 | /////////////////////////////////////////////////////////////////////////////// |
---|
1421 | void boot_schedulers_init() { |
---|
1422 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
1423 | mapping_cluster_t * cluster = boot_get_cluster_base(header); |
---|
1424 | mapping_pseg_t * pseg = boot_get_pseg_base(header); |
---|
1425 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
1426 | mapping_task_t * task = boot_get_task_base(header); |
---|
1427 | mapping_vobj_t * vobj = boot_get_vobj_base(header); |
---|
1428 | mapping_proc_t * proc = boot_get_proc_base(header); |
---|
1429 | mapping_irq_t * irq = boot_get_irq_base(header); |
---|
1430 | |
---|
1431 | unsigned int alloc_tty_channel; // TTY channel allocator |
---|
1432 | unsigned int alloc_nic_channel; // NIC channel allocator |
---|
1433 | unsigned int alloc_dma_channel[NB_CLUSTERS]; // DMA channel allocators |
---|
1434 | unsigned int alloc_timer_channel[NB_CLUSTERS]; // user TIMER allocators |
---|
1435 | |
---|
1436 | unsigned int cluster_id; // cluster global index |
---|
1437 | unsigned int proc_id; // processor global index |
---|
1438 | unsigned int irq_id; // irq global index |
---|
1439 | unsigned int pseg_id; // pseg global index |
---|
1440 | unsigned int vspace_id; // vspace global index |
---|
1441 | unsigned int task_id; // task global index; |
---|
1442 | |
---|
1443 | // Step 0 : TTY, NIC, TIMERS and DMA channels allocators initialisation |
---|
1444 | // global_id = cluster_id*NB_*_MAX + loc_id |
---|
1445 | // - TTY[0] is reserved for the kernel |
---|
1446 | // - In all clusters the first NB_PROCS_MAX timers |
---|
1447 | // are reserved for the kernel (context switch) |
---|
1448 | |
---|
1449 | alloc_tty_channel = 1; |
---|
1450 | alloc_nic_channel = 0; |
---|
1451 | |
---|
1452 | for (cluster_id = 0; cluster_id < header->clusters; cluster_id++) { |
---|
1453 | alloc_dma_channel[cluster_id] = 0; |
---|
1454 | alloc_timer_channel[cluster_id] = 0; |
---|
1455 | } |
---|
1456 | |
---|
1457 | // Step 1 : loop on the clusters and on the processors |
---|
1458 | // - initialise the boot_schedulers_paddr[] pointers array |
---|
1459 | // - initialise the interrupt vectors for each processor. |
---|
1460 | |
---|
1461 | for (cluster_id = 0; cluster_id < header->clusters; cluster_id++) { |
---|
1462 | |
---|
1463 | #if BOOT_DEBUG_SCHED |
---|
1464 | boot_puts("\n[BOOT DEBUG] Initialise schedulers / IT vector in cluster "); |
---|
1465 | boot_putd(cluster_id); |
---|
1466 | boot_puts("\n"); |
---|
1467 | #endif |
---|
1468 | unsigned int found = 0; |
---|
1469 | unsigned int pseg_pbase; // pseg base address |
---|
1470 | unsigned int lpid; // processor local index |
---|
1471 | |
---|
1472 | // get the physical base address of the first PSEG_TYPE_RAM pseg in cluster |
---|
1473 | for (pseg_id = cluster[cluster_id].pseg_offset; |
---|
1474 | pseg_id < cluster[cluster_id].pseg_offset + cluster[cluster_id].psegs; |
---|
1475 | pseg_id++) { |
---|
1476 | if (pseg[pseg_id].type == PSEG_TYPE_RAM) { |
---|
1477 | pseg_pbase = pseg[pseg_id].base; |
---|
1478 | found = 1; |
---|
1479 | break; |
---|
1480 | } |
---|
1481 | } |
---|
1482 | |
---|
1483 | if ((cluster[cluster_id].procs > 0) && (found == 0)) { |
---|
1484 | boot_puts("\n[BOOT ERROR] Missing RAM pseg in cluster "); |
---|
1485 | boot_putd(cluster_id); |
---|
1486 | boot_puts("\n"); |
---|
1487 | boot_exit(); |
---|
1488 | } |
---|
1489 | // 4 Kbytes per scheduler |
---|
1490 | for (lpid = 0; lpid < cluster[cluster_id].procs; lpid++) { |
---|
1491 | boot_schedulers_paddr[cluster_id * NB_PROCS_MAX + lpid] = (static_scheduler_t *) (pseg_pbase + (lpid << 12)); |
---|
1492 | } |
---|
1493 | |
---|
1494 | for (proc_id = cluster[cluster_id].proc_offset; |
---|
1495 | proc_id < cluster[cluster_id].proc_offset + cluster[cluster_id].procs; |
---|
1496 | proc_id++) { |
---|
1497 | |
---|
1498 | #if BOOT_DEBUG_SCHED |
---|
1499 | boot_puts("\nProc "); |
---|
1500 | boot_putd(proc_id); |
---|
1501 | boot_puts(" : scheduler pbase = "); |
---|
1502 | boot_putx(pseg_pbase + (proc_id << 12)); |
---|
1503 | boot_puts("\n"); |
---|
1504 | #endif |
---|
1505 | // initialise the "tasks" variable in scheduler |
---|
1506 | boot_scheduler_set_tasks(proc_id, 0); |
---|
1507 | |
---|
1508 | // initialise the interrupt_vector with ISR_DEFAULT |
---|
1509 | unsigned int slot; |
---|
1510 | for (slot = 0; slot < 32; slot++) { |
---|
1511 | boot_scheduler_set_itvector(proc_id, slot, 0); |
---|
1512 | } |
---|
1513 | |
---|
1514 | // scan the IRQs actually allocated to current processor |
---|
1515 | for (irq_id = proc[proc_id].irq_offset; |
---|
1516 | irq_id < proc[proc_id].irq_offset + proc[proc_id].irqs; |
---|
1517 | irq_id++) { |
---|
1518 | unsigned int type = irq[irq_id].type; |
---|
1519 | unsigned int icu_id = irq[irq_id].icuid; |
---|
1520 | unsigned int isr_id = irq[irq_id].isr; |
---|
1521 | unsigned int channel = irq[irq_id].channel; |
---|
1522 | unsigned int value = isr_id | (type << 8) | (channel << 16); |
---|
1523 | boot_scheduler_set_itvector(proc_id, icu_id, value); |
---|
1524 | |
---|
1525 | #if BOOT_DEBUG_SCHED |
---|
1526 | boot_puts("- IRQ : icu = "); |
---|
1527 | boot_putd(icu_id); |
---|
1528 | boot_puts(" / type = "); |
---|
1529 | boot_putd(type); |
---|
1530 | boot_puts(" / isr = "); |
---|
1531 | boot_putd(isr_id); |
---|
1532 | boot_puts(" / channel = "); |
---|
1533 | boot_putd(channel); |
---|
1534 | boot_puts("\n"); |
---|
1535 | #endif |
---|
1536 | } |
---|
1537 | } // end for procs |
---|
1538 | } // end for clusters |
---|
1539 | |
---|
1540 | // Step 2 : loop on the vspaces and the tasks |
---|
1541 | // to initialise the schedulers and the task contexts. |
---|
1542 | |
---|
1543 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) { |
---|
1544 | |
---|
1545 | #if BOOT_DEBUG_SCHED |
---|
1546 | boot_puts |
---|
1547 | ("\n[BOOT DEBUG] Initialise schedulers / task contexts for vspace "); |
---|
1548 | boot_puts(vspace[vspace_id].name); |
---|
1549 | boot_puts("\n"); |
---|
1550 | #endif |
---|
1551 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
1552 | // and the stack address are defined in virtual space. |
---|
1553 | boot_set_mmu_ptpr((unsigned int) boot_ptabs_paddr[vspace_id] >> 13); |
---|
1554 | |
---|
1555 | // loop on the tasks in vspace (task_id is the global index) |
---|
1556 | for (task_id = vspace[vspace_id].task_offset; |
---|
1557 | task_id < (vspace[vspace_id].task_offset + vspace[vspace_id].tasks); |
---|
1558 | task_id++) { |
---|
1559 | // ctx_ra : the return address is &boot_eret() |
---|
1560 | unsigned int ctx_ra = (unsigned int) &boot_eret; |
---|
1561 | |
---|
1562 | // ctx_sr : value required before an eret instruction |
---|
1563 | unsigned int ctx_sr = 0x0000FF13; |
---|
1564 | |
---|
1565 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
1566 | unsigned int ctx_ptpr = (unsigned int) boot_ptabs_paddr[vspace_id] >> 13; |
---|
1567 | |
---|
1568 | // compute gpid = global processor index |
---|
1569 | unsigned int gpid = task[task_id].clusterid * NB_PROCS_MAX + task[task_id].proclocid; |
---|
1570 | |
---|
1571 | // ctx_ptab : page_table virtual base address |
---|
1572 | unsigned int ctx_ptab = (unsigned int) boot_ptabs_vaddr[vspace_id]; |
---|
1573 | |
---|
1574 | // ctx_tty : terminal global index provided by a global allocator |
---|
1575 | unsigned int ctx_tty = 0xFFFFFFFF; |
---|
1576 | if (task[task_id].use_tty) { |
---|
1577 | if (alloc_tty_channel >= NB_TTYS) { |
---|
1578 | boot_puts("\n[BOOT ERROR] TTY index too large for task "); |
---|
1579 | boot_puts(task[task_id].name); |
---|
1580 | boot_puts(" in vspace "); |
---|
1581 | boot_puts(vspace[vspace_id].name); |
---|
1582 | boot_puts("\n"); |
---|
1583 | boot_exit(); |
---|
1584 | } |
---|
1585 | ctx_tty = alloc_tty_channel; |
---|
1586 | alloc_tty_channel++; |
---|
1587 | } |
---|
1588 | // ctx_nic : NIC channel global index provided by a global allocator |
---|
1589 | unsigned int ctx_nic = 0xFFFFFFFF; |
---|
1590 | if (task[task_id].use_nic) { |
---|
1591 | if (alloc_nic_channel >= NB_NICS) { |
---|
1592 | boot_puts("\n[BOOT ERROR] NIC channel index too large for task "); |
---|
1593 | boot_puts(task[task_id].name); |
---|
1594 | boot_puts(" in vspace "); |
---|
1595 | boot_puts(vspace[vspace_id].name); |
---|
1596 | boot_puts("\n"); |
---|
1597 | boot_exit(); |
---|
1598 | } |
---|
1599 | ctx_nic = alloc_nic_channel; |
---|
1600 | alloc_nic_channel++; |
---|
1601 | } |
---|
1602 | // ctx_timer : user TIMER global index provided by a cluster allocator |
---|
1603 | unsigned int ctx_timer = 0xFFFFFFFF; |
---|
1604 | if (task[task_id].use_timer) { |
---|
1605 | unsigned int cluster_id = task[task_id].clusterid; |
---|
1606 | unsigned int allocated = alloc_timer_channel[cluster_id]; |
---|
1607 | |
---|
1608 | if (allocated >= NB_TIMERS_MAX) { |
---|
1609 | boot_puts("\n[BOOT ERROR] local TIMER index too large for task "); |
---|
1610 | boot_puts(task[task_id].name); |
---|
1611 | boot_puts(" in vspace "); |
---|
1612 | boot_puts(vspace[vspace_id].name); |
---|
1613 | boot_puts("\n"); |
---|
1614 | boot_exit(); |
---|
1615 | } |
---|
1616 | //assert(allocated >= 0); |
---|
1617 | char found = 0; |
---|
1618 | for (irq_id = 0; irq_id < 32; irq_id++) { //look at the isr_timer isr channel |
---|
1619 | unsigned int isr = boot_scheduler_get_itvector(gpid, irq_id) & 0x000000FF; |
---|
1620 | if (isr == ISR_TIMER) { |
---|
1621 | if (allocated == 0) { |
---|
1622 | found = 1; |
---|
1623 | alloc_timer_channel[cluster_id]++; |
---|
1624 | ctx_timer = cluster_id * NB_TIMERS_MAX + alloc_timer_channel[cluster_id]; |
---|
1625 | break; |
---|
1626 | } |
---|
1627 | else { |
---|
1628 | allocated--; |
---|
1629 | } |
---|
1630 | } |
---|
1631 | } |
---|
1632 | |
---|
1633 | if (!found) { |
---|
1634 | boot_puts("\n[BOOT ERROR] No user timer available for task "); |
---|
1635 | boot_puts(task[task_id].name); |
---|
1636 | boot_puts(" in vspace "); |
---|
1637 | boot_puts(vspace[vspace_id].name); |
---|
1638 | boot_puts("\n"); |
---|
1639 | boot_exit(); |
---|
1640 | } |
---|
1641 | |
---|
1642 | } |
---|
1643 | // ctx_dma : DMA global index provided by a cluster allocator |
---|
1644 | unsigned int ctx_dma = 0xFFFFFFFF; |
---|
1645 | if (task[task_id].use_fbdma || task[task_id].use_nic) { |
---|
1646 | unsigned int cluster_id = task[task_id].clusterid; |
---|
1647 | if (alloc_dma_channel[cluster_id] >= NB_DMAS_MAX) { |
---|
1648 | boot_puts("\n[BOOT ERROR] local DMA index too large for task "); |
---|
1649 | boot_puts(task[task_id].name); |
---|
1650 | boot_puts(" in vspace "); |
---|
1651 | boot_puts(vspace[vspace_id].name); |
---|
1652 | boot_puts("\n"); |
---|
1653 | boot_exit(); |
---|
1654 | } |
---|
1655 | ctx_dma = cluster_id * NB_DMAS_MAX + alloc_dma_channel[cluster_id]; |
---|
1656 | alloc_dma_channel[cluster_id]++; |
---|
1657 | } |
---|
1658 | // ctx_epc : Get the virtual address of the start function |
---|
1659 | mapping_vobj_t * pvobj = &vobj[vspace[vspace_id].vobj_offset + vspace[vspace_id].start_offset]; |
---|
1660 | unsigned int * start_vector_vbase = (unsigned int *) pvobj->vaddr; |
---|
1661 | unsigned int ctx_epc = start_vector_vbase[task[task_id].startid]; |
---|
1662 | |
---|
1663 | // ctx_sp : Get the vobj containing the stack |
---|
1664 | unsigned int vobj_id = task[task_id].vobjlocid + vspace[vspace_id].vobj_offset; |
---|
1665 | unsigned int ctx_sp = vobj[vobj_id].vaddr + vobj[vobj_id].length; |
---|
1666 | |
---|
1667 | // In the code below, we access the scheduler with specific access |
---|
1668 | // functions, because we only have the physical address of the scheduler, |
---|
1669 | // and these functions must temporary desactivate the DTLB... |
---|
1670 | |
---|
1671 | // get local task index in scheduler[gpid] |
---|
1672 | unsigned int ltid = boot_scheduler_get_tasks(gpid); |
---|
1673 | |
---|
1674 | if (ltid >= IDLE_TASK_INDEX) { |
---|
1675 | boot_puts("\n[BOOT ERROR] : "); |
---|
1676 | boot_putd(ltid); |
---|
1677 | boot_puts(" tasks allocated to processor "); |
---|
1678 | boot_putd(gpid); |
---|
1679 | boot_puts(" / max is 15\n"); |
---|
1680 | boot_exit(); |
---|
1681 | } |
---|
1682 | // update the "tasks" field in scheduler[gpid] |
---|
1683 | boot_scheduler_set_tasks(gpid, ltid + 1); |
---|
1684 | |
---|
1685 | // update the "current" field in scheduler[gpid] |
---|
1686 | boot_scheduler_set_current(gpid, 0); |
---|
1687 | |
---|
1688 | // initializes the task context in scheduler[gpid] |
---|
1689 | boot_scheduler_set_context(gpid, ltid, CTX_SR_ID, ctx_sr); |
---|
1690 | boot_scheduler_set_context(gpid, ltid, CTX_SP_ID, ctx_sp); |
---|
1691 | boot_scheduler_set_context(gpid, ltid, CTX_RA_ID, ctx_ra); |
---|
1692 | boot_scheduler_set_context(gpid, ltid, CTX_EPC_ID, ctx_epc); |
---|
1693 | boot_scheduler_set_context(gpid, ltid, CTX_PTPR_ID, ctx_ptpr); |
---|
1694 | boot_scheduler_set_context(gpid, ltid, CTX_TTY_ID, ctx_tty); |
---|
1695 | boot_scheduler_set_context(gpid, ltid, CTX_DMA_ID, ctx_dma); |
---|
1696 | boot_scheduler_set_context(gpid, ltid, CTX_NIC_ID, ctx_nic); |
---|
1697 | boot_scheduler_set_context(gpid, ltid, CTX_TIMER_ID, ctx_timer); |
---|
1698 | boot_scheduler_set_context(gpid, ltid, CTX_PTAB_ID, ctx_ptab); |
---|
1699 | boot_scheduler_set_context(gpid, ltid, CTX_LTID_ID, ltid); |
---|
1700 | boot_scheduler_set_context(gpid, ltid, CTX_VSID_ID, vspace_id); |
---|
1701 | boot_scheduler_set_context(gpid, ltid, CTX_RUN_ID, 1); |
---|
1702 | |
---|
1703 | #if BOOT_DEBUG_SCHED |
---|
1704 | boot_puts("\nTask "); |
---|
1705 | boot_puts(task[task_id].name); |
---|
1706 | boot_puts(" ("); |
---|
1707 | boot_putd(task_id); |
---|
1708 | boot_puts(") allocated to processor "); |
---|
1709 | boot_putd(gpid); |
---|
1710 | boot_puts(" - ctx[LTID] = "); |
---|
1711 | boot_putd(ltid); |
---|
1712 | boot_puts("\n"); |
---|
1713 | |
---|
1714 | boot_puts(" - ctx[SR] = "); |
---|
1715 | boot_putx(ctx_sr); |
---|
1716 | boot_puts("\n"); |
---|
1717 | |
---|
1718 | boot_puts(" - ctx[SR] = "); |
---|
1719 | boot_putx(ctx_sp); |
---|
1720 | boot_puts("\n"); |
---|
1721 | |
---|
1722 | boot_puts(" - ctx[RA] = "); |
---|
1723 | boot_putx(ctx_ra); |
---|
1724 | boot_puts("\n"); |
---|
1725 | |
---|
1726 | boot_puts(" - ctx[EPC] = "); |
---|
1727 | boot_putx(ctx_epc); |
---|
1728 | boot_puts("\n"); |
---|
1729 | |
---|
1730 | boot_puts(" - ctx[PTPR] = "); |
---|
1731 | boot_putx(ctx_ptpr); |
---|
1732 | boot_puts("\n"); |
---|
1733 | |
---|
1734 | boot_puts(" - ctx[TTY] = "); |
---|
1735 | boot_putd(ctx_tty); |
---|
1736 | boot_puts("\n"); |
---|
1737 | |
---|
1738 | boot_puts(" - ctx[NIC] = "); |
---|
1739 | boot_putd(ctx_nic); |
---|
1740 | boot_puts("\n"); |
---|
1741 | |
---|
1742 | boot_puts(" - ctx[TIMER] = "); |
---|
1743 | boot_putd(ctx_timer); |
---|
1744 | boot_puts("\n"); |
---|
1745 | |
---|
1746 | boot_puts(" - ctx[DMA] = "); |
---|
1747 | boot_putd(ctx_dma); |
---|
1748 | boot_puts("\n"); |
---|
1749 | |
---|
1750 | boot_puts(" - ctx[PTAB] = "); |
---|
1751 | boot_putx(ctx_ptab); |
---|
1752 | boot_puts("\n"); |
---|
1753 | |
---|
1754 | boot_puts(" - ctx[VSID] = "); |
---|
1755 | boot_putd(vspace_id); |
---|
1756 | boot_puts("\n"); |
---|
1757 | |
---|
1758 | #endif |
---|
1759 | |
---|
1760 | } // end loop on tasks |
---|
1761 | } // end loop on vspaces |
---|
1762 | } // end boot_schedulers_init() |
---|
1763 | |
---|
1764 | |
---|
1765 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1766 | // This function is executed by P[0] to wakeup all processors. |
---|
1767 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1768 | void boot_start_all_procs() { |
---|
1769 | mapping_header_t * header = (mapping_header_t *) &seg_mapping_base; |
---|
1770 | header->signature = OUT_MAPPING_SIGNATURE; |
---|
1771 | } |
---|
1772 | |
---|
1773 | |
---|
1774 | ///////////////////////////////////////////////////////////////////// |
---|
1775 | // This function is the entry point of the initialisation procedure |
---|
1776 | ///////////////////////////////////////////////////////////////////// |
---|
1777 | void boot_init() { |
---|
1778 | // mapping_info checking |
---|
1779 | boot_check_mapping(); |
---|
1780 | |
---|
1781 | boot_puts("\n[BOOT] Mapping check completed at cycle "); |
---|
1782 | boot_putd(boot_proctime()); |
---|
1783 | boot_puts("\n"); |
---|
1784 | |
---|
1785 | // pseg allocators initialisation |
---|
1786 | boot_psegs_init(); |
---|
1787 | |
---|
1788 | boot_puts |
---|
1789 | ("\n[BOOT] Pseg allocators initialisation completed at cycle "); |
---|
1790 | boot_putd(boot_proctime()); |
---|
1791 | boot_puts("\n"); |
---|
1792 | |
---|
1793 | // page table building |
---|
1794 | boot_pt_init(); |
---|
1795 | |
---|
1796 | boot_puts("\n[BOOT] Page Tables initialisation completed at cycle "); |
---|
1797 | boot_putd(boot_proctime()); |
---|
1798 | boot_puts("\n"); |
---|
1799 | |
---|
1800 | // vobjs initialisation |
---|
1801 | boot_vobjs_init(); |
---|
1802 | |
---|
1803 | boot_puts("\n[BOOT] Vobjs initialisation completed at cycle : "); |
---|
1804 | boot_putd(boot_proctime()); |
---|
1805 | boot_puts("\n"); |
---|
1806 | |
---|
1807 | // peripherals initialisation |
---|
1808 | boot_peripherals_init(); |
---|
1809 | |
---|
1810 | boot_puts("\n[BOOT] Peripherals initialisation completed at cycle "); |
---|
1811 | boot_putd(boot_proctime()); |
---|
1812 | boot_puts("\n"); |
---|
1813 | |
---|
1814 | // mmu activation |
---|
1815 | boot_set_mmu_ptpr((unsigned int) boot_ptabs_paddr[0] >> 13); |
---|
1816 | boot_set_mmu_mode(0xF); |
---|
1817 | |
---|
1818 | boot_puts("\n[BOOT] MMU activation completed at cycle "); |
---|
1819 | boot_putd(boot_proctime()); |
---|
1820 | boot_puts("\n"); |
---|
1821 | |
---|
1822 | // schedulers initialisation |
---|
1823 | boot_schedulers_init(); |
---|
1824 | |
---|
1825 | boot_puts("\n[BOOT] Schedulers initialisation completed at cycle "); |
---|
1826 | boot_putd(boot_proctime()); |
---|
1827 | boot_puts("\n"); |
---|
1828 | |
---|
1829 | // start all processors |
---|
1830 | boot_start_all_procs(); |
---|
1831 | |
---|
1832 | } // end boot_init() |
---|
1833 | |
---|
1834 | |
---|
1835 | // Local Variables: |
---|
1836 | // tab-width: 4 |
---|
1837 | // c-basic-offset: 4 |
---|
1838 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
1839 | // indent-tabs-mode: nil |
---|
1840 | // End: |
---|
1841 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
1842 | |
---|