1 | ////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : boot_init.c |
---|
3 | // Date : 01/04/2012 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The boot_init.c file is part of the GIET-VM nano-kernel. |
---|
8 | // This code is executed in the boot phase by proc[0] to initialize the |
---|
9 | // peripherals and the kernel data structures: |
---|
10 | // - pages tables for the various vspaces |
---|
11 | // - shedulers for processors (including the tasks contexts and interrupt vectors) |
---|
12 | // |
---|
13 | // This nano-kernel has been written for the MIPS32 processor. |
---|
14 | // The virtual adresses are on 32 bits and use the (unsigned int) type, but the |
---|
15 | // physicals addresses can have up to 40 bits, and use the (unsigned long long) type. |
---|
16 | // |
---|
17 | // The GIET-VM uses the paged virtual memory and the MAPPING_INFO binary file |
---|
18 | // to provides two services: |
---|
19 | // 1) classical memory protection, when several independant applications compiled |
---|
20 | // in different virtual spaces are executing on the same hardware platform. |
---|
21 | // 2) data placement in NUMA architectures, when we want to control the placement |
---|
22 | // of the software objects (virtual segments) on the physical memory banks. |
---|
23 | // |
---|
24 | // The MAPPING_INFO binary data structure must be loaded in the the seg_boot_mapping |
---|
25 | // segment (at address seg_mapping_base). |
---|
26 | // This MAPPING_INFO data structure defines |
---|
27 | // - the hardware architecture: number of clusters, number or processors, |
---|
28 | // size of the memory segments, and peripherals in each cluster. |
---|
29 | // - The structure of the various multi-threaded software applications: |
---|
30 | // number of tasks, communication channels. |
---|
31 | // - The mapping: placement of virtual objects (vobj) in the virtual segments (vseg), |
---|
32 | // placement of virtual segments (vseg) in the physical segments (pseg), placement |
---|
33 | // of software tasks on the processors, |
---|
34 | // |
---|
35 | // The page table are statically build in the boot phase, and they do not |
---|
36 | // change during execution. The GIET uses only 4 Kbytes pages. |
---|
37 | // As most applications use only a limited number of segments, the number of PT2s |
---|
38 | // actually used by a given virtual space is generally smaller than 2048, and is |
---|
39 | // computed during the boot phase. |
---|
40 | // The max number of virtual spaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
41 | // |
---|
42 | // Each page table (one page table per virtual space) is monolithic, and contains |
---|
43 | // one PT1 and up to (GIET_NB_PT2_MAX) PT2s. The PT1 is addressed using the ix1 field |
---|
44 | // (11 bits) of the VPN, and the selected PT2 is addressed using the ix2 field (9 bits). |
---|
45 | // - PT1[2048] : a first 8K aligned array of unsigned int, indexed by (ix1) field of VPN. |
---|
46 | // Each entry in the PT1 contains a 32 bits PTD. The MSB bit PTD[31] is |
---|
47 | // the PTD valid bit, and LSB bits PTD[19:0] are the 20 MSB bits of the physical base |
---|
48 | // address of the selected PT2. |
---|
49 | // The PT1 contains 2048 PTD of 4 bytes => 8K bytes. |
---|
50 | // - PT2[1024][GIET_NB_PT2_MAX] : an array of array of unsigned int. |
---|
51 | // Each PT2[1024] must be 4K aligned, each entry in a PT2 contains two unsigned int: |
---|
52 | // the first word contains the protection flags, and the second word contains the PPN. |
---|
53 | // Each PT2 contains 512 PTE2 of 8bytes => 4K bytes. |
---|
54 | // The total size of a page table is finally = 8K + (GIET_NB_PT2_MAX)*4K bytes. |
---|
55 | //////////////////////////////////////////////////////////////////////////////////// |
---|
56 | |
---|
57 | #include <common.h> |
---|
58 | #include <mips32_registers.h> |
---|
59 | #include <giet_config.h> |
---|
60 | #include <mapping_info.h> |
---|
61 | #include <mwmr_channel.h> |
---|
62 | #include <barrier.h> |
---|
63 | #include <memspace.h> |
---|
64 | #include <irq_handler.h> |
---|
65 | #include <ctx_handler.h> |
---|
66 | #include <vm_handler.h> |
---|
67 | #include <hwr_mapping.h> |
---|
68 | |
---|
69 | #include <stdarg.h> |
---|
70 | |
---|
71 | |
---|
72 | #if !defined(NB_CLUSTERS) |
---|
73 | # error The NB_CLUSTERS value must be defined in the 'giet_config.h' file ! |
---|
74 | #endif |
---|
75 | |
---|
76 | #if !defined(NB_PROCS_MAX) |
---|
77 | # error The NB_PROCS_MAX value must be defined in the 'giet_config.h' file ! |
---|
78 | #endif |
---|
79 | |
---|
80 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
81 | # error The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
82 | #endif |
---|
83 | |
---|
84 | #define max(x, y) (((x) > (y)) ? (x) : (y)) |
---|
85 | |
---|
86 | |
---|
87 | //////////////////////////////////////////////////////////////////////////// |
---|
88 | // Global variables for boot code |
---|
89 | // Both the page tables for the various virtual spaces, and the schedulers |
---|
90 | // for the processors are physically distributed on the clusters. |
---|
91 | // These global variables are just arrays of pointers. |
---|
92 | //////////////////////////////////////////////////////////////////////////// |
---|
93 | |
---|
94 | // Page table addresses arrays |
---|
95 | __attribute__((section (".wdata"))) |
---|
96 | paddr_t boot_ptabs_paddr[GIET_NB_VSPACE_MAX]; |
---|
97 | |
---|
98 | __attribute__((section (".wdata"))) |
---|
99 | unsigned int boot_ptabs_vaddr[GIET_NB_VSPACE_MAX]; |
---|
100 | |
---|
101 | // Scheduler pointers array (virtual addresses) |
---|
102 | __attribute__((section (".wdata"))) |
---|
103 | static_scheduler_t* boot_schedulers[NB_CLUSTERS * NB_PROCS_MAX]; |
---|
104 | |
---|
105 | // Next free PT2 index array |
---|
106 | __attribute__((section (".wdata"))) |
---|
107 | unsigned int boot_next_free_pt2[GIET_NB_VSPACE_MAX] = |
---|
108 | { [0 ... GIET_NB_VSPACE_MAX - 1] = 0 }; |
---|
109 | |
---|
110 | // Max PT2 index |
---|
111 | __attribute__((section (".wdata"))) |
---|
112 | unsigned int boot_max_pt2[GIET_NB_VSPACE_MAX] = |
---|
113 | { [0 ... GIET_NB_VSPACE_MAX - 1] = 0 }; |
---|
114 | |
---|
115 | // lock protecting TTY0 |
---|
116 | __attribute__((section (".wdata"))) |
---|
117 | unsigned int boot_tty0_lock = 0; |
---|
118 | |
---|
119 | |
---|
120 | ////////////////////////////////////////////////////////////////////////////// |
---|
121 | // boot_procid() |
---|
122 | ////////////////////////////////////////////////////////////////////////////// |
---|
123 | inline unsigned int boot_procid() |
---|
124 | { |
---|
125 | unsigned int ret; |
---|
126 | asm volatile ("mfc0 %0, $15, 1":"=r" (ret)); |
---|
127 | return (ret & 0x3FF); |
---|
128 | } |
---|
129 | |
---|
130 | ////////////////////////////////////////////////////////////////////////////// |
---|
131 | // boot_proctime() |
---|
132 | ////////////////////////////////////////////////////////////////////////////// |
---|
133 | inline unsigned int boot_proctime() |
---|
134 | { |
---|
135 | unsigned int ret; |
---|
136 | asm volatile ("mfc0 %0, $9":"=r" (ret)); |
---|
137 | return ret; |
---|
138 | } |
---|
139 | |
---|
140 | ////////////////////////////////////////////////////////////////////////////// |
---|
141 | // boot_exit() |
---|
142 | ////////////////////////////////////////////////////////////////////////////// |
---|
143 | void boot_exit() |
---|
144 | { |
---|
145 | while (1) { asm volatile ("nop"); } |
---|
146 | } |
---|
147 | |
---|
148 | ////////////////////////////////////////////////////////////////////////////// |
---|
149 | // boot_eret() |
---|
150 | // The address of this function is used to initialise the return address (RA) |
---|
151 | // in all task contexts (when the task has never been executed. |
---|
152 | /////////////////////////////////"///////////////////////////////////////////// |
---|
153 | void boot_eret() |
---|
154 | { |
---|
155 | asm volatile ("eret"); |
---|
156 | } |
---|
157 | |
---|
158 | //////////////////////////////////////////////////////////////////////////// |
---|
159 | // boot_physical_read() |
---|
160 | // This function makes a physical read access to a 32 bits word in memory, |
---|
161 | // after a temporary DTLB de-activation and paddr extension. |
---|
162 | //////////////////////////////////////////////////////////////////////////// |
---|
163 | unsigned int boot_physical_read(paddr_t paddr) |
---|
164 | { |
---|
165 | unsigned int value; |
---|
166 | unsigned int lsb = (unsigned int) paddr; |
---|
167 | unsigned int msb = (unsigned int) (paddr >> 32); |
---|
168 | |
---|
169 | asm volatile( |
---|
170 | "mfc2 $2, $1 \n" /* $2 <= MMU_MODE */ |
---|
171 | "andi $3, $2, 0xb \n" |
---|
172 | "mtc2 $3, $1 \n" /* DTLB off */ |
---|
173 | |
---|
174 | "mtc2 %2, $24 \n" /* PADDR_EXT <= msb */ |
---|
175 | "lw %0, 0(%1) \n" /* value <= *paddr */ |
---|
176 | "mtc2 $0, $24 \n" /* PADDR_EXT <= 0 */ |
---|
177 | |
---|
178 | "mtc2 $2, $1 \n" /* restore MMU_MODE */ |
---|
179 | : "=r" (value) |
---|
180 | : "r" (lsb), "r" (msb) |
---|
181 | : "$2", "$3"); |
---|
182 | return value; |
---|
183 | } |
---|
184 | |
---|
185 | //////////////////////////////////////////////////////////////////////////// |
---|
186 | // boot_physical_write() |
---|
187 | // This function makes a physical write access to a 32 bits word in memory, |
---|
188 | // after a temporary DTLB de-activation and paddr extension. |
---|
189 | //////////////////////////////////////////////////////////////////////////// |
---|
190 | void boot_physical_write(paddr_t paddr, |
---|
191 | unsigned int value) |
---|
192 | { |
---|
193 | unsigned int lsb = (unsigned int)paddr; |
---|
194 | unsigned int msb = (unsigned int)(paddr >> 32); |
---|
195 | |
---|
196 | asm volatile( |
---|
197 | "mfc2 $2, $1 \n" /* $2 <= MMU_MODE */ |
---|
198 | "andi $3, $2, 0xb \n" |
---|
199 | "mtc2 $3, $1 \n" /* DTLB off */ |
---|
200 | |
---|
201 | "mtc2 %2, $24 \n" /* PADDR_EXT <= msb */ |
---|
202 | "sw %0, 0(%1) \n" /* *paddr <= value */ |
---|
203 | "mtc2 $0, $24 \n" /* PADDR_EXT <= 0 */ |
---|
204 | |
---|
205 | "mtc2 $2, $1 \n" /* restore MMU_MODE */ |
---|
206 | : |
---|
207 | : "r" (value), "r" (lsb), "r" (msb) |
---|
208 | : "$2", "$3"); |
---|
209 | } |
---|
210 | |
---|
211 | ////////////////////////////////////////////////////////////////////////////// |
---|
212 | // boot_set_mmu_ptpr() |
---|
213 | // This function set a new value for the MMU PTPR register. |
---|
214 | ////////////////////////////////////////////////////////////////////////////// |
---|
215 | inline void boot_set_mmu_ptpr(unsigned int val) |
---|
216 | { |
---|
217 | asm volatile ("mtc2 %0, $0"::"r" (val)); |
---|
218 | } |
---|
219 | |
---|
220 | ////////////////////////////////////////////////////////////////////////////// |
---|
221 | // boot_set_mmu_mode() |
---|
222 | // This function set a new value for the MMU MODE register. |
---|
223 | ////////////////////////////////////////////////////////////////////////////// |
---|
224 | inline void boot_set_mmu_mode(unsigned int val) |
---|
225 | { |
---|
226 | asm volatile ("mtc2 %0, $1"::"r" (val)); |
---|
227 | } |
---|
228 | |
---|
229 | //////////////////////////////////////////////////////////////////////////// |
---|
230 | // boot_puts() |
---|
231 | // display a string on TTY0 |
---|
232 | //////////////////////////////////////////////////////////////////////////// |
---|
233 | void boot_puts(const char * buffer) |
---|
234 | { |
---|
235 | unsigned int *tty_address = (unsigned int *) &seg_tty_base; |
---|
236 | unsigned int n; |
---|
237 | |
---|
238 | for (n = 0; n < 100; n++) |
---|
239 | { |
---|
240 | if (buffer[n] == 0) break; |
---|
241 | tty_address[TTY_WRITE] = (unsigned int) buffer[n]; |
---|
242 | } |
---|
243 | } |
---|
244 | |
---|
245 | //////////////////////////////////////////////////////////////////////////// |
---|
246 | // boot_putx() |
---|
247 | // display a 32 bits unsigned int as an hexadecimal string on TTY0 |
---|
248 | //////////////////////////////////////////////////////////////////////////// |
---|
249 | void boot_putx(unsigned int val) |
---|
250 | { |
---|
251 | static const char HexaTab[] = "0123456789ABCDEF"; |
---|
252 | char buf[11]; |
---|
253 | unsigned int c; |
---|
254 | |
---|
255 | buf[0] = '0'; |
---|
256 | buf[1] = 'x'; |
---|
257 | buf[10] = 0; |
---|
258 | |
---|
259 | for (c = 0; c < 8; c++) |
---|
260 | { |
---|
261 | buf[9 - c] = HexaTab[val & 0xF]; |
---|
262 | val = val >> 4; |
---|
263 | } |
---|
264 | boot_puts(buf); |
---|
265 | } |
---|
266 | |
---|
267 | //////////////////////////////////////////////////////////////////////////// |
---|
268 | // boot_putl() |
---|
269 | // display a 64 bits unsigned long as an hexadecimal string on TTY0 |
---|
270 | //////////////////////////////////////////////////////////////////////////// |
---|
271 | void boot_putl(paddr_t val) |
---|
272 | { |
---|
273 | static const char HexaTab[] = "0123456789ABCDEF"; |
---|
274 | char buf[19]; |
---|
275 | unsigned int c; |
---|
276 | |
---|
277 | buf[0] = '0'; |
---|
278 | buf[1] = 'x'; |
---|
279 | buf[18] = 0; |
---|
280 | |
---|
281 | for (c = 0; c < 16; c++) |
---|
282 | { |
---|
283 | buf[17 - c] = HexaTab[(unsigned int)val & 0xF]; |
---|
284 | val = val >> 4; |
---|
285 | } |
---|
286 | boot_puts(buf); |
---|
287 | } |
---|
288 | |
---|
289 | //////////////////////////////////////////////////////////////////////////// |
---|
290 | // boot_putd() |
---|
291 | // display a 32 bits unsigned int as a decimal string on TTY0 |
---|
292 | //////////////////////////////////////////////////////////////////////////// |
---|
293 | void boot_putd(unsigned int val) |
---|
294 | { |
---|
295 | static const char DecTab[] = "0123456789"; |
---|
296 | char buf[11]; |
---|
297 | unsigned int i; |
---|
298 | unsigned int first; |
---|
299 | |
---|
300 | buf[10] = 0; |
---|
301 | |
---|
302 | for (i = 0; i < 10; i++) |
---|
303 | { |
---|
304 | if ((val != 0) || (i == 0)) |
---|
305 | { |
---|
306 | buf[9 - i] = DecTab[val % 10]; |
---|
307 | first = 9 - i; |
---|
308 | } |
---|
309 | else |
---|
310 | { |
---|
311 | break; |
---|
312 | } |
---|
313 | val /= 10; |
---|
314 | } |
---|
315 | boot_puts(&buf[first]); |
---|
316 | } |
---|
317 | |
---|
318 | ///////////////////////////////////////////////////////////////////////////// |
---|
319 | // mapping_info data structure access functions |
---|
320 | ///////////////////////////////////////////////////////////////////////////// |
---|
321 | inline mapping_cluster_t *boot_get_cluster_base(mapping_header_t * header) |
---|
322 | { |
---|
323 | return (mapping_cluster_t *) ((char *) header + MAPPING_HEADER_SIZE); |
---|
324 | } |
---|
325 | ///////////////////////////////////////////////////////////////////////////// |
---|
326 | inline mapping_pseg_t *boot_get_pseg_base(mapping_header_t * header) |
---|
327 | { |
---|
328 | return (mapping_pseg_t *) ((char *) header + |
---|
329 | MAPPING_HEADER_SIZE + |
---|
330 | MAPPING_CLUSTER_SIZE * header->clusters); |
---|
331 | } |
---|
332 | ///////////////////////////////////////////////////////////////////////////// |
---|
333 | inline mapping_vspace_t *boot_get_vspace_base(mapping_header_t * header) |
---|
334 | { |
---|
335 | return (mapping_vspace_t *) ((char *) header + |
---|
336 | MAPPING_HEADER_SIZE + |
---|
337 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
338 | MAPPING_PSEG_SIZE * header->psegs); |
---|
339 | } |
---|
340 | ///////////////////////////////////////////////////////////////////////////// |
---|
341 | inline mapping_vseg_t *boot_get_vseg_base(mapping_header_t * header) |
---|
342 | { |
---|
343 | return (mapping_vseg_t *) ((char *) header + |
---|
344 | MAPPING_HEADER_SIZE + |
---|
345 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
346 | MAPPING_PSEG_SIZE * header->psegs + |
---|
347 | MAPPING_VSPACE_SIZE * header->vspaces); |
---|
348 | } |
---|
349 | ///////////////////////////////////////////////////////////////////////////// |
---|
350 | inline mapping_vobj_t *boot_get_vobj_base(mapping_header_t * header) |
---|
351 | { |
---|
352 | return (mapping_vobj_t *) ((char *) header + |
---|
353 | MAPPING_HEADER_SIZE + |
---|
354 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
355 | MAPPING_PSEG_SIZE * header->psegs + |
---|
356 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
357 | MAPPING_VSEG_SIZE * header->vsegs); |
---|
358 | } |
---|
359 | ///////////////////////////////////////////////////////////////////////////// |
---|
360 | inline mapping_task_t *boot_get_task_base(mapping_header_t * header) |
---|
361 | { |
---|
362 | return (mapping_task_t *) ((char *) header + |
---|
363 | MAPPING_HEADER_SIZE + |
---|
364 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
365 | MAPPING_PSEG_SIZE * header->psegs + |
---|
366 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
367 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
368 | MAPPING_VOBJ_SIZE * header->vobjs); |
---|
369 | } |
---|
370 | ///////////////////////////////////////////////////////////////////////////// |
---|
371 | inline mapping_proc_t *boot_get_proc_base(mapping_header_t * header) |
---|
372 | { |
---|
373 | return (mapping_proc_t *) ((char *) header + |
---|
374 | MAPPING_HEADER_SIZE + |
---|
375 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
376 | MAPPING_PSEG_SIZE * header->psegs + |
---|
377 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
378 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
379 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
380 | MAPPING_TASK_SIZE * header->tasks); |
---|
381 | } |
---|
382 | ///////////////////////////////////////////////////////////////////////////// |
---|
383 | inline mapping_irq_t *boot_get_irq_base(mapping_header_t * header) |
---|
384 | { |
---|
385 | return (mapping_irq_t *) ((char *) header + |
---|
386 | MAPPING_HEADER_SIZE + |
---|
387 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
388 | MAPPING_PSEG_SIZE * header->psegs + |
---|
389 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
390 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
391 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
392 | MAPPING_TASK_SIZE * header->tasks + |
---|
393 | MAPPING_PROC_SIZE * header->procs); |
---|
394 | } |
---|
395 | ///////////////////////////////////////////////////////////////////////////// |
---|
396 | inline mapping_coproc_t *boot_get_coproc_base(mapping_header_t * header) |
---|
397 | { |
---|
398 | return (mapping_coproc_t *) ((char *) header + |
---|
399 | MAPPING_HEADER_SIZE + |
---|
400 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
401 | MAPPING_PSEG_SIZE * header->psegs + |
---|
402 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
403 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
404 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
405 | MAPPING_TASK_SIZE * header->tasks + |
---|
406 | MAPPING_PROC_SIZE * header->procs + |
---|
407 | MAPPING_IRQ_SIZE * header->irqs); |
---|
408 | } |
---|
409 | /////////////////////////////////////////////////////////////////////////////////// |
---|
410 | inline mapping_cp_port_t *boot_get_cp_port_base(mapping_header_t * header) |
---|
411 | { |
---|
412 | return (mapping_cp_port_t *) ((char *) header + |
---|
413 | MAPPING_HEADER_SIZE + |
---|
414 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
415 | MAPPING_PSEG_SIZE * header->psegs + |
---|
416 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
417 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
418 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
419 | MAPPING_TASK_SIZE * header->tasks + |
---|
420 | MAPPING_PROC_SIZE * header->procs + |
---|
421 | MAPPING_IRQ_SIZE * header->irqs + |
---|
422 | MAPPING_COPROC_SIZE * header->coprocs); |
---|
423 | } |
---|
424 | /////////////////////////////////////////////////////////////////////////////////// |
---|
425 | inline mapping_periph_t *boot_get_periph_base(mapping_header_t * header) |
---|
426 | { |
---|
427 | return (mapping_periph_t *) ((char *) header + |
---|
428 | MAPPING_HEADER_SIZE + |
---|
429 | MAPPING_CLUSTER_SIZE * header->clusters + |
---|
430 | MAPPING_PSEG_SIZE * header->psegs + |
---|
431 | MAPPING_VSPACE_SIZE * header->vspaces + |
---|
432 | MAPPING_VOBJ_SIZE * header->vobjs + |
---|
433 | MAPPING_VSEG_SIZE * header->vsegs + |
---|
434 | MAPPING_TASK_SIZE * header->tasks + |
---|
435 | MAPPING_PROC_SIZE * header->procs + |
---|
436 | MAPPING_IRQ_SIZE * header->irqs + |
---|
437 | MAPPING_COPROC_SIZE * header->coprocs + |
---|
438 | MAPPING_CP_PORT_SIZE * header->cp_ports); |
---|
439 | } |
---|
440 | |
---|
441 | ////////////////////////////////////////////////////////////////////////////// |
---|
442 | // boot_pseg_get() |
---|
443 | // This function returns the pointer on a physical segment |
---|
444 | // identified by the pseg index. |
---|
445 | ////////////////////////////////////////////////////////////////////////////// |
---|
446 | mapping_pseg_t *boot_pseg_get(unsigned int seg_id) |
---|
447 | { |
---|
448 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
449 | mapping_pseg_t * pseg = boot_get_pseg_base(header); |
---|
450 | |
---|
451 | // checking argument |
---|
452 | if (seg_id >= header->psegs) |
---|
453 | { |
---|
454 | boot_puts("\n[BOOT ERROR] : seg_id argument too large\n"); |
---|
455 | boot_puts(" in function boot_pseg_get()\n"); |
---|
456 | boot_exit(); |
---|
457 | } |
---|
458 | |
---|
459 | return &pseg[seg_id]; |
---|
460 | } |
---|
461 | |
---|
462 | ////////////////////////////////////////////////////////////////////////////// |
---|
463 | // boot_add_pte() |
---|
464 | // This function registers a new PTE in the page table defined |
---|
465 | // by the vspace_id argument, and updates both PT1 and PT2. |
---|
466 | // A new PT2 is used when required. |
---|
467 | // As the set of PT2s is implemented as a fixed size array (no dynamic |
---|
468 | // allocation), this function checks a possible overflow of the PT2 array. |
---|
469 | ////////////////////////////////////////////////////////////////////////////// |
---|
470 | void boot_add_pte(unsigned int vspace_id, |
---|
471 | unsigned int vpn, |
---|
472 | unsigned int flags, |
---|
473 | unsigned int ppn, |
---|
474 | unsigned int verbose) |
---|
475 | { |
---|
476 | unsigned int ix1; |
---|
477 | unsigned int ix2; |
---|
478 | paddr_t pt1_pbase; // PT1 physical base address |
---|
479 | paddr_t pt2_pbase; // PT2 physical base address |
---|
480 | paddr_t pte_paddr; // PTE physucal address |
---|
481 | unsigned int pt2_id; // PT2 index |
---|
482 | unsigned int ptd; // PTD : entry in PT1 |
---|
483 | unsigned int max_pt2; // max number of PT2s for a given vspace |
---|
484 | |
---|
485 | ix1 = vpn >> 9; // 11 bits |
---|
486 | ix2 = vpn & 0x1FF; // 9 bits |
---|
487 | |
---|
488 | // check that the boot_max_pt2[vspace_id] has been set |
---|
489 | max_pt2 = boot_max_pt2[vspace_id]; |
---|
490 | |
---|
491 | if (max_pt2 == 0) |
---|
492 | { |
---|
493 | boot_puts("Undefined page table for vspace "); |
---|
494 | boot_putd(vspace_id); |
---|
495 | boot_puts("\n"); |
---|
496 | boot_exit(); |
---|
497 | } |
---|
498 | |
---|
499 | |
---|
500 | // get page table physical base address |
---|
501 | pt1_pbase = boot_ptabs_paddr[vspace_id]; |
---|
502 | |
---|
503 | // get ptd in PT1 |
---|
504 | ptd = boot_physical_read(pt1_pbase + 4 * ix1); |
---|
505 | |
---|
506 | if ((ptd & PTE_V) == 0) // invalid PTD: compute PT2 base address, |
---|
507 | // and set a new PTD in PT1 |
---|
508 | { |
---|
509 | pt2_id = boot_next_free_pt2[vspace_id]; |
---|
510 | if (pt2_id == max_pt2) |
---|
511 | { |
---|
512 | boot_puts("\n[BOOT ERROR] in boot_add_pte() function\n"); |
---|
513 | boot_puts("the length of the ptab vobj is too small\n"); |
---|
514 | |
---|
515 | boot_puts(" max_pt2 = "); |
---|
516 | boot_putd( max_pt2 ); |
---|
517 | boot_puts("\n"); |
---|
518 | boot_puts(" pt2_id = "); |
---|
519 | boot_putd( pt2_id ); |
---|
520 | boot_puts("\n"); |
---|
521 | |
---|
522 | boot_exit(); |
---|
523 | } |
---|
524 | else |
---|
525 | { |
---|
526 | pt2_pbase = pt1_pbase + PT1_SIZE + PT2_SIZE * pt2_id; |
---|
527 | ptd = PTE_V | PTE_T | (unsigned int) (pt2_pbase >> 12); |
---|
528 | boot_physical_write( pt1_pbase + 4 * ix1, ptd); |
---|
529 | boot_next_free_pt2[vspace_id] = pt2_id + 1; |
---|
530 | } |
---|
531 | } |
---|
532 | else // valid PTD: compute PT2 base address |
---|
533 | { |
---|
534 | pt2_pbase = ((paddr_t)(ptd & 0x0FFFFFFF)) << 12; |
---|
535 | } |
---|
536 | |
---|
537 | // set PTE in PT2 : flags & PPN in two 32 bits words |
---|
538 | pte_paddr = pt2_pbase + 8 * ix2; |
---|
539 | boot_physical_write(pte_paddr , flags); |
---|
540 | boot_physical_write(pte_paddr + 4, ppn); |
---|
541 | |
---|
542 | if (verbose) |
---|
543 | { |
---|
544 | boot_puts(" / pt1_pbase = "); |
---|
545 | boot_putl( pt1_pbase ); |
---|
546 | boot_puts(" / ptd = "); |
---|
547 | boot_putl( ptd ); |
---|
548 | boot_puts(" / pt2_pbase = "); |
---|
549 | boot_putl( pt2_pbase ); |
---|
550 | boot_puts(" / pte_paddr = "); |
---|
551 | boot_putl( pte_paddr ); |
---|
552 | boot_puts(" / ppn = "); |
---|
553 | boot_putx( ppn ); |
---|
554 | boot_puts("/\n"); |
---|
555 | } |
---|
556 | |
---|
557 | } // end boot_add_pte() |
---|
558 | |
---|
559 | |
---|
560 | ///////////////////////////////////////////////////////////////////// |
---|
561 | // This function builds the page table for a given vspace. |
---|
562 | // The physical base addresses for all vsegs (global and private) |
---|
563 | // must have been previously computed and stored in the mapping. |
---|
564 | // It initializes the MWMR channels. |
---|
565 | ///////////////////////////////////////////////////////////////////// |
---|
566 | void boot_vspace_pt_build(unsigned int vspace_id) |
---|
567 | { |
---|
568 | unsigned int vseg_id; |
---|
569 | unsigned int npages; |
---|
570 | unsigned int ppn; |
---|
571 | unsigned int vpn; |
---|
572 | unsigned int flags; |
---|
573 | unsigned int page_id; |
---|
574 | unsigned int verbose = 0; // can be used to activate trace in add_pte() |
---|
575 | |
---|
576 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
577 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
578 | mapping_vseg_t * vseg = boot_get_vseg_base(header); |
---|
579 | |
---|
580 | // private segments |
---|
581 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
582 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
583 | vseg_id++) |
---|
584 | { |
---|
585 | vpn = vseg[vseg_id].vbase >> 12; |
---|
586 | ppn = (unsigned int) (vseg[vseg_id].pbase >> 12); |
---|
587 | |
---|
588 | npages = vseg[vseg_id].length >> 12; |
---|
589 | if ((vseg[vseg_id].length & 0xFFF) != 0) npages++; |
---|
590 | |
---|
591 | flags = PTE_V; |
---|
592 | if (vseg[vseg_id].mode & C_MODE_MASK) flags = flags | PTE_C; |
---|
593 | if (vseg[vseg_id].mode & X_MODE_MASK) flags = flags | PTE_X; |
---|
594 | if (vseg[vseg_id].mode & W_MODE_MASK) flags = flags | PTE_W; |
---|
595 | if (vseg[vseg_id].mode & U_MODE_MASK) flags = flags | PTE_U; |
---|
596 | |
---|
597 | #if BOOT_DEBUG_PT |
---|
598 | boot_puts(vseg[vseg_id].name); |
---|
599 | boot_puts(" : flags = "); |
---|
600 | boot_putx(flags); |
---|
601 | boot_puts(" / npages = "); |
---|
602 | boot_putd(npages); |
---|
603 | boot_puts(" / vbase = "); |
---|
604 | boot_putx(vseg[vseg_id].vbase); |
---|
605 | boot_puts(" / pbase = "); |
---|
606 | boot_putl(vseg[vseg_id].pbase); |
---|
607 | boot_puts("\n"); |
---|
608 | #endif |
---|
609 | // loop on 4K pages |
---|
610 | for (page_id = 0; page_id < npages; page_id++) |
---|
611 | { |
---|
612 | boot_add_pte(vspace_id, vpn, flags, ppn, verbose); |
---|
613 | vpn++; |
---|
614 | ppn++; |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | // global segments |
---|
619 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
620 | { |
---|
621 | vpn = vseg[vseg_id].vbase >> 12; |
---|
622 | ppn = (unsigned int) (vseg[vseg_id].pbase >> 12); |
---|
623 | npages = vseg[vseg_id].length >> 12; |
---|
624 | if ((vseg[vseg_id].length & 0xFFF) != 0) npages++; |
---|
625 | |
---|
626 | flags = PTE_V; |
---|
627 | if (vseg[vseg_id].mode & C_MODE_MASK) flags = flags | PTE_C; |
---|
628 | if (vseg[vseg_id].mode & X_MODE_MASK) flags = flags | PTE_X; |
---|
629 | if (vseg[vseg_id].mode & W_MODE_MASK) flags = flags | PTE_W; |
---|
630 | if (vseg[vseg_id].mode & U_MODE_MASK) flags = flags | PTE_U; |
---|
631 | |
---|
632 | #if BOOT_DEBUG_PT |
---|
633 | boot_puts(vseg[vseg_id].name); |
---|
634 | boot_puts(" : flags = "); |
---|
635 | boot_putx(flags); |
---|
636 | boot_puts(" / npages = "); |
---|
637 | boot_putd(npages); |
---|
638 | boot_puts(" / vbase = "); |
---|
639 | boot_putx(vseg[vseg_id].vbase); |
---|
640 | boot_puts(" / pbase = "); |
---|
641 | boot_putl(vseg[vseg_id].pbase); |
---|
642 | boot_puts("\n"); |
---|
643 | #endif |
---|
644 | // loop on 4K pages |
---|
645 | for (page_id = 0; page_id < npages; page_id++) |
---|
646 | { |
---|
647 | boot_add_pte(vspace_id, vpn, flags, ppn, verbose); |
---|
648 | vpn++; |
---|
649 | ppn++; |
---|
650 | } |
---|
651 | } |
---|
652 | } // end boot_vspace_pt_build() |
---|
653 | |
---|
654 | |
---|
655 | /////////////////////////////////////////////////////////////////////////// |
---|
656 | // Aligns the value of paddr or vaddr to the required alignement, |
---|
657 | // defined by alignPow2 == L2(alignement). |
---|
658 | /////////////////////////////////////////////////////////////////////////// |
---|
659 | paddr_t paddr_align_to(paddr_t paddr, unsigned int alignPow2) |
---|
660 | { |
---|
661 | paddr_t mask = (1 << alignPow2) - 1; |
---|
662 | return ((paddr + mask) & ~mask); |
---|
663 | } |
---|
664 | |
---|
665 | unsigned int vaddr_align_to(unsigned int vaddr, unsigned int alignPow2) |
---|
666 | { |
---|
667 | unsigned int mask = (1 << alignPow2) - 1; |
---|
668 | return ((vaddr + mask) & ~mask); |
---|
669 | } |
---|
670 | |
---|
671 | |
---|
672 | |
---|
673 | /////////////////////////////////////////////////////////// |
---|
674 | // Maps vseg on a pbase with identity mapping required |
---|
675 | // The pseg is already set |
---|
676 | // The length of the vseg must already be known |
---|
677 | /////////////////////////////////////////////////////////// |
---|
678 | void boot_vseg_set_paddr_ident(mapping_vseg_t * vseg) { |
---|
679 | unsigned int vseg_id; |
---|
680 | |
---|
681 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
682 | mapping_vseg_t * vseg_base = boot_get_vseg_base(header); |
---|
683 | |
---|
684 | if (vseg->pbase_set != 0) { |
---|
685 | boot_puts("\n[BOOT ERROR] in boot_vseg_set_paddr() function (internal error):\n"); |
---|
686 | boot_puts("*** vseg->pbase already set\n"); |
---|
687 | boot_exit(); |
---|
688 | } |
---|
689 | |
---|
690 | for (vseg_id = 0; vseg_id < header->vsegs; vseg_id++) { |
---|
691 | // Already mapped vseg on the same pseg |
---|
692 | if (vseg_base[vseg_id].psegid == vseg->psegid && vseg_base[vseg_id].pbase_set == 1) { |
---|
693 | // Checking overlap condition |
---|
694 | if (vseg->vbase == vseg_base[vseg_id].pbase || |
---|
695 | ((vseg->vbase < vseg_base[vseg_id].pbase) && (vseg->vbase + vseg->length > vseg_base[vseg_id].pbase)) || |
---|
696 | ((vseg->vbase > vseg_base[vseg_id].pbase) && (vseg_base[vseg_id].pbase + vseg_base[vseg_id].length > vseg->vbase))) { |
---|
697 | boot_puts("\n[BOOT ERROR] in boot_vseg_set_paddr_ident() function\n"); |
---|
698 | boot_puts("*** Overlapping segments:\n"); |
---|
699 | boot_puts(" seg with base = "); |
---|
700 | boot_putl(vseg->vbase); |
---|
701 | boot_puts(" - length = "); |
---|
702 | boot_putl(vseg->length); |
---|
703 | boot_puts("\n"); |
---|
704 | boot_puts(" seg with base = \n"); |
---|
705 | boot_putl(vseg_base[vseg_id].vbase); |
---|
706 | boot_puts(" - length = "); |
---|
707 | boot_putl(vseg_base[vseg_id].length); |
---|
708 | boot_puts("\n"); |
---|
709 | boot_exit(); |
---|
710 | } |
---|
711 | } |
---|
712 | } |
---|
713 | vseg->pbase = vseg->vbase; |
---|
714 | vseg->pbase_set = 1; |
---|
715 | } |
---|
716 | |
---|
717 | |
---|
718 | |
---|
719 | /////////////////////////////////////////////////////////// |
---|
720 | // Maps vseg on a pbase with no identity mapping required |
---|
721 | // The pseg is already set |
---|
722 | // The length of the vseg must already be known |
---|
723 | /////////////////////////////////////////////////////////// |
---|
724 | void boot_vseg_set_paddr(mapping_vseg_t * vseg) { |
---|
725 | unsigned int vseg_id; |
---|
726 | unsigned int nb_vsegs_mapped = 0; |
---|
727 | unsigned int mapped = 0; |
---|
728 | int i = 0; |
---|
729 | |
---|
730 | paddr_t prev_base; |
---|
731 | paddr_t prev_length = 0; |
---|
732 | paddr_t curr_base = 0; |
---|
733 | paddr_t curr_length = 0; |
---|
734 | paddr_t next_base = 0; |
---|
735 | paddr_t next_length = 0; |
---|
736 | |
---|
737 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
738 | mapping_vseg_t * vseg_base = boot_get_vseg_base(header); |
---|
739 | mapping_vobj_t * vobj_base = boot_get_vobj_base(header); |
---|
740 | mapping_pseg_t * pseg = boot_pseg_get(vseg->psegid); |
---|
741 | |
---|
742 | const int align = max(vobj_base[vseg->vobj_offset].align, 12); |
---|
743 | |
---|
744 | prev_base = pseg->base; |
---|
745 | |
---|
746 | if (vseg->pbase_set != 0) { |
---|
747 | boot_puts("\n[BOOT ERROR] in boot_vseg_set_paddr() function (internal error):\n"); |
---|
748 | boot_puts("*** vseg->pbase already set\n"); |
---|
749 | boot_exit(); |
---|
750 | } |
---|
751 | |
---|
752 | // We now determinine the physical base address of the vseg |
---|
753 | // Method: |
---|
754 | // Now that all identity segments have been mapped |
---|
755 | // We are free to place the vseg where we want |
---|
756 | // From a logical point of view, we have the list of mapped vsegs ordered by their pbase (increasing) |
---|
757 | // We try to place the vseg between two consecutive elements of this list |
---|
758 | // If this fails, we try between the next two mapped vsegs |
---|
759 | |
---|
760 | // Counting the number of vsegs mapped on this pseg |
---|
761 | // We also initialize curr_base and curr_length with some values |
---|
762 | for (vseg_id = 0; vseg_id < header->vsegs; vseg_id++) { |
---|
763 | if (vseg_base[vseg_id].psegid == vseg->psegid && vseg_base[vseg_id].pbase_set == 1) { |
---|
764 | nb_vsegs_mapped++; |
---|
765 | curr_base = vseg_base[vseg_id].pbase; |
---|
766 | curr_length = vseg_base[vseg_id].length; |
---|
767 | } |
---|
768 | } |
---|
769 | |
---|
770 | if (nb_vsegs_mapped == 0) { |
---|
771 | if (vseg->length <= pseg->length) { |
---|
772 | vseg->pbase = pseg->base; |
---|
773 | vseg->pbase_set = 1; |
---|
774 | return; |
---|
775 | } |
---|
776 | else { |
---|
777 | boot_puts("\n[BOOT ERROR] in boot_vseg_set_paddr() function\n"); |
---|
778 | boot_puts("*** PSEG is too small for mapping vseg (base:"); |
---|
779 | boot_putl(vseg->vbase); |
---|
780 | boot_puts(" - length: "); |
---|
781 | boot_putl(vseg->length); |
---|
782 | boot_puts(")\n"); |
---|
783 | boot_exit(); |
---|
784 | } |
---|
785 | } |
---|
786 | |
---|
787 | // We look for the vseg mapped on the same pseg having the smallest vaddr |
---|
788 | for (vseg_id = 0; vseg_id < header->vsegs; vseg_id++) { |
---|
789 | if (vseg_base[vseg_id].psegid == vseg->psegid |
---|
790 | && &vseg_base[vseg_id] != vseg |
---|
791 | && vseg_base[vseg_id].pbase_set == 1 |
---|
792 | && vseg_base[vseg_id].pbase < curr_base) { |
---|
793 | curr_base = vseg_base[vseg_id].pbase; |
---|
794 | curr_length = vseg_base[vseg_id].length; |
---|
795 | } |
---|
796 | } |
---|
797 | |
---|
798 | // We iterate on each vseg mapped in the order of their growing pbase |
---|
799 | // and try to insert the current vseg right after each |
---|
800 | while (i < nb_vsegs_mapped) { |
---|
801 | if (paddr_align_to(prev_base + prev_length, align) + vseg->length <= curr_base) { |
---|
802 | vseg->pbase = paddr_align_to(prev_base + prev_length, align); |
---|
803 | vseg->pbase_set = 1; |
---|
804 | mapped = 1; |
---|
805 | break; |
---|
806 | } |
---|
807 | else if (i < nb_vsegs_mapped - 1) { |
---|
808 | int found = 0; |
---|
809 | next_base = 0; |
---|
810 | // We search for the vseg having the minimal pbase which is more than the pbase of the current vseg |
---|
811 | for (vseg_id = 0; vseg_id < header->vsegs; vseg_id++) { |
---|
812 | if (vseg_base[vseg_id].psegid == vseg->psegid |
---|
813 | && &vseg_base[vseg_id] != vseg |
---|
814 | && vseg_base[vseg_id].pbase_set == 1 |
---|
815 | && (vseg_base[vseg_id].pbase < next_base || !found) |
---|
816 | && vseg_base[vseg_id].pbase > curr_base) { |
---|
817 | found = 1; |
---|
818 | next_base = vseg_base[vseg_id].pbase; |
---|
819 | next_length = vseg_base[vseg_id].length; |
---|
820 | } |
---|
821 | } |
---|
822 | if (!found) { |
---|
823 | boot_puts("\n[BOOT ERROR] in boot_vseg_set_paddr() function (internal error):\n"); |
---|
824 | boot_puts("*** Next vseg not found\n"); |
---|
825 | boot_exit(); |
---|
826 | } |
---|
827 | |
---|
828 | prev_base = curr_base; |
---|
829 | prev_length = curr_length; |
---|
830 | |
---|
831 | curr_base = next_base; |
---|
832 | curr_length = next_length; |
---|
833 | } |
---|
834 | else { |
---|
835 | // The current vseg is the last one (highest mapped paddr on this pseg) |
---|
836 | // We try to insert the current vseg after it |
---|
837 | if (paddr_align_to(curr_base + curr_length, align) + vseg->length <= pseg->base + pseg->length) { |
---|
838 | vseg->pbase = paddr_align_to(curr_base + curr_length, align); |
---|
839 | vseg->pbase_set = 1; |
---|
840 | mapped = 1; |
---|
841 | } |
---|
842 | } |
---|
843 | i++; |
---|
844 | } |
---|
845 | |
---|
846 | if (!mapped) { |
---|
847 | boot_puts("\n[BOOT ERROR] in boot_vseg_set_paddr() function:\n"); |
---|
848 | boot_puts("*** Not enough space to map vseg (base: "); |
---|
849 | boot_putl(vseg->vbase); |
---|
850 | boot_puts(" - length: "); |
---|
851 | boot_putl(vseg->length); |
---|
852 | boot_puts(")\n"); |
---|
853 | boot_exit(); |
---|
854 | } |
---|
855 | } |
---|
856 | |
---|
857 | |
---|
858 | /////////////////////////////////////////////////////////////////////////// |
---|
859 | // This function computes the physical base address for a vseg |
---|
860 | // as specified in the mapping info data structure. |
---|
861 | // It updates the pbase and the length fields of the vseg. |
---|
862 | // It updates the pbase and vbase fields of all vobjs in the vseg. |
---|
863 | // It updates the boot_ptabs_paddr[] and boot_ptabs_vaddr[] arrays. |
---|
864 | // It is a global vseg if vspace_id = (-1). |
---|
865 | /////////////////////////////////////////////////////////////////////////// |
---|
866 | void boot_vseg_map(mapping_vseg_t * vseg, unsigned int vspace_id) |
---|
867 | { |
---|
868 | unsigned int vobj_id; |
---|
869 | unsigned int cur_vaddr; |
---|
870 | paddr_t cur_paddr; |
---|
871 | paddr_t cur_length; |
---|
872 | unsigned int offset; |
---|
873 | |
---|
874 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
875 | mapping_vobj_t * vobj = boot_get_vobj_base(header); |
---|
876 | |
---|
877 | // We make a first loop on the vobj of the vseg to determine the real length of the vseg |
---|
878 | // This length is required to determine the pbase of the vseg |
---|
879 | cur_length = 0; |
---|
880 | for (vobj_id = vseg->vobj_offset; vobj_id < (vseg->vobj_offset + vseg->vobjs); vobj_id++) { |
---|
881 | if (vobj[vobj_id].align) { |
---|
882 | cur_length = vaddr_align_to(cur_length, vobj[vobj_id].align); |
---|
883 | } |
---|
884 | cur_length += vobj[vobj_id].length; |
---|
885 | } |
---|
886 | vseg->length = paddr_align_to(cur_length, 12); |
---|
887 | |
---|
888 | // We can now compute the vseg physical base address |
---|
889 | if (vseg->ident != 0) { |
---|
890 | // identity mapping required |
---|
891 | boot_vseg_set_paddr_ident(vseg); |
---|
892 | } |
---|
893 | else { |
---|
894 | // unconstrained mapping |
---|
895 | boot_vseg_set_paddr(vseg); |
---|
896 | } |
---|
897 | |
---|
898 | |
---|
899 | // loop on vobjs contained in vseg to : |
---|
900 | // (1) computes the length of the vseg, |
---|
901 | // (2) initialize the vaddr and paddr fields of all vobjs, |
---|
902 | // (3) initialize the page table pointers arrays |
---|
903 | |
---|
904 | cur_vaddr = vseg->vbase; |
---|
905 | cur_paddr = vseg->pbase; |
---|
906 | |
---|
907 | for (vobj_id = vseg->vobj_offset; |
---|
908 | vobj_id < (vseg->vobj_offset + vseg->vobjs); vobj_id++) { |
---|
909 | if (vobj[vobj_id].align) { |
---|
910 | cur_paddr = paddr_align_to(cur_paddr, vobj[vobj_id].align); |
---|
911 | cur_vaddr = vaddr_align_to(cur_vaddr, vobj[vobj_id].align); |
---|
912 | } |
---|
913 | // set vaddr/paddr for current vobj |
---|
914 | vobj[vobj_id].vaddr = cur_vaddr; |
---|
915 | vobj[vobj_id].paddr = cur_paddr; |
---|
916 | |
---|
917 | // initialize boot_ptabs_vaddr[] & boot_ptabs-paddr[] if PTAB |
---|
918 | if (vobj[vobj_id].type == VOBJ_TYPE_PTAB) |
---|
919 | { |
---|
920 | if (vspace_id == ((unsigned int) -1)) // global vseg |
---|
921 | { |
---|
922 | boot_puts("\n[BOOT ERROR] in boot_vseg_map() function: "); |
---|
923 | boot_puts("a PTAB vobj cannot be global"); |
---|
924 | boot_exit(); |
---|
925 | } |
---|
926 | // we need at least one PT2 |
---|
927 | if (vobj[vobj_id].length < (PT1_SIZE + PT2_SIZE)) |
---|
928 | { |
---|
929 | boot_puts("\n[BOOT ERROR] in boot_vseg_map() function, "); |
---|
930 | boot_puts("PTAB too small, minumum size is: "); |
---|
931 | boot_putx(PT1_SIZE + PT2_SIZE); |
---|
932 | boot_exit(); |
---|
933 | } |
---|
934 | // register both physical and virtual page table address |
---|
935 | boot_ptabs_vaddr[vspace_id] = vobj[vobj_id].vaddr; |
---|
936 | boot_ptabs_paddr[vspace_id] = vobj[vobj_id].paddr; |
---|
937 | |
---|
938 | // reset all valid bits in PT1 |
---|
939 | for (offset = 0; offset < 8192; offset = offset + 4) |
---|
940 | { |
---|
941 | boot_physical_write(cur_paddr + offset, 0); |
---|
942 | } |
---|
943 | |
---|
944 | // computing the number of second level pages |
---|
945 | boot_max_pt2[vspace_id] = (vobj[vobj_id].length - PT1_SIZE) / PT2_SIZE; |
---|
946 | } |
---|
947 | |
---|
948 | // set next vaddr/paddr |
---|
949 | cur_vaddr = cur_vaddr + vobj[vobj_id].length; |
---|
950 | cur_paddr = cur_paddr + vobj[vobj_id].length; |
---|
951 | } // end for vobjs |
---|
952 | |
---|
953 | #if BOOT_DEBUG_PT |
---|
954 | boot_puts(vseg->name); |
---|
955 | boot_puts(" : len = "); |
---|
956 | boot_putx(vseg->length); |
---|
957 | boot_puts(" / vbase = "); |
---|
958 | boot_putx(vseg->vbase); |
---|
959 | boot_puts(" / pbase = "); |
---|
960 | boot_putl(vseg->pbase); |
---|
961 | boot_puts("\n"); |
---|
962 | #endif |
---|
963 | |
---|
964 | } // end boot_vseg_map() |
---|
965 | |
---|
966 | ///////////////////////////////////////////////////////////////////// |
---|
967 | // This function checks consistence beween the mapping_info data |
---|
968 | // structure (soft), and the giet_config file (hard). |
---|
969 | ///////////////////////////////////////////////////////////////////// |
---|
970 | void boot_check_mapping() |
---|
971 | { |
---|
972 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
973 | |
---|
974 | // checking mapping availability |
---|
975 | if (header->signature != IN_MAPPING_SIGNATURE) |
---|
976 | { |
---|
977 | boot_puts("\n[BOOT ERROR] Illegal mapping signature: "); |
---|
978 | boot_putx(header->signature); |
---|
979 | boot_puts("\n"); |
---|
980 | boot_exit(); |
---|
981 | } |
---|
982 | // checking number of clusters |
---|
983 | if (header->clusters != NB_CLUSTERS) |
---|
984 | { |
---|
985 | boot_puts("\n[BOOT ERROR] Incoherent NB_CLUSTERS"); |
---|
986 | boot_puts("\n - In giet_config, value = "); |
---|
987 | boot_putd(NB_CLUSTERS); |
---|
988 | boot_puts("\n - In mapping_info, value = "); |
---|
989 | boot_putd(header->clusters); |
---|
990 | boot_puts("\n"); |
---|
991 | boot_exit(); |
---|
992 | } |
---|
993 | // checking number of virtual spaces |
---|
994 | if (header->vspaces > GIET_NB_VSPACE_MAX) |
---|
995 | { |
---|
996 | boot_puts("\n[BOOT ERROR] : number of vspaces > GIET_NB_VSPACE_MAX\n"); |
---|
997 | boot_puts("\n"); |
---|
998 | boot_exit(); |
---|
999 | } |
---|
1000 | |
---|
1001 | #if BOOT_DEBUG_MAPPING |
---|
1002 | boot_puts("\nclusters = "); |
---|
1003 | boot_putd( header->clusters ); |
---|
1004 | boot_puts("\nprocs = "); |
---|
1005 | boot_putd( header->procs ); |
---|
1006 | boot_puts("\nperiphs = "); |
---|
1007 | boot_putd( header->periphs ); |
---|
1008 | boot_puts("\nvspaces = "); |
---|
1009 | boot_putd( header->vspaces ); |
---|
1010 | boot_puts("\ntasks = "); |
---|
1011 | boot_putd( header->tasks ); |
---|
1012 | boot_puts("\n"); |
---|
1013 | |
---|
1014 | unsigned int cluster_id; |
---|
1015 | mapping_cluster_t * cluster = boot_get_cluster_base(header); |
---|
1016 | for (cluster_id = 0; cluster_id < NB_CLUSTERS; cluster_id++) |
---|
1017 | { |
---|
1018 | boot_puts("\n cluster = "); |
---|
1019 | boot_putd( cluster_id ); |
---|
1020 | boot_puts("\n procs = "); |
---|
1021 | boot_putd( cluster[cluster_id].procs ); |
---|
1022 | boot_puts("\n psegs = "); |
---|
1023 | boot_putd( cluster[cluster_id].psegs ); |
---|
1024 | boot_puts("\n periphs = "); |
---|
1025 | boot_putd( cluster[cluster_id].periphs ); |
---|
1026 | boot_puts("\n"); |
---|
1027 | } |
---|
1028 | #endif |
---|
1029 | |
---|
1030 | boot_puts("\n[BOOT] Mapping check completed at cycle "); |
---|
1031 | boot_putd(boot_proctime()); |
---|
1032 | boot_puts(" for "); |
---|
1033 | boot_puts( header->name ); |
---|
1034 | boot_puts("\n"); |
---|
1035 | |
---|
1036 | } // end boot_check_mapping() |
---|
1037 | |
---|
1038 | |
---|
1039 | ///////////////////////////////////////////////////////////////////// |
---|
1040 | // This function builds the page tables for all virtual spaces |
---|
1041 | // defined in the mapping_info data structure, in three steps: |
---|
1042 | // - step 1 : It computes the physical base address for global vsegs |
---|
1043 | // and for all associated vobjs. |
---|
1044 | // - step 2 : It computes the physical base address for all private |
---|
1045 | // vsegs and all vobjs in each virtual space. |
---|
1046 | // - step 3 : It actually fill the page table for each vspace. |
---|
1047 | ///////////////////////////////////////////////////////////////////// |
---|
1048 | void boot_pt_init() |
---|
1049 | { |
---|
1050 | mapping_header_t * header = (mapping_header_t *) &seg_mapping_base; |
---|
1051 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
1052 | mapping_vseg_t * vseg = boot_get_vseg_base(header); |
---|
1053 | |
---|
1054 | unsigned int vspace_id; |
---|
1055 | unsigned int vseg_id; |
---|
1056 | |
---|
1057 | #if BOOT_DEBUG_PT |
---|
1058 | boot_puts("\n[BOOT DEBUG] ****** mapping global vsegs ******\n"); |
---|
1059 | #endif |
---|
1060 | |
---|
1061 | // step 1 : loop on virtual spaces to map global vsegs |
---|
1062 | // Identity vseg first |
---|
1063 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
1064 | { |
---|
1065 | if (vseg[vseg_id].ident == 1) { |
---|
1066 | boot_vseg_map(&vseg[vseg_id], ((unsigned int) (-1))); |
---|
1067 | } |
---|
1068 | } |
---|
1069 | // Non identity vseg second |
---|
1070 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
1071 | { |
---|
1072 | if (vseg[vseg_id].ident == 0) { |
---|
1073 | boot_vseg_map(&vseg[vseg_id], ((unsigned int) (-1))); |
---|
1074 | } |
---|
1075 | } |
---|
1076 | |
---|
1077 | |
---|
1078 | // step 2 : loop on virtual vspaces to map private vsegs |
---|
1079 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1080 | { |
---|
1081 | |
---|
1082 | #if BOOT_DEBUG_PT |
---|
1083 | boot_puts("\n[BOOT DEBUG] ****** mapping private vsegs in vspace "); |
---|
1084 | boot_puts(vspace[vspace_id].name); |
---|
1085 | boot_puts(" ******\n"); |
---|
1086 | #endif |
---|
1087 | |
---|
1088 | // Identity vseg first |
---|
1089 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
1090 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
1091 | vseg_id++) { |
---|
1092 | if (vseg[vseg_id].ident == 1) { |
---|
1093 | boot_vseg_map(&vseg[vseg_id], vspace_id); |
---|
1094 | } |
---|
1095 | } |
---|
1096 | // Non identity vseg second |
---|
1097 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
1098 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
1099 | vseg_id++) { |
---|
1100 | if (vseg[vseg_id].ident == 0) { |
---|
1101 | boot_vseg_map(&vseg[vseg_id], vspace_id); |
---|
1102 | } |
---|
1103 | } |
---|
1104 | } |
---|
1105 | |
---|
1106 | // step 3 : loop on the vspaces to build the page tables |
---|
1107 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1108 | { |
---|
1109 | #if BOOT_DEBUG_PT |
---|
1110 | boot_puts("\n[BOOT DEBUG] ****** building page table for vspace "); |
---|
1111 | boot_puts(vspace[vspace_id].name); |
---|
1112 | boot_puts(" ******\n"); |
---|
1113 | #endif |
---|
1114 | |
---|
1115 | boot_vspace_pt_build(vspace_id); |
---|
1116 | |
---|
1117 | #if BOOT_DEBUG_PT |
---|
1118 | boot_puts("\n>>> page table physical address = "); |
---|
1119 | boot_putl(boot_ptabs_paddr[vspace_id]); |
---|
1120 | boot_puts(", number of PT2 = "); |
---|
1121 | boot_putd((unsigned int) boot_max_pt2[vspace_id]); |
---|
1122 | boot_puts("\n"); |
---|
1123 | #endif |
---|
1124 | } |
---|
1125 | |
---|
1126 | boot_puts("\n[BOOT] Page Tables initialization completed at cycle "); |
---|
1127 | boot_putd(boot_proctime()); |
---|
1128 | boot_puts("\n"); |
---|
1129 | |
---|
1130 | } // end boot_pt_init() |
---|
1131 | |
---|
1132 | /////////////////////////////////////////////////////////////////////////////// |
---|
1133 | // This function initializes all private vobjs defined in the vspaces, |
---|
1134 | // such as mwmr channels, barriers and locks, because these vobjs |
---|
1135 | // are not known, and not initialized by the compiler. |
---|
1136 | // Warning : The MMU is supposed to be activated... |
---|
1137 | /////////////////////////////////////////////////////////////////////////////// |
---|
1138 | void boot_vobjs_init() |
---|
1139 | { |
---|
1140 | mapping_header_t* header = (mapping_header_t *) & seg_mapping_base; |
---|
1141 | mapping_vspace_t* vspace = boot_get_vspace_base(header); |
---|
1142 | mapping_vobj_t* vobj = boot_get_vobj_base(header); |
---|
1143 | |
---|
1144 | unsigned int vspace_id; |
---|
1145 | unsigned int vobj_id; |
---|
1146 | |
---|
1147 | // loop on the vspaces |
---|
1148 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1149 | { |
---|
1150 | boot_set_mmu_ptpr((unsigned int) (boot_ptabs_paddr[vspace_id] >> 13)); |
---|
1151 | |
---|
1152 | #if BOOT_DEBUG_VOBJS |
---|
1153 | boot_puts("\n[BOOT DEBUG] ****** vobjs initialisation in vspace "); |
---|
1154 | boot_puts(vspace[vspace_id].name); |
---|
1155 | boot_puts(" ******\n"); |
---|
1156 | #endif |
---|
1157 | |
---|
1158 | unsigned int ptab_found = 0; |
---|
1159 | |
---|
1160 | // loop on the vobjs |
---|
1161 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
1162 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
1163 | vobj_id++) |
---|
1164 | { |
---|
1165 | switch (vobj[vobj_id].type) |
---|
1166 | { |
---|
1167 | case VOBJ_TYPE_MWMR: // storage capacity is (vobj.length/4 - 5) words |
---|
1168 | { |
---|
1169 | mwmr_channel_t* mwmr = (mwmr_channel_t *) (vobj[vobj_id].vaddr); |
---|
1170 | mwmr->ptw = 0; |
---|
1171 | mwmr->ptr = 0; |
---|
1172 | mwmr->sts = 0; |
---|
1173 | mwmr->width = vobj[vobj_id].init; |
---|
1174 | mwmr->depth = (vobj[vobj_id].length >> 2) - 6; |
---|
1175 | mwmr->lock = 0; |
---|
1176 | #if BOOT_DEBUG_VOBJS |
---|
1177 | boot_puts("MWMR : "); |
---|
1178 | boot_puts(vobj[vobj_id].name); |
---|
1179 | boot_puts(" / depth = "); |
---|
1180 | boot_putd(mwmr->depth); |
---|
1181 | boot_puts(" / width = "); |
---|
1182 | boot_putd(mwmr->width); |
---|
1183 | boot_puts("\n"); |
---|
1184 | #endif |
---|
1185 | break; |
---|
1186 | } |
---|
1187 | case VOBJ_TYPE_ELF: // initialisation done by the loader |
---|
1188 | { |
---|
1189 | #if BOOT_DEBUG_VOBJS |
---|
1190 | boot_puts("ELF : "); |
---|
1191 | boot_puts(vobj[vobj_id].name); |
---|
1192 | boot_puts(" / length = "); |
---|
1193 | boot_putx(vobj[vobj_id].length); |
---|
1194 | boot_puts("\n"); |
---|
1195 | #endif |
---|
1196 | break; |
---|
1197 | } |
---|
1198 | case VOBJ_TYPE_BLOB: // initialisation done by the loader |
---|
1199 | { |
---|
1200 | #if BOOT_DEBUG_VOBJS |
---|
1201 | boot_puts("BLOB : "); |
---|
1202 | boot_puts(vobj[vobj_id].name); |
---|
1203 | boot_puts(" / length = "); |
---|
1204 | boot_putx(vobj[vobj_id].length); |
---|
1205 | boot_puts("\n"); |
---|
1206 | #endif |
---|
1207 | break; |
---|
1208 | } |
---|
1209 | case VOBJ_TYPE_BARRIER: // init is the number of participants |
---|
1210 | { |
---|
1211 | giet_barrier_t* barrier = (giet_barrier_t *) (vobj[vobj_id].vaddr); |
---|
1212 | barrier->count = vobj[vobj_id].init; |
---|
1213 | barrier->init = vobj[vobj_id].init; |
---|
1214 | #if BOOT_DEBUG_VOBJS |
---|
1215 | boot_puts("BARRIER : "); |
---|
1216 | boot_puts(vobj[vobj_id].name); |
---|
1217 | boot_puts(" / init_value = "); |
---|
1218 | boot_putd(barrier->init); |
---|
1219 | boot_puts("\n"); |
---|
1220 | #endif |
---|
1221 | break; |
---|
1222 | } |
---|
1223 | case VOBJ_TYPE_LOCK: // init value is "not taken" |
---|
1224 | { |
---|
1225 | unsigned int* lock = (unsigned int *) (vobj[vobj_id].vaddr); |
---|
1226 | *lock = 0; |
---|
1227 | #if BOOT_DEBUG_VOBJS |
---|
1228 | boot_puts("LOCK : "); |
---|
1229 | boot_puts(vobj[vobj_id].name); |
---|
1230 | boot_puts("\n"); |
---|
1231 | #endif |
---|
1232 | break; |
---|
1233 | } |
---|
1234 | case VOBJ_TYPE_BUFFER: // nothing to initialise |
---|
1235 | { |
---|
1236 | #if BOOT_DEBUG_VOBJS |
---|
1237 | boot_puts("BUFFER : "); |
---|
1238 | boot_puts(vobj[vobj_id].name); |
---|
1239 | boot_puts(" / paddr = "); |
---|
1240 | boot_putl(vobj[vobj_id].paddr); |
---|
1241 | boot_puts(" / length = "); |
---|
1242 | boot_putx(vobj[vobj_id].length); |
---|
1243 | boot_puts("\n"); |
---|
1244 | #endif |
---|
1245 | break; |
---|
1246 | } |
---|
1247 | case VOBJ_TYPE_MEMSPACE: |
---|
1248 | { |
---|
1249 | giet_memspace_t * memspace = (giet_memspace_t *) vobj[vobj_id].vaddr; |
---|
1250 | memspace->buffer = (void *) vobj[vobj_id].vaddr + 8; |
---|
1251 | memspace->size = vobj[vobj_id].length - 8; |
---|
1252 | #if BOOT_DEBUG_VOBJS |
---|
1253 | boot_puts("MEMSPACE : "); |
---|
1254 | boot_puts(vobj[vobj_id].name); |
---|
1255 | boot_puts(" / vaddr = "); |
---|
1256 | boot_putx(vobj[vobj_id].vaddr); |
---|
1257 | boot_puts(" / length = "); |
---|
1258 | boot_putx(vobj[vobj_id].length); |
---|
1259 | boot_puts(" / buffer = "); |
---|
1260 | boot_putx((unsigned int) memspace->buffer); |
---|
1261 | boot_puts(" / size = "); |
---|
1262 | boot_putx(memspace->size); |
---|
1263 | boot_puts("\n"); |
---|
1264 | #endif |
---|
1265 | break; |
---|
1266 | } |
---|
1267 | case VOBJ_TYPE_PTAB: // nothing to initialize |
---|
1268 | { |
---|
1269 | ptab_found = 1; |
---|
1270 | #if BOOT_DEBUG_VOBJS |
---|
1271 | boot_puts("PTAB : "); |
---|
1272 | boot_puts(vobj[vobj_id].name); |
---|
1273 | boot_puts(" / length = "); |
---|
1274 | boot_putx(vobj[vobj_id].length); |
---|
1275 | boot_puts("\n"); |
---|
1276 | #endif |
---|
1277 | break; |
---|
1278 | } |
---|
1279 | case VOBJ_TYPE_CONST: |
---|
1280 | { |
---|
1281 | unsigned int* addr = (unsigned int *) vobj[vobj_id].vaddr; |
---|
1282 | *addr = vobj[vobj_id].init; |
---|
1283 | #if BOOT_DEBUG_VOBJS |
---|
1284 | boot_puts("CONST : "); |
---|
1285 | boot_puts(vobj[vobj_id].name); |
---|
1286 | boot_puts(" / Paddr :"); |
---|
1287 | boot_putl(vobj[vobj_id].paddr); |
---|
1288 | boot_puts(" / init = "); |
---|
1289 | boot_putx(*addr); |
---|
1290 | boot_puts("\n"); |
---|
1291 | #endif |
---|
1292 | break; |
---|
1293 | } |
---|
1294 | default: |
---|
1295 | { |
---|
1296 | boot_puts("\n[BOOT ERROR] illegal vobj type: "); |
---|
1297 | boot_putd(vobj[vobj_id].type); |
---|
1298 | boot_puts("\n"); |
---|
1299 | boot_exit(); |
---|
1300 | } |
---|
1301 | } // end switch type |
---|
1302 | } // end loop on vobjs |
---|
1303 | if (ptab_found == 0) |
---|
1304 | { |
---|
1305 | boot_puts("\n[BOOT ERROR] Missing PTAB for vspace "); |
---|
1306 | boot_putd(vspace_id); |
---|
1307 | boot_exit(); |
---|
1308 | } |
---|
1309 | } // end loop on vspaces |
---|
1310 | |
---|
1311 | boot_puts("\n[BOOT] Vobjs initialisation completed at cycle : "); |
---|
1312 | boot_putd(boot_proctime()); |
---|
1313 | boot_puts("\n"); |
---|
1314 | |
---|
1315 | } // end boot_vobjs_init() |
---|
1316 | |
---|
1317 | //////////////////////////////////////////////////////////////////////////////// |
---|
1318 | // This function initializes one MWMR controller channel. |
---|
1319 | // - coproc_pbase : physical base address of the Coproc configuration segment |
---|
1320 | // - channel_pbase : physical base address of the MWMR channel segment |
---|
1321 | // Warning : the channel physical base address should be on 32 bits, as the |
---|
1322 | // MWMR controller configuration registers are 32 bits. |
---|
1323 | // TODO : Introduce a MWMR_CONFIG_PADDR_EXT register in the MWMR coprocessor |
---|
1324 | // To support addresses > 32 bits and remove this limitation... |
---|
1325 | /////////////////////////////////////////////////////////////////////////////// |
---|
1326 | void mwmr_hw_init(paddr_t coproc_pbase, |
---|
1327 | enum mwmrPortDirection way, |
---|
1328 | unsigned int no, |
---|
1329 | paddr_t channel_pbase) |
---|
1330 | { |
---|
1331 | if ( (channel_pbase>>32) != 0 ) |
---|
1332 | { |
---|
1333 | boot_puts("\n[BOOT ERROR] MWMR controller does not support address > 32 bits\n"); |
---|
1334 | boot_exit(); |
---|
1335 | } |
---|
1336 | |
---|
1337 | unsigned int lsb = (unsigned int)channel_pbase; |
---|
1338 | // unsigned int msb = (unsigned int)(channel_pbase>>32); |
---|
1339 | |
---|
1340 | unsigned int depth = boot_physical_read( channel_pbase + 16 ); |
---|
1341 | unsigned int width = boot_physical_read( channel_pbase + 20 ); |
---|
1342 | |
---|
1343 | boot_physical_write( coproc_pbase + MWMR_CONFIG_FIFO_WAY*4, way ); |
---|
1344 | boot_physical_write( coproc_pbase + MWMR_CONFIG_FIFO_NO*4, no ); |
---|
1345 | boot_physical_write( coproc_pbase + MWMR_CONFIG_WIDTH*4, width); |
---|
1346 | boot_physical_write( coproc_pbase + MWMR_CONFIG_DEPTH*4, depth); |
---|
1347 | boot_physical_write( coproc_pbase + MWMR_CONFIG_STATUS_ADDR*4, lsb); |
---|
1348 | boot_physical_write( coproc_pbase + MWMR_CONFIG_BUFFER_ADDR*4, lsb + 24 ); |
---|
1349 | // boot_physical_write( coproc_pbase + MWMR_CONFIG_PADDR_EXT*4, msb); |
---|
1350 | boot_physical_write( coproc_pbase + MWMR_CONFIG_RUNNING*4, 1 ); |
---|
1351 | } |
---|
1352 | |
---|
1353 | //////////////////////////////////////////////////////////////////////////////// |
---|
1354 | // This function intializes the periherals and coprocessors, as specified |
---|
1355 | // in the mapping_info file. |
---|
1356 | //////////////////////////////////////////////////////////////////////////////// |
---|
1357 | void boot_peripherals_init() |
---|
1358 | { |
---|
1359 | mapping_header_t * header = (mapping_header_t *) & seg_mapping_base; |
---|
1360 | mapping_cluster_t * cluster = boot_get_cluster_base(header); |
---|
1361 | mapping_periph_t * periph = boot_get_periph_base(header); |
---|
1362 | mapping_pseg_t * pseg = boot_get_pseg_base(header); |
---|
1363 | mapping_vobj_t * vobj = boot_get_vobj_base(header); |
---|
1364 | mapping_vspace_t * vspace = boot_get_vspace_base(header); |
---|
1365 | mapping_coproc_t * coproc = boot_get_coproc_base(header); |
---|
1366 | mapping_cp_port_t * cp_port = boot_get_cp_port_base(header); |
---|
1367 | |
---|
1368 | unsigned int cluster_id; |
---|
1369 | unsigned int periph_id; |
---|
1370 | unsigned int coproc_id; |
---|
1371 | unsigned int cp_port_id; |
---|
1372 | unsigned int channel_id; |
---|
1373 | |
---|
1374 | for (cluster_id = 0; cluster_id < header->clusters; cluster_id++) |
---|
1375 | { |
---|
1376 | |
---|
1377 | #if BOOT_DEBUG_PERI |
---|
1378 | boot_puts("\n[BOOT DEBUG] ****** peripherals initialisation in cluster "); |
---|
1379 | boot_putd(cluster_id); |
---|
1380 | boot_puts(" ******\n"); |
---|
1381 | #endif |
---|
1382 | |
---|
1383 | for (periph_id = cluster[cluster_id].periph_offset; |
---|
1384 | periph_id < cluster[cluster_id].periph_offset + |
---|
1385 | cluster[cluster_id].periphs; periph_id++) |
---|
1386 | { |
---|
1387 | unsigned int type = periph[periph_id].type; |
---|
1388 | unsigned int channels = periph[periph_id].channels; |
---|
1389 | unsigned int pseg_id = periph[periph_id].psegid; |
---|
1390 | |
---|
1391 | paddr_t pbase = pseg[pseg_id].base; |
---|
1392 | |
---|
1393 | #if BOOT_DEBUG_PERI |
---|
1394 | boot_puts("- peripheral type : "); |
---|
1395 | boot_putd(type); |
---|
1396 | boot_puts(" / pbase = "); |
---|
1397 | boot_putl(pbase); |
---|
1398 | boot_puts(" / channels = "); |
---|
1399 | boot_putd(channels); |
---|
1400 | boot_puts("\n"); |
---|
1401 | #endif |
---|
1402 | |
---|
1403 | switch (type) |
---|
1404 | { |
---|
1405 | case PERIPH_TYPE_IOC: // vci_block_device component |
---|
1406 | { |
---|
1407 | paddr_t paddr = pbase + BLOCK_DEVICE_IRQ_ENABLE*4; |
---|
1408 | boot_physical_write(paddr, 1); |
---|
1409 | #if BOOT_DEBUG_PERI |
---|
1410 | boot_puts("- IOC initialised\n"); |
---|
1411 | #endif |
---|
1412 | } |
---|
1413 | break; |
---|
1414 | case PERIPH_TYPE_DMA: // vci_multi_dma component |
---|
1415 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1416 | { |
---|
1417 | paddr_t paddr = pbase + (channel_id*DMA_SPAN + DMA_IRQ_DISABLE) * 4; |
---|
1418 | boot_physical_write(paddr, 0); |
---|
1419 | } |
---|
1420 | #if BOOT_DEBUG_PERI |
---|
1421 | boot_puts("- DMA initialised\n"); |
---|
1422 | #endif |
---|
1423 | break; |
---|
1424 | case PERIPH_TYPE_NIC: // vci_multi_nic component |
---|
1425 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1426 | { |
---|
1427 | // TODO |
---|
1428 | } |
---|
1429 | #if BOOT_DEBUG_PERI |
---|
1430 | boot_puts("- NIC initialised\n"); |
---|
1431 | #endif |
---|
1432 | break; |
---|
1433 | case PERIPH_TYPE_TTY: // vci_multi_tty component |
---|
1434 | #if BOOT_DEBUG_PERI |
---|
1435 | boot_puts("- TTY initialised\n"); |
---|
1436 | #endif |
---|
1437 | break; |
---|
1438 | case PERIPH_TYPE_IOB: // vci_io_bridge component |
---|
1439 | if (USE_IOB) |
---|
1440 | { |
---|
1441 | // TODO |
---|
1442 | // get the iommu page table physical address |
---|
1443 | // define IPI address mapping the IOC interrupt |
---|
1444 | // set IOMMU page table address |
---|
1445 | // pseg_base[IOB_IOMMU_PTPR] = ptab_pbase; |
---|
1446 | // activate IOMMU |
---|
1447 | // pseg_base[IOB_IOMMU_ACTIVE] = 1; |
---|
1448 | } |
---|
1449 | #if BOOT_DEBUG_PERI |
---|
1450 | boot_puts("- IOB initialised\n"); |
---|
1451 | #endif |
---|
1452 | break; |
---|
1453 | } // end switch periph type |
---|
1454 | } // end for periphs |
---|
1455 | |
---|
1456 | #if BOOT_DEBUG_PERI |
---|
1457 | boot_puts("\n[BOOT DEBUG] ****** coprocessors initialisation in cluster "); |
---|
1458 | boot_putd(cluster_id); |
---|
1459 | boot_puts(" ******\n"); |
---|
1460 | #endif |
---|
1461 | |
---|
1462 | for (coproc_id = cluster[cluster_id].coproc_offset; |
---|
1463 | coproc_id < cluster[cluster_id].coproc_offset + |
---|
1464 | cluster[cluster_id].coprocs; coproc_id++) |
---|
1465 | { |
---|
1466 | unsigned no_fifo_to = 0; //FIXME: should the map.xml define the order? |
---|
1467 | unsigned no_fifo_from = 0; |
---|
1468 | |
---|
1469 | // Get physical base address for MWMR controler |
---|
1470 | paddr_t coproc_pbase = pseg[coproc[coproc_id].psegid].base; |
---|
1471 | |
---|
1472 | #if BOOT_DEBUG_PERI |
---|
1473 | boot_puts("- coprocessor name : "); |
---|
1474 | boot_puts(coproc[coproc_id].name); |
---|
1475 | boot_puts(" / nb ports = "); |
---|
1476 | boot_putd((unsigned int) coproc[coproc_id].ports); |
---|
1477 | boot_puts("\n"); |
---|
1478 | #endif |
---|
1479 | |
---|
1480 | for (cp_port_id = coproc[coproc_id].port_offset; |
---|
1481 | cp_port_id < coproc[coproc_id].port_offset + coproc[coproc_id].ports; |
---|
1482 | cp_port_id++) |
---|
1483 | { |
---|
1484 | unsigned int vspace_id = cp_port[cp_port_id].vspaceid; |
---|
1485 | unsigned int vobj_id = cp_port[cp_port_id].mwmr_vobjid + |
---|
1486 | vspace[vspace_id].vobj_offset; |
---|
1487 | |
---|
1488 | // Get MWMR channel base address |
---|
1489 | paddr_t channel_pbase = vobj[vobj_id].paddr; |
---|
1490 | |
---|
1491 | if (cp_port[cp_port_id].direction == PORT_TO_COPROC) |
---|
1492 | { |
---|
1493 | #if BOOT_DEBUG_PERI |
---|
1494 | boot_puts(" port direction: PORT_TO_COPROC"); |
---|
1495 | #endif |
---|
1496 | mwmr_hw_init(coproc_pbase, |
---|
1497 | PORT_TO_COPROC, |
---|
1498 | no_fifo_to, |
---|
1499 | channel_pbase); |
---|
1500 | no_fifo_to++; |
---|
1501 | } |
---|
1502 | else |
---|
1503 | { |
---|
1504 | #if BOOT_DEBUG_PERI |
---|
1505 | boot_puts(" port direction: PORT_FROM_COPROC"); |
---|
1506 | #endif |
---|
1507 | mwmr_hw_init(coproc_pbase, |
---|
1508 | PORT_FROM_COPROC, |
---|
1509 | no_fifo_from, |
---|
1510 | channel_pbase); |
---|
1511 | no_fifo_from++; |
---|
1512 | } |
---|
1513 | #if BOOT_DEBUG_PERI |
---|
1514 | boot_puts(", with mwmr: "); |
---|
1515 | boot_puts(vobj[vobj_id].name); |
---|
1516 | boot_puts(" of vspace: "); |
---|
1517 | boot_puts(vspace[vspace_id].name); |
---|
1518 | #endif |
---|
1519 | } // end for cp_ports |
---|
1520 | } // end for coprocs |
---|
1521 | } // end for clusters |
---|
1522 | |
---|
1523 | boot_puts("\n[BOOT] Peripherals initialisation completed at cycle "); |
---|
1524 | boot_putd(boot_proctime()); |
---|
1525 | boot_puts("\n"); |
---|
1526 | |
---|
1527 | } // end boot_peripherals_init() |
---|
1528 | |
---|
1529 | /////////////////////////////////////////////////////////////////////////////// |
---|
1530 | // This function returns in the vbase and length buffers the virtual base |
---|
1531 | // address and the length of the segment allocated to the schedulers array |
---|
1532 | // in the cluster defined by the clusterid argument. |
---|
1533 | /////////////////////////////////////////////////////////////////////////////// |
---|
1534 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
1535 | unsigned int* vbase, |
---|
1536 | unsigned int* length ) |
---|
1537 | { |
---|
1538 | mapping_header_t* header = (mapping_header_t *) & seg_mapping_base; |
---|
1539 | mapping_vobj_t* vobj = boot_get_vobj_base(header); |
---|
1540 | mapping_vseg_t* vseg = boot_get_vseg_base(header); |
---|
1541 | mapping_pseg_t* pseg = boot_get_pseg_base(header); |
---|
1542 | |
---|
1543 | unsigned int vseg_id; |
---|
1544 | unsigned int found = 0; |
---|
1545 | |
---|
1546 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
1547 | { |
---|
1548 | if ( (vobj[vseg[vseg_id].vobj_offset].type == VOBJ_TYPE_SCHED) && |
---|
1549 | (pseg[vseg[vseg_id].psegid].cluster == cluster_id ) ) |
---|
1550 | { |
---|
1551 | *vbase = vseg[vseg_id].vbase; |
---|
1552 | *length = vobj[vseg[vseg_id].vobj_offset].length; |
---|
1553 | found = 1; |
---|
1554 | } |
---|
1555 | } |
---|
1556 | if ( found == 0 ) |
---|
1557 | { |
---|
1558 | boot_puts("\n[BOOT ERROR] No vobj of type SCHED in cluster "); |
---|
1559 | boot_putd(cluster_id); |
---|
1560 | boot_puts("\n"); |
---|
1561 | boot_exit(); |
---|
1562 | } |
---|
1563 | } // end boot_get_sched_vaddr() |
---|
1564 | |
---|
1565 | /////////////////////////////////////////////////////////////////////////////// |
---|
1566 | // This function initialises all processors schedulers. |
---|
1567 | // This is done by processor 0, and the MMU must be activated. |
---|
1568 | // It initialises the boot_chedulers[gpid] pointers array. |
---|
1569 | // Finally, it scan all tasks in all vspaces to initialise the tasks contexts, |
---|
1570 | // as specified in the mapping_info data structure. |
---|
1571 | // For each task, a TTY channel, a TIMER channel, a FBDMA channel, and a NIC |
---|
1572 | // channel are allocated if required. |
---|
1573 | /////////////////////////////////////////////////////////////////////////////// |
---|
1574 | void boot_schedulers_init() |
---|
1575 | { |
---|
1576 | mapping_header_t* header = (mapping_header_t *) & seg_mapping_base; |
---|
1577 | mapping_cluster_t* cluster = boot_get_cluster_base(header); |
---|
1578 | mapping_vspace_t* vspace = boot_get_vspace_base(header); |
---|
1579 | mapping_task_t* task = boot_get_task_base(header); |
---|
1580 | mapping_vobj_t* vobj = boot_get_vobj_base(header); |
---|
1581 | mapping_proc_t* proc = boot_get_proc_base(header); |
---|
1582 | mapping_irq_t* irq = boot_get_irq_base(header); |
---|
1583 | |
---|
1584 | unsigned int cluster_id; // cluster index in mapping_info |
---|
1585 | unsigned int proc_id; // processor index in mapping_info |
---|
1586 | unsigned int irq_id; // irq index in mapping_info |
---|
1587 | unsigned int vspace_id; // vspace index in mapping_info |
---|
1588 | unsigned int task_id; // task index in mapping_info |
---|
1589 | |
---|
1590 | unsigned int alloc_tty_channel = 1; // TTY channel allocator |
---|
1591 | unsigned int alloc_nic_channel = 0; // NIC channel allocator |
---|
1592 | unsigned int alloc_cma_channel = 0; // CMA channel allocator |
---|
1593 | unsigned int alloc_ioc_channel = 0; // IOC channel allocator |
---|
1594 | unsigned int alloc_dma_channel[NB_CLUSTERS]; // DMA channel allocators |
---|
1595 | unsigned int alloc_tim_channel[NB_CLUSTERS]; // user TIMER allocators |
---|
1596 | |
---|
1597 | ///////////////////////////////////////////////////////////////////////// |
---|
1598 | // Step 1 : loop on the clusters and on the processors |
---|
1599 | // to initialize the schedulers[] array of pointers and |
---|
1600 | // the interrupt vectors. |
---|
1601 | // Implementation note: |
---|
1602 | // We need to use both proc_id to scan the mapping info structure, |
---|
1603 | // and lpid to access the schedulers array. |
---|
1604 | // - the boot_schedulers[] array of pointers can contain "holes", because |
---|
1605 | // it is indexed by the global pid = cluster_id*NB_PROCS_MAX + ltid |
---|
1606 | // - the mapping info array of processors is contiguous, it is indexed |
---|
1607 | // by proc_id, and use an offset specific in each cluster. |
---|
1608 | |
---|
1609 | for (cluster_id = 0; cluster_id < header->clusters; cluster_id++) |
---|
1610 | { |
---|
1611 | |
---|
1612 | #if BOOT_DEBUG_SCHED |
---|
1613 | boot_puts("\n[BOOT DEBUG] Initialise schedulers in cluster "); |
---|
1614 | boot_putd(cluster_id); |
---|
1615 | boot_puts("\n"); |
---|
1616 | #endif |
---|
1617 | |
---|
1618 | // TTY, NIC, CMA, IOC, TIM and DMA channels allocators |
---|
1619 | // - TTY[0] is reserved for the kernel |
---|
1620 | // - In all clusters the first NB_PROCS_MAX timers |
---|
1621 | // are reserved for the kernel (context switch) |
---|
1622 | |
---|
1623 | alloc_dma_channel[cluster_id] = 0; |
---|
1624 | alloc_tim_channel[cluster_id] = NB_PROCS_MAX; |
---|
1625 | |
---|
1626 | unsigned int lpid; // processor local index in cluster |
---|
1627 | unsigned int sched_vbase; // schedulers segment virtual base address |
---|
1628 | unsigned int sched_length; // schedulers segment length |
---|
1629 | unsigned int nprocs; // number of processors in cluster |
---|
1630 | |
---|
1631 | nprocs = cluster[cluster_id].procs; |
---|
1632 | |
---|
1633 | // checking processors number |
---|
1634 | if ( nprocs > NB_PROCS_MAX ) |
---|
1635 | { |
---|
1636 | boot_puts("\n[BOOT ERROR] Too much processors in cluster "); |
---|
1637 | boot_putd(cluster_id); |
---|
1638 | boot_puts("\n"); |
---|
1639 | boot_exit(); |
---|
1640 | } |
---|
1641 | |
---|
1642 | // get scheduler array virtual base address for cluster_id |
---|
1643 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
1644 | |
---|
1645 | // each processor scheduler requires 4 Kbytes |
---|
1646 | if ( sched_length < (nprocs<<12) ) |
---|
1647 | { |
---|
1648 | boot_puts("\n[BOOT ERROR] Schedulers segment too small in cluster "); |
---|
1649 | boot_putd(cluster_id); |
---|
1650 | boot_puts("\n"); |
---|
1651 | boot_exit(); |
---|
1652 | } |
---|
1653 | |
---|
1654 | for ( proc_id = cluster[cluster_id].proc_offset, lpid = 0 ; |
---|
1655 | proc_id < cluster[cluster_id].proc_offset + cluster[cluster_id].procs; |
---|
1656 | proc_id++, lpid++ ) |
---|
1657 | { |
---|
1658 | // set the schedulers pointers array |
---|
1659 | boot_schedulers[cluster_id * NB_PROCS_MAX + lpid] = |
---|
1660 | (static_scheduler_t*)( sched_vbase + (lpid<<12) ); |
---|
1661 | |
---|
1662 | #if BOOT_DEBUG_SCHED |
---|
1663 | boot_puts("\nProc "); |
---|
1664 | boot_putd(lpid); |
---|
1665 | boot_puts(" : scheduler virtual base address = "); |
---|
1666 | boot_putx( sched_vbase + (lpid<<12) ); |
---|
1667 | boot_puts("\n"); |
---|
1668 | #endif |
---|
1669 | // current processor scheduler pointer : psched |
---|
1670 | static_scheduler_t* psched = (static_scheduler_t*)(sched_vbase+(lpid<<12)); |
---|
1671 | |
---|
1672 | // initialise the "tasks" variable |
---|
1673 | psched->tasks = 0; |
---|
1674 | |
---|
1675 | // initialise the interrupt_vector with ISR_DEFAULT |
---|
1676 | unsigned int slot; |
---|
1677 | for (slot = 0; slot < 32; slot++) psched->interrupt_vector[slot] = 0; |
---|
1678 | |
---|
1679 | // scan the IRQs actually allocated to current processor |
---|
1680 | for (irq_id = proc[proc_id].irq_offset; |
---|
1681 | irq_id < proc[proc_id].irq_offset + proc[proc_id].irqs; |
---|
1682 | irq_id++) |
---|
1683 | { |
---|
1684 | unsigned int type = irq[irq_id].type; |
---|
1685 | unsigned int icu_id = irq[irq_id].icuid; |
---|
1686 | unsigned int isr_id = irq[irq_id].isr; |
---|
1687 | unsigned int channel = irq[irq_id].channel; |
---|
1688 | unsigned int value = isr_id | (type << 8) | (channel << 16); |
---|
1689 | psched->interrupt_vector[icu_id] = value; |
---|
1690 | |
---|
1691 | #if BOOT_DEBUG_SCHED |
---|
1692 | boot_puts("- IRQ : icu = "); |
---|
1693 | boot_putd(icu_id); |
---|
1694 | boot_puts(" / type = "); |
---|
1695 | boot_putd(type); |
---|
1696 | boot_puts(" / isr = "); |
---|
1697 | boot_putd(isr_id); |
---|
1698 | boot_puts(" / channel = "); |
---|
1699 | boot_putd(channel); |
---|
1700 | boot_puts(" => vector_entry = "); |
---|
1701 | boot_putx( value ); |
---|
1702 | boot_puts("\n"); |
---|
1703 | #endif |
---|
1704 | } |
---|
1705 | } // end for procs |
---|
1706 | } // end for clusters |
---|
1707 | |
---|
1708 | /////////////////////////////////////////////////////////////////// |
---|
1709 | // Step 2 : loop on the vspaces and the tasks |
---|
1710 | // to initialise the schedulers and the task contexts. |
---|
1711 | // Implementation note: |
---|
1712 | // This function initialises the task context for all tasks. |
---|
1713 | // For each processor, the scheduler virtual base address |
---|
1714 | // is written in the CP0_SCHED register in reset.S |
---|
1715 | |
---|
1716 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1717 | { |
---|
1718 | |
---|
1719 | #if BOOT_DEBUG_SCHED |
---|
1720 | boot_puts("\n[BOOT DEBUG] Initialise task contexts for vspace "); |
---|
1721 | boot_puts(vspace[vspace_id].name); |
---|
1722 | boot_puts("\n"); |
---|
1723 | #endif |
---|
1724 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
1725 | // and the stack address are defined in virtual space. |
---|
1726 | boot_set_mmu_ptpr( (unsigned int)(boot_ptabs_paddr[vspace_id] >> 13) ); |
---|
1727 | |
---|
1728 | // loop on the tasks in vspace (task_id is the global index) |
---|
1729 | for (task_id = vspace[vspace_id].task_offset; |
---|
1730 | task_id < (vspace[vspace_id].task_offset + vspace[vspace_id].tasks); |
---|
1731 | task_id++) |
---|
1732 | { |
---|
1733 | // compute gpid (global processor index) and scheduler base address |
---|
1734 | unsigned int gpid = task[task_id].clusterid * NB_PROCS_MAX + |
---|
1735 | task[task_id].proclocid; |
---|
1736 | static_scheduler_t* psched = boot_schedulers[gpid]; |
---|
1737 | |
---|
1738 | // ctx_ra : the return address is &boot_eret() |
---|
1739 | unsigned int ctx_ra = (unsigned int) &boot_eret; |
---|
1740 | |
---|
1741 | // ctx_sr : value required before an eret instruction |
---|
1742 | unsigned int ctx_sr = 0x0000FF13; |
---|
1743 | |
---|
1744 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
1745 | unsigned int ctx_ptpr = (unsigned int)(boot_ptabs_paddr[vspace_id] >> 13); |
---|
1746 | |
---|
1747 | // ctx_ptab : page_table virtual base address |
---|
1748 | unsigned int ctx_ptab = boot_ptabs_vaddr[vspace_id]; |
---|
1749 | |
---|
1750 | // ctx_tty : terminal global index provided by the global allocator |
---|
1751 | unsigned int ctx_tty = 0xFFFFFFFF; |
---|
1752 | if (task[task_id].use_tty) |
---|
1753 | { |
---|
1754 | if (alloc_tty_channel >= NB_TTY_CHANNELS) |
---|
1755 | { |
---|
1756 | boot_puts("\n[BOOT ERROR] TTY index too large for task "); |
---|
1757 | boot_puts(task[task_id].name); |
---|
1758 | boot_puts(" in vspace "); |
---|
1759 | boot_puts(vspace[vspace_id].name); |
---|
1760 | boot_puts("\n"); |
---|
1761 | boot_exit(); |
---|
1762 | } |
---|
1763 | ctx_tty = alloc_tty_channel; |
---|
1764 | alloc_tty_channel++; |
---|
1765 | } |
---|
1766 | // ctx_nic : NIC channel global index provided by the global allocator |
---|
1767 | unsigned int ctx_nic = 0xFFFFFFFF; |
---|
1768 | if (task[task_id].use_nic) |
---|
1769 | { |
---|
1770 | if (alloc_nic_channel >= NB_NIC_CHANNELS) |
---|
1771 | { |
---|
1772 | boot_puts("\n[BOOT ERROR] NIC channel index too large for task "); |
---|
1773 | boot_puts(task[task_id].name); |
---|
1774 | boot_puts(" in vspace "); |
---|
1775 | boot_puts(vspace[vspace_id].name); |
---|
1776 | boot_puts("\n"); |
---|
1777 | boot_exit(); |
---|
1778 | } |
---|
1779 | ctx_nic = alloc_nic_channel; |
---|
1780 | alloc_nic_channel++; |
---|
1781 | } |
---|
1782 | // ctx_cma : CMA channel global index provided by the global allocator |
---|
1783 | unsigned int ctx_cma = 0xFFFFFFFF; |
---|
1784 | if (task[task_id].use_cma) |
---|
1785 | { |
---|
1786 | if (alloc_cma_channel >= NB_CMA_CHANNELS) |
---|
1787 | { |
---|
1788 | boot_puts("\n[BOOT ERROR] CMA channel index too large for task "); |
---|
1789 | boot_puts(task[task_id].name); |
---|
1790 | boot_puts(" in vspace "); |
---|
1791 | boot_puts(vspace[vspace_id].name); |
---|
1792 | boot_puts("\n"); |
---|
1793 | boot_exit(); |
---|
1794 | } |
---|
1795 | ctx_cma = alloc_cma_channel; |
---|
1796 | alloc_cma_channel++; |
---|
1797 | } |
---|
1798 | // ctx_ioc : IOC channel global index provided by the global allocator |
---|
1799 | unsigned int ctx_ioc = 0xFFFFFFFF; |
---|
1800 | if (task[task_id].use_ioc) |
---|
1801 | { |
---|
1802 | if (alloc_ioc_channel >= NB_IOC_CHANNELS) |
---|
1803 | { |
---|
1804 | boot_puts("\n[BOOT ERROR] IOC channel index too large for task "); |
---|
1805 | boot_puts(task[task_id].name); |
---|
1806 | boot_puts(" in vspace "); |
---|
1807 | boot_puts(vspace[vspace_id].name); |
---|
1808 | boot_puts("\n"); |
---|
1809 | boot_exit(); |
---|
1810 | } |
---|
1811 | ctx_ioc = alloc_ioc_channel; |
---|
1812 | alloc_ioc_channel++; |
---|
1813 | } |
---|
1814 | // ctx_tim : TIMER local channel index provided by the cluster allocator |
---|
1815 | unsigned int ctx_tim = 0xFFFFFFFF; |
---|
1816 | if (task[task_id].use_tim) |
---|
1817 | { |
---|
1818 | unsigned int cluster_id = task[task_id].clusterid; |
---|
1819 | |
---|
1820 | if ( alloc_tim_channel[cluster_id] >= NB_TIM_CHANNELS ) |
---|
1821 | { |
---|
1822 | boot_puts("\n[BOOT ERROR] local TIMER index too large for task "); |
---|
1823 | boot_puts(task[task_id].name); |
---|
1824 | boot_puts(" in vspace "); |
---|
1825 | boot_puts(vspace[vspace_id].name); |
---|
1826 | boot_puts("\n"); |
---|
1827 | boot_exit(); |
---|
1828 | } |
---|
1829 | |
---|
1830 | // checking that there is a well defined ISR_TIMER installed |
---|
1831 | unsigned int found = 0; |
---|
1832 | for ( irq_id = 0 ; irq_id < 32 ; irq_id++ ) |
---|
1833 | { |
---|
1834 | unsigned int entry = psched->interrupt_vector[irq_id]; |
---|
1835 | unsigned int isr = entry & 0x000000FF; |
---|
1836 | unsigned int channel = entry>>16; |
---|
1837 | if ( (isr == ISR_TIMER) && (channel == alloc_tim_channel[cluster_id]) ) |
---|
1838 | { |
---|
1839 | found = 1; |
---|
1840 | ctx_tim = alloc_tim_channel[cluster_id]; |
---|
1841 | alloc_tim_channel[cluster_id]++; |
---|
1842 | break; |
---|
1843 | } |
---|
1844 | } |
---|
1845 | if (!found) |
---|
1846 | { |
---|
1847 | boot_puts("\n[BOOT ERROR] No ISR_TIMER installed for task "); |
---|
1848 | boot_puts(task[task_id].name); |
---|
1849 | boot_puts(" in vspace "); |
---|
1850 | boot_puts(vspace[vspace_id].name); |
---|
1851 | boot_puts("\n"); |
---|
1852 | boot_exit(); |
---|
1853 | } |
---|
1854 | } |
---|
1855 | // ctx_dma : the local channel index is defined by the cluster allocator |
---|
1856 | // but the ctx_dma value is a global index |
---|
1857 | unsigned int ctx_dma = 0xFFFFFFFF; |
---|
1858 | if ( task[task_id].use_dma ) |
---|
1859 | { |
---|
1860 | unsigned int cluster_id = task[task_id].clusterid; |
---|
1861 | |
---|
1862 | if (alloc_dma_channel[cluster_id] >= NB_DMA_CHANNELS) |
---|
1863 | { |
---|
1864 | boot_puts("\n[BOOT ERROR] local DMA index too large for task "); |
---|
1865 | boot_puts(task[task_id].name); |
---|
1866 | boot_puts(" in vspace "); |
---|
1867 | boot_puts(vspace[vspace_id].name); |
---|
1868 | boot_puts("\n"); |
---|
1869 | boot_exit(); |
---|
1870 | } |
---|
1871 | ctx_dma = cluster_id * NB_DMA_CHANNELS + alloc_dma_channel[cluster_id]; |
---|
1872 | alloc_dma_channel[cluster_id]++; |
---|
1873 | } |
---|
1874 | // ctx_epc : Get the virtual address of the start function |
---|
1875 | mapping_vobj_t* pvobj = &vobj[vspace[vspace_id].vobj_offset + |
---|
1876 | vspace[vspace_id].start_offset]; |
---|
1877 | unsigned int* start_vector_vbase = (unsigned int *) pvobj->vaddr; |
---|
1878 | unsigned int ctx_epc = start_vector_vbase[task[task_id].startid]; |
---|
1879 | |
---|
1880 | // ctx_sp : Get the vobj containing the stack |
---|
1881 | unsigned int vobj_id = task[task_id].stack_vobjid + vspace[vspace_id].vobj_offset; |
---|
1882 | unsigned int ctx_sp = vobj[vobj_id].vaddr + vobj[vobj_id].length; |
---|
1883 | |
---|
1884 | // get local task index in scheduler |
---|
1885 | unsigned int ltid = psched->tasks; |
---|
1886 | |
---|
1887 | if (ltid >= IDLE_TASK_INDEX) |
---|
1888 | { |
---|
1889 | boot_puts("\n[BOOT ERROR] : "); |
---|
1890 | boot_putd(ltid); |
---|
1891 | boot_puts(" tasks allocated to processor "); |
---|
1892 | boot_putd(gpid); |
---|
1893 | boot_puts(" / max is 15\n"); |
---|
1894 | boot_exit(); |
---|
1895 | } |
---|
1896 | // update the "tasks" field in scheduler |
---|
1897 | psched->tasks = ltid + 1; |
---|
1898 | |
---|
1899 | // update the "current" field in scheduler |
---|
1900 | psched->current = 0; |
---|
1901 | |
---|
1902 | // initializes the task context in scheduler |
---|
1903 | psched->context[ltid][CTX_SR_ID] = ctx_sr; |
---|
1904 | psched->context[ltid][CTX_SP_ID] = ctx_sp; |
---|
1905 | psched->context[ltid][CTX_RA_ID] = ctx_ra; |
---|
1906 | psched->context[ltid][CTX_EPC_ID] = ctx_epc; |
---|
1907 | psched->context[ltid][CTX_PTPR_ID] = ctx_ptpr; |
---|
1908 | psched->context[ltid][CTX_TTY_ID] = ctx_tty; |
---|
1909 | psched->context[ltid][CTX_CMA_ID] = ctx_cma; |
---|
1910 | psched->context[ltid][CTX_IOC_ID] = ctx_ioc; |
---|
1911 | psched->context[ltid][CTX_NIC_ID] = ctx_nic; |
---|
1912 | psched->context[ltid][CTX_TIM_ID] = ctx_tim; |
---|
1913 | psched->context[ltid][CTX_DMA_ID] = ctx_dma; |
---|
1914 | psched->context[ltid][CTX_PTAB_ID] = ctx_ptab; |
---|
1915 | psched->context[ltid][CTX_LTID_ID] = ltid; |
---|
1916 | psched->context[ltid][CTX_GTID_ID] = task_id; |
---|
1917 | psched->context[ltid][CTX_VSID_ID] = vspace_id; |
---|
1918 | psched->context[ltid][CTX_RUN_ID] = 1; |
---|
1919 | |
---|
1920 | #if BOOT_DEBUG_SCHED |
---|
1921 | boot_puts("\nTask "); |
---|
1922 | boot_puts(task[task_id].name); |
---|
1923 | boot_puts(" ("); |
---|
1924 | boot_putd(task_id); |
---|
1925 | boot_puts(") allocated to processor "); |
---|
1926 | boot_putd(gpid); |
---|
1927 | boot_puts("\n - ctx[LTID] = "); |
---|
1928 | boot_putd(ltid); |
---|
1929 | boot_puts("\n - ctx[SR] = "); |
---|
1930 | boot_putx(ctx_sr); |
---|
1931 | boot_puts("\n - ctx[SR] = "); |
---|
1932 | boot_putx(ctx_sp); |
---|
1933 | boot_puts("\n - ctx[RA] = "); |
---|
1934 | boot_putx(ctx_ra); |
---|
1935 | boot_puts("\n - ctx[EPC] = "); |
---|
1936 | boot_putx(ctx_epc); |
---|
1937 | boot_puts("\n - ctx[PTPR] = "); |
---|
1938 | boot_putx(ctx_ptpr); |
---|
1939 | boot_puts("\n - ctx[TTY] = "); |
---|
1940 | boot_putd(ctx_tty); |
---|
1941 | boot_puts("\n - ctx[NIC] = "); |
---|
1942 | boot_putd(ctx_nic); |
---|
1943 | boot_puts("\n - ctx[CMA] = "); |
---|
1944 | boot_putd(ctx_cma); |
---|
1945 | boot_puts("\n - ctx[IOC] = "); |
---|
1946 | boot_putd(ctx_ioc); |
---|
1947 | boot_puts("\n - ctx[TIM] = "); |
---|
1948 | boot_putd(ctx_tim); |
---|
1949 | boot_puts("\n - ctx[DMA] = "); |
---|
1950 | boot_putd(ctx_dma); |
---|
1951 | boot_puts("\n - ctx[PTAB] = "); |
---|
1952 | boot_putx(ctx_ptab); |
---|
1953 | boot_puts("\n - ctx[GTID] = "); |
---|
1954 | boot_putd(task_id); |
---|
1955 | boot_puts("\n - ctx[VSID] = "); |
---|
1956 | boot_putd(vspace_id); |
---|
1957 | boot_puts("\n"); |
---|
1958 | #endif |
---|
1959 | |
---|
1960 | } // end loop on tasks |
---|
1961 | } // end loop on vspaces |
---|
1962 | |
---|
1963 | boot_puts("\n[BOOT] Schedulers initialisation completed at cycle "); |
---|
1964 | boot_putd(boot_proctime()); |
---|
1965 | boot_puts("\n"); |
---|
1966 | |
---|
1967 | } // end boot_schedulers_init() |
---|
1968 | |
---|
1969 | |
---|
1970 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1971 | // This function is executed by P[0] to wakeup all processors. |
---|
1972 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1973 | void boot_start_all_procs() |
---|
1974 | { |
---|
1975 | mapping_header_t * header = (mapping_header_t *) &seg_mapping_base; |
---|
1976 | header->signature = OUT_MAPPING_SIGNATURE; |
---|
1977 | } |
---|
1978 | |
---|
1979 | |
---|
1980 | ///////////////////////////////////////////////////////////////////// |
---|
1981 | // This function is the entry point of the initialisation procedure |
---|
1982 | ///////////////////////////////////////////////////////////////////// |
---|
1983 | void boot_init() { |
---|
1984 | |
---|
1985 | // mapping_info checking |
---|
1986 | boot_check_mapping(); |
---|
1987 | |
---|
1988 | // page table building |
---|
1989 | boot_pt_init(); |
---|
1990 | |
---|
1991 | // mmu activation (with page table [0]) |
---|
1992 | boot_set_mmu_ptpr((unsigned int) (boot_ptabs_paddr[0] >> 13)); |
---|
1993 | boot_set_mmu_mode(0xF); |
---|
1994 | |
---|
1995 | boot_puts("\n[BOOT] Proc 0 MMU activation at cycle "); |
---|
1996 | boot_putd(boot_proctime()); |
---|
1997 | boot_puts("\n"); |
---|
1998 | |
---|
1999 | // vobjs initialisation |
---|
2000 | boot_vobjs_init(); |
---|
2001 | |
---|
2002 | // reset ptpr with page table 0 |
---|
2003 | boot_set_mmu_ptpr((unsigned int) (boot_ptabs_paddr[0] >> 13)); |
---|
2004 | |
---|
2005 | // peripherals initialisation |
---|
2006 | boot_peripherals_init(); |
---|
2007 | |
---|
2008 | // schedulers initialisation |
---|
2009 | boot_schedulers_init(); |
---|
2010 | |
---|
2011 | // start all processors |
---|
2012 | boot_start_all_procs(); |
---|
2013 | |
---|
2014 | } // end boot_init() |
---|
2015 | |
---|
2016 | |
---|
2017 | // Local Variables: |
---|
2018 | // tab-width: 4 |
---|
2019 | // c-basic-offset: 4 |
---|
2020 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
2021 | // indent-tabs-mode: nil |
---|
2022 | // End: |
---|
2023 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
2024 | |
---|