1 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : boot.c |
---|
3 | // Date : 01/11/2013 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The boot.c file is part of the GIET-VM nano-kernel. |
---|
8 | // |
---|
9 | // This nano-kernel has been written for the MIPS32 processor. |
---|
10 | // The virtual adresses are on 32 bits and use the (unsigned int) type, but the |
---|
11 | // physicals addresses can have up to 40 bits, and use the (unsigned long long) type. |
---|
12 | // It natively supports clusterised shared mmemory multi-processors architectures, |
---|
13 | // where each processor is identified by a composite index (cluster_xy, local_id), |
---|
14 | // and where there is one physical memory bank per cluster. |
---|
15 | // |
---|
16 | // This code is executed in the boot phase by proc[0] and performs the following tasks: |
---|
17 | // - load into memory the giet_vm binary files, contained in a FAT32 file system, |
---|
18 | // - build the various page tables (one page table per vspace) |
---|
19 | // - initialize the shedulers (one scheduler per processor) |
---|
20 | // |
---|
21 | // 1) The binary files to be loaded are: |
---|
22 | // - the "map.bin" file contains the hardware architecture description and the |
---|
23 | // mapping directives. It must be stored in the the seg_boot_mapping segment |
---|
24 | // (at address seg_boot_mapping_base). |
---|
25 | // - the "sys.elf" file contains the kernel binary code and data. |
---|
26 | // - the various "application.elf" files. |
---|
27 | // |
---|
28 | // 2) The map.bin file contains the binary representation of the map.xml file defining: |
---|
29 | // - the hardware architecture: number of clusters, number or processors, |
---|
30 | // size of the memory segments, and peripherals in each cluster. |
---|
31 | // - The structure of the various multi-threaded software applications: |
---|
32 | // number of tasks, communication channels. |
---|
33 | // - The mapping: placement of virtual objects (vobj) in the virtual segments (vseg), |
---|
34 | // placement of virtual segments (vseg) in the physical segments (pseg), placement |
---|
35 | // of software tasks on the processors, |
---|
36 | // |
---|
37 | // 3) The GIET-VM uses the paged virtual memory to provides two services: |
---|
38 | // - classical memory protection, when several independant applications compiled |
---|
39 | // in different virtual spaces are executing on the same hardware platform. |
---|
40 | // - data placement in NUMA architectures, when we want to control the placement |
---|
41 | // of the software objects (virtual segments) on the physical memory banks. |
---|
42 | // |
---|
43 | // The page table are statically build in the boot phase, and they do not |
---|
44 | // change during execution. The GIET uses only 4 Kbytes pages. |
---|
45 | // As most applications use only a limited number of segments, the number of PT2s |
---|
46 | // actually used by a given virtual space is generally smaller than 2048, and is |
---|
47 | // computed during the boot phase. |
---|
48 | // The max number of virtual spaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
49 | // |
---|
50 | // Each page table (one page table per virtual space) is monolithic, and contains |
---|
51 | // one PT1 and up to (GIET_NB_PT2_MAX) PT2s. The PT1 is addressed using the ix1 field |
---|
52 | // (11 bits) of the VPN, and the selected PT2 is addressed using the ix2 field (9 bits). |
---|
53 | // - PT1[2048] : a first 8K aligned array of unsigned int, indexed by (ix1) field of VPN. |
---|
54 | // Each entry in the PT1 contains a 32 bits PTD. The MSB bit PTD[31] is |
---|
55 | // the PTD valid bit, and LSB bits PTD[19:0] are the 20 MSB bits of the physical base |
---|
56 | // address of the selected PT2. |
---|
57 | // The PT1 contains 2048 PTD of 4 bytes => 8K bytes. |
---|
58 | // - PT2[1024][GIET_NB_PT2_MAX] : an array of array of unsigned int. |
---|
59 | // Each PT2[1024] must be 4K aligned, each entry in a PT2 contains two unsigned int: |
---|
60 | // the first word contains the protection flags, and the second word contains the PPN. |
---|
61 | // Each PT2 contains 512 PTE2 of 8bytes => 4K bytes. |
---|
62 | // The total size of a page table is finally = 8K + (GIET_NB_PT2_MAX)*4K bytes. |
---|
63 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
64 | // Implementation Notes: |
---|
65 | // |
---|
66 | // 1) The cluster_id variable is a linear index in the mapping_info array of clusters. |
---|
67 | // We use the cluster_xy variable for the tological index = x << Y_WIDTH + y |
---|
68 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
69 | |
---|
70 | // for vobjs initialisation |
---|
71 | #include <giet_config.h> |
---|
72 | #include <mwmr_channel.h> |
---|
73 | #include <barrier.h> |
---|
74 | #include <memspace.h> |
---|
75 | #include <tty_driver.h> |
---|
76 | #include <xcu_driver.h> |
---|
77 | #include <ioc_driver.h> |
---|
78 | #include <dma_driver.h> |
---|
79 | #include <cma_driver.h> |
---|
80 | #include <nic_driver.h> |
---|
81 | #include <ioc_driver.h> |
---|
82 | #include <mwr_driver.h> |
---|
83 | #include <ctx_handler.h> |
---|
84 | #include <irq_handler.h> |
---|
85 | #include <vmem.h> |
---|
86 | #include <utils.h> |
---|
87 | #include <elf-types.h> |
---|
88 | |
---|
89 | // for boot FAT initialisation |
---|
90 | #include <fat32.h> |
---|
91 | |
---|
92 | #include <mips32_registers.h> |
---|
93 | #include <stdarg.h> |
---|
94 | |
---|
95 | #if !defined(X_SIZE) |
---|
96 | # error The X_SIZE value must be defined in the 'hard_config.h' file ! |
---|
97 | #endif |
---|
98 | |
---|
99 | #if !defined(Y_SIZE) |
---|
100 | # error The Y_SIZE value must be defined in the 'hard_config.h' file ! |
---|
101 | #endif |
---|
102 | |
---|
103 | #if !defined(X_WIDTH) |
---|
104 | # error The X_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
105 | #endif |
---|
106 | |
---|
107 | #if !defined(Y_WIDTH) |
---|
108 | # error The Y_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
109 | #endif |
---|
110 | |
---|
111 | #if !defined(NB_PROCS_MAX) |
---|
112 | # error The NB_PROCS_MAX value must be defined in the 'hard_config.h' file ! |
---|
113 | #endif |
---|
114 | |
---|
115 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
116 | # error The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
117 | #endif |
---|
118 | |
---|
119 | //////////////////////////////////////////////////////////////////////////// |
---|
120 | // Global variables for boot code |
---|
121 | // Both the page tables for the various virtual spaces, and the schedulers |
---|
122 | // for the processors are physically distributed on the clusters. |
---|
123 | // These global variables are just arrays of pointers. |
---|
124 | //////////////////////////////////////////////////////////////////////////// |
---|
125 | |
---|
126 | // This global variable is allocated in "fat32.c" file |
---|
127 | extern fat32_fs_t fat; |
---|
128 | |
---|
129 | // Page table addresses arrays |
---|
130 | __attribute__((section (".bootdata"))) |
---|
131 | paddr_t _ptabs_paddr[GIET_NB_VSPACE_MAX]; |
---|
132 | |
---|
133 | __attribute__((section (".bootdata"))) |
---|
134 | unsigned int _ptabs_vaddr[GIET_NB_VSPACE_MAX]; |
---|
135 | |
---|
136 | // Next free PT2 index array |
---|
137 | __attribute__((section (".bootdata"))) |
---|
138 | unsigned int _next_free_pt2[GIET_NB_VSPACE_MAX] = |
---|
139 | { [0 ... GIET_NB_VSPACE_MAX - 1] = 0 }; |
---|
140 | |
---|
141 | // Max PT2 index |
---|
142 | __attribute__((section (".bootdata"))) |
---|
143 | unsigned int _max_pt2[GIET_NB_VSPACE_MAX] = |
---|
144 | { [0 ... GIET_NB_VSPACE_MAX - 1] = 0 }; |
---|
145 | |
---|
146 | // Scheduler pointers array (virtual addresses) |
---|
147 | // indexed by (x,y,lpid) : ((x << Y_WIDTH) + y)*NB_PROCS_MAX + lpid |
---|
148 | __attribute__((section (".bootdata"))) |
---|
149 | static_scheduler_t* _schedulers[NB_PROCS_MAX<<(X_WIDTH+Y_WIDTH)]; |
---|
150 | |
---|
151 | |
---|
152 | ///////////////////////////////////////////////////////////////////// |
---|
153 | // This function checks consistence beween the mapping_info data |
---|
154 | // structure (soft), and the giet_config file (hard). |
---|
155 | ///////////////////////////////////////////////////////////////////// |
---|
156 | void boot_mapping_check() |
---|
157 | { |
---|
158 | mapping_header_t * header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
159 | |
---|
160 | // checking mapping availability |
---|
161 | if (header->signature != IN_MAPPING_SIGNATURE) |
---|
162 | { |
---|
163 | _puts("\n[BOOT ERROR] Illegal mapping signature: "); |
---|
164 | _putx(header->signature); |
---|
165 | _puts("\n"); |
---|
166 | _exit(); |
---|
167 | } |
---|
168 | |
---|
169 | // checking number of clusters |
---|
170 | if ( (header->x_size != X_SIZE) || |
---|
171 | (header->y_size != Y_SIZE) || |
---|
172 | (header->x_width != X_WIDTH) || |
---|
173 | (header->y_width != Y_WIDTH) ) |
---|
174 | { |
---|
175 | _puts("\n[BOOT ERROR] Incoherent X_SIZE or Y_SIZE "); |
---|
176 | _puts("\n - In hard_config: X_SIZE = "); |
---|
177 | _putd( X_SIZE ); |
---|
178 | _puts(" / Y_SIZE = "); |
---|
179 | _putd( Y_SIZE ); |
---|
180 | _puts(" / X_WIDTH = "); |
---|
181 | _putd( X_WIDTH ); |
---|
182 | _puts(" / Y_WIDTH = "); |
---|
183 | _putd( Y_WIDTH ); |
---|
184 | _puts("\n - In mapping_info: x_size = "); |
---|
185 | _putd( header->x_size ); |
---|
186 | _puts(" / y_size = "); |
---|
187 | _putd( header->y_size ); |
---|
188 | _puts(" / x_width = "); |
---|
189 | _putd( header->x_width ); |
---|
190 | _puts(" / y_width = "); |
---|
191 | _putd( header->y_width ); |
---|
192 | _puts("\n"); |
---|
193 | _exit(); |
---|
194 | } |
---|
195 | // checking number of virtual spaces |
---|
196 | if (header->vspaces > GIET_NB_VSPACE_MAX) |
---|
197 | { |
---|
198 | _puts("\n[BOOT ERROR] : number of vspaces > GIET_NB_VSPACE_MAX\n"); |
---|
199 | _puts("\n"); |
---|
200 | _exit(); |
---|
201 | } |
---|
202 | |
---|
203 | #if BOOT_DEBUG_MAPPING |
---|
204 | _puts("\n - x_size = "); |
---|
205 | _putd( header->x_size ); |
---|
206 | _puts("\n - y_size = "); |
---|
207 | _putd( header->y_size ); |
---|
208 | _puts("\n - procs = "); |
---|
209 | _putd( header->procs ); |
---|
210 | _puts("\n - periphs = "); |
---|
211 | _putd( header->periphs ); |
---|
212 | _puts("\n - vspaces = "); |
---|
213 | _putd( header->vspaces ); |
---|
214 | _puts("\n - tasks = "); |
---|
215 | _putd( header->tasks ); |
---|
216 | _puts("\n"); |
---|
217 | _puts("\n - size of header = "); |
---|
218 | _putd( MAPPING_HEADER_SIZE ); |
---|
219 | _puts("\n - size of cluster = "); |
---|
220 | _putd( MAPPING_CLUSTER_SIZE ); |
---|
221 | _puts("\n - size of pseg = "); |
---|
222 | _putd( MAPPING_PSEG_SIZE ); |
---|
223 | _puts("\n - size of proc = "); |
---|
224 | _putd( MAPPING_PROC_SIZE ); |
---|
225 | _puts("\n - size of vspace = "); |
---|
226 | _putd( MAPPING_VSPACE_SIZE ); |
---|
227 | _puts("\n - size of vseg = "); |
---|
228 | _putd( MAPPING_VSEG_SIZE ); |
---|
229 | _puts("\n - size of vobj = "); |
---|
230 | _putd( MAPPING_VOBJ_SIZE ); |
---|
231 | _puts("\n - size of task = "); |
---|
232 | _putd( MAPPING_TASK_SIZE ); |
---|
233 | _puts("\n"); |
---|
234 | |
---|
235 | unsigned int cluster_id; |
---|
236 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
237 | for( cluster_id = 0; cluster_id < X_SIZE*Y_SIZE ; cluster_id++) |
---|
238 | { |
---|
239 | _puts("\n - cluster["); |
---|
240 | _putd( cluster[cluster_id].x ); |
---|
241 | _puts(","); |
---|
242 | _putd( cluster[cluster_id].y ); |
---|
243 | _puts("]\n procs = "); |
---|
244 | _putd( cluster[cluster_id].procs ); |
---|
245 | _puts("\n psegs = "); |
---|
246 | _putd( cluster[cluster_id].psegs ); |
---|
247 | _puts("\n periphs = "); |
---|
248 | _putd( cluster[cluster_id].periphs ); |
---|
249 | _puts("\n"); |
---|
250 | } |
---|
251 | #endif |
---|
252 | |
---|
253 | } // end boot_mapping_check() |
---|
254 | |
---|
255 | |
---|
256 | ////////////////////////////////////////////////////////////////////////////// |
---|
257 | // boot_pseg_get() |
---|
258 | // This function returns the pointer on a physical segment |
---|
259 | // identified by the pseg index. |
---|
260 | ////////////////////////////////////////////////////////////////////////////// |
---|
261 | mapping_pseg_t *boot_pseg_get(unsigned int seg_id) |
---|
262 | { |
---|
263 | mapping_header_t* header = (mapping_header_t*)(&seg_boot_mapping_base); |
---|
264 | mapping_pseg_t * pseg = _get_pseg_base(header); |
---|
265 | |
---|
266 | // checking argument |
---|
267 | if (seg_id >= header->psegs) |
---|
268 | { |
---|
269 | _puts("\n[BOOT ERROR] : seg_id argument too large\n"); |
---|
270 | _puts(" in function boot_pseg_get()\n"); |
---|
271 | _exit(); |
---|
272 | } |
---|
273 | |
---|
274 | return &pseg[seg_id]; |
---|
275 | } |
---|
276 | |
---|
277 | ////////////////////////////////////////////////////////////////////////////// |
---|
278 | // boot_add_pte() |
---|
279 | // This function registers a new PTE in the page table defined |
---|
280 | // by the vspace_id argument, and updates both PT1 and PT2. |
---|
281 | // A new PT2 is used when required. |
---|
282 | // As the set of PT2s is implemented as a fixed size array (no dynamic |
---|
283 | // allocation), this function checks a possible overflow of the PT2 array. |
---|
284 | ////////////////////////////////////////////////////////////////////////////// |
---|
285 | void boot_add_pte(unsigned int vspace_id, |
---|
286 | unsigned int vpn, |
---|
287 | unsigned int flags, |
---|
288 | unsigned int ppn, |
---|
289 | unsigned int verbose) |
---|
290 | { |
---|
291 | unsigned int ix1; |
---|
292 | unsigned int ix2; |
---|
293 | paddr_t pt1_pbase; // PT1 physical base address |
---|
294 | paddr_t pt2_pbase; // PT2 physical base address |
---|
295 | paddr_t pte_paddr; // PTE physucal address |
---|
296 | unsigned int pt2_id; // PT2 index |
---|
297 | unsigned int ptd; // PTD : entry in PT1 |
---|
298 | unsigned int max_pt2; // max number of PT2s for a given vspace |
---|
299 | |
---|
300 | ix1 = vpn >> 9; // 11 bits |
---|
301 | ix2 = vpn & 0x1FF; // 9 bits |
---|
302 | |
---|
303 | // check that the _max_pt2[vspace_id] has been set |
---|
304 | max_pt2 = _max_pt2[vspace_id]; |
---|
305 | |
---|
306 | if (max_pt2 == 0) |
---|
307 | { |
---|
308 | _puts("Undefined page table for vspace "); |
---|
309 | _putd(vspace_id); |
---|
310 | _puts("\n"); |
---|
311 | _exit(); |
---|
312 | } |
---|
313 | |
---|
314 | |
---|
315 | // get page table physical base address |
---|
316 | pt1_pbase = _ptabs_paddr[vspace_id]; |
---|
317 | |
---|
318 | // get ptd in PT1 |
---|
319 | ptd = _physical_read(pt1_pbase + 4 * ix1); |
---|
320 | |
---|
321 | if ((ptd & PTE_V) == 0) // invalid PTD: compute PT2 base address, |
---|
322 | // and set a new PTD in PT1 |
---|
323 | { |
---|
324 | pt2_id = _next_free_pt2[vspace_id]; |
---|
325 | if (pt2_id == max_pt2) |
---|
326 | { |
---|
327 | _puts("\n[BOOT ERROR] in boot_add_pte() function\n"); |
---|
328 | _puts("the length of the ptab vobj is too small\n"); |
---|
329 | |
---|
330 | _puts(" max_pt2 = "); |
---|
331 | _putd( max_pt2 ); |
---|
332 | _puts("\n"); |
---|
333 | _puts(" pt2_id = "); |
---|
334 | _putd( pt2_id ); |
---|
335 | _puts("\n"); |
---|
336 | |
---|
337 | _exit(); |
---|
338 | } |
---|
339 | else |
---|
340 | { |
---|
341 | pt2_pbase = pt1_pbase + PT1_SIZE + PT2_SIZE * pt2_id; |
---|
342 | ptd = PTE_V | PTE_T | (unsigned int) (pt2_pbase >> 12); |
---|
343 | _physical_write( pt1_pbase + 4 * ix1, ptd); |
---|
344 | _next_free_pt2[vspace_id] = pt2_id + 1; |
---|
345 | } |
---|
346 | } |
---|
347 | else // valid PTD: compute PT2 base address |
---|
348 | { |
---|
349 | pt2_pbase = ((paddr_t)(ptd & 0x0FFFFFFF)) << 12; |
---|
350 | } |
---|
351 | |
---|
352 | // set PTE in PT2 : flags & PPN in two 32 bits words |
---|
353 | pte_paddr = pt2_pbase + 8 * ix2; |
---|
354 | _physical_write(pte_paddr , flags); |
---|
355 | _physical_write(pte_paddr + 4, ppn); |
---|
356 | |
---|
357 | if (verbose) |
---|
358 | { |
---|
359 | _puts(" / pt1_pbase = "); |
---|
360 | _putl( pt1_pbase ); |
---|
361 | _puts(" / ptd = "); |
---|
362 | _putl( ptd ); |
---|
363 | _puts(" / pt2_pbase = "); |
---|
364 | _putl( pt2_pbase ); |
---|
365 | _puts(" / pte_paddr = "); |
---|
366 | _putl( pte_paddr ); |
---|
367 | _puts(" / ppn = "); |
---|
368 | _putx( ppn ); |
---|
369 | _puts("/\n"); |
---|
370 | } |
---|
371 | |
---|
372 | } // end boot_add_pte() |
---|
373 | |
---|
374 | |
---|
375 | ///////////////////////////////////////////////////////////////////// |
---|
376 | // This function build the page table for a given vspace. |
---|
377 | // The physical base addresses for all vsegs (global and private) |
---|
378 | // must have been previously computed and stored in the mapping. |
---|
379 | // It initializes the MWMR channels. |
---|
380 | ///////////////////////////////////////////////////////////////////// |
---|
381 | void boot_vspace_pt_build(unsigned int vspace_id) |
---|
382 | { |
---|
383 | unsigned int vseg_id; |
---|
384 | unsigned int npages; |
---|
385 | unsigned int ppn; |
---|
386 | unsigned int vpn; |
---|
387 | unsigned int flags; |
---|
388 | unsigned int page_id; |
---|
389 | unsigned int verbose = 0; // can be used to activate trace in add_pte() |
---|
390 | |
---|
391 | mapping_header_t * header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
392 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
393 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
394 | |
---|
395 | // private segments |
---|
396 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
397 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
398 | vseg_id++) |
---|
399 | { |
---|
400 | vpn = vseg[vseg_id].vbase >> 12; |
---|
401 | ppn = (unsigned int) (vseg[vseg_id].pbase >> 12); |
---|
402 | |
---|
403 | npages = vseg[vseg_id].length >> 12; |
---|
404 | if ((vseg[vseg_id].length & 0xFFF) != 0) npages++; |
---|
405 | |
---|
406 | flags = PTE_V; |
---|
407 | if (vseg[vseg_id].mode & C_MODE_MASK) flags = flags | PTE_C; |
---|
408 | if (vseg[vseg_id].mode & X_MODE_MASK) flags = flags | PTE_X; |
---|
409 | if (vseg[vseg_id].mode & W_MODE_MASK) flags = flags | PTE_W; |
---|
410 | if (vseg[vseg_id].mode & U_MODE_MASK) flags = flags | PTE_U; |
---|
411 | |
---|
412 | #if BOOT_DEBUG_PT |
---|
413 | _puts(vseg[vseg_id].name); |
---|
414 | _puts(" : flags = "); |
---|
415 | _putx(flags); |
---|
416 | _puts(" / npages = "); |
---|
417 | _putd(npages); |
---|
418 | _puts(" / pbase = "); |
---|
419 | _putl(vseg[vseg_id].pbase); |
---|
420 | _puts("\n"); |
---|
421 | #endif |
---|
422 | // loop on 4K pages |
---|
423 | for (page_id = 0; page_id < npages; page_id++) |
---|
424 | { |
---|
425 | boot_add_pte(vspace_id, vpn, flags, ppn, verbose); |
---|
426 | vpn++; |
---|
427 | ppn++; |
---|
428 | } |
---|
429 | } |
---|
430 | |
---|
431 | // global segments |
---|
432 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
433 | { |
---|
434 | vpn = vseg[vseg_id].vbase >> 12; |
---|
435 | ppn = (unsigned int)(vseg[vseg_id].pbase >> 12); |
---|
436 | npages = vseg[vseg_id].length >> 12; |
---|
437 | if ((vseg[vseg_id].length & 0xFFF) != 0) npages++; |
---|
438 | |
---|
439 | flags = PTE_V; |
---|
440 | if (vseg[vseg_id].mode & C_MODE_MASK) flags = flags | PTE_C; |
---|
441 | if (vseg[vseg_id].mode & X_MODE_MASK) flags = flags | PTE_X; |
---|
442 | if (vseg[vseg_id].mode & W_MODE_MASK) flags = flags | PTE_W; |
---|
443 | if (vseg[vseg_id].mode & U_MODE_MASK) flags = flags | PTE_U; |
---|
444 | |
---|
445 | #if BOOT_DEBUG_PT |
---|
446 | _puts(vseg[vseg_id].name); |
---|
447 | _puts(" : flags = "); |
---|
448 | _putx(flags); |
---|
449 | _puts(" / npages = "); |
---|
450 | _putd(npages); |
---|
451 | _puts(" / pbase = "); |
---|
452 | _putl(vseg[vseg_id].pbase); |
---|
453 | _puts("\n"); |
---|
454 | #endif |
---|
455 | // loop on 4K pages |
---|
456 | for (page_id = 0; page_id < npages; page_id++) |
---|
457 | { |
---|
458 | boot_add_pte(vspace_id, vpn, flags, ppn, verbose); |
---|
459 | vpn++; |
---|
460 | ppn++; |
---|
461 | } |
---|
462 | } |
---|
463 | } // end boot_vspace_pt_build() |
---|
464 | |
---|
465 | |
---|
466 | /////////////////////////////////////////////////////////////////////////// |
---|
467 | // Align the value of paddr or vaddr to the required alignement, |
---|
468 | // defined by alignPow2 == L2(alignement). |
---|
469 | /////////////////////////////////////////////////////////////////////////// |
---|
470 | paddr_t paddr_align_to(paddr_t paddr, unsigned int alignPow2) |
---|
471 | { |
---|
472 | paddr_t mask = (1 << alignPow2) - 1; |
---|
473 | return ((paddr + mask) & ~mask); |
---|
474 | } |
---|
475 | |
---|
476 | unsigned int vaddr_align_to(unsigned int vaddr, unsigned int alignPow2) |
---|
477 | { |
---|
478 | unsigned int mask = (1 << alignPow2) - 1; |
---|
479 | return ((vaddr + mask) & ~mask); |
---|
480 | } |
---|
481 | |
---|
482 | /////////////////////////////////////////////////////////////////////////// |
---|
483 | // Set pbase for a vseg when identity mapping is required. |
---|
484 | // The length of the vseg must be known. |
---|
485 | // The ordered linked list of vsegs mapped on pseg must be updated, |
---|
486 | // and overlap with previously mapped vsegs must be checked. |
---|
487 | /////////////////////////////////////////////////////////////////////////// |
---|
488 | void boot_vseg_set_paddr_ident(mapping_vseg_t * vseg) |
---|
489 | { |
---|
490 | // checking vseg not already mapped |
---|
491 | if (vseg->mapped != 0) |
---|
492 | { |
---|
493 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr_ident() : vseg "); |
---|
494 | _puts( vseg->name ); |
---|
495 | _puts(" already mapped\n"); |
---|
496 | _exit(); |
---|
497 | } |
---|
498 | |
---|
499 | // computes selected pseg pointer |
---|
500 | mapping_pseg_t* pseg = boot_pseg_get( vseg->psegid ); |
---|
501 | |
---|
502 | // computes vseg alignment constraint |
---|
503 | mapping_header_t* header = (mapping_header_t*)&seg_boot_mapping_base; |
---|
504 | mapping_vobj_t* vobj_base = _get_vobj_base( header ); |
---|
505 | unsigned int align = vobj_base[vseg->vobj_offset].align; |
---|
506 | if ( vobj_base[vseg->vobj_offset].align < 12 ) align = 12; |
---|
507 | |
---|
508 | // computes required_pbase for identity mapping, |
---|
509 | paddr_t required_pbase = (paddr_t)vseg->vbase; |
---|
510 | |
---|
511 | // checks identity constraint against alignment constraint |
---|
512 | if ( paddr_align_to( required_pbase, align) != required_pbase ) |
---|
513 | { |
---|
514 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr_ident() : vseg "); |
---|
515 | _puts( vseg->name ); |
---|
516 | _puts(" has uncompatible identity and alignment constraints\n"); |
---|
517 | _exit(); |
---|
518 | } |
---|
519 | |
---|
520 | // We are looking for a contiguous space in target pseg. |
---|
521 | // If there is vsegs already mapped, we scan the vsegs list to: |
---|
522 | // - check overlap with already mapped vsegs, |
---|
523 | // - try mapping in holes between already mapped vsegs, |
---|
524 | // - update the ordered linked list if success |
---|
525 | // We don't enter the loop if no vsegs is already mapped. |
---|
526 | // implementation note: The next_vseg field is unsigned int, |
---|
527 | // but we use it to store a MIP32 pointer on a vseg... |
---|
528 | |
---|
529 | mapping_vseg_t* curr = 0; |
---|
530 | mapping_vseg_t* prev = 0; |
---|
531 | unsigned int min_pbase = pseg->base; |
---|
532 | |
---|
533 | for ( curr = (mapping_vseg_t*)pseg->next_vseg ; |
---|
534 | (curr != 0) && (vseg->mapped == 0) ; |
---|
535 | curr = (mapping_vseg_t*)curr->next_vseg ) |
---|
536 | { |
---|
537 | // looking before current vseg |
---|
538 | if( (required_pbase >= min_pbase) && |
---|
539 | (curr->pbase >= (required_pbase + vseg->length)) ) // space found |
---|
540 | { |
---|
541 | vseg->pbase = required_pbase; |
---|
542 | vseg->mapped = 1; |
---|
543 | |
---|
544 | // update linked list |
---|
545 | vseg->next_vseg = (unsigned int)curr; |
---|
546 | if( curr == (mapping_vseg_t*)pseg->next_vseg ) |
---|
547 | pseg->next_vseg = (unsigned int)vseg; |
---|
548 | else |
---|
549 | prev->next_vseg = (unsigned int)vseg; |
---|
550 | } |
---|
551 | else // looking in space after curr |
---|
552 | { |
---|
553 | prev = curr; |
---|
554 | min_pbase = curr->pbase + curr->length; |
---|
555 | } |
---|
556 | } |
---|
557 | |
---|
558 | // no success in the loop |
---|
559 | if( (vseg->mapped == 0) && |
---|
560 | (required_pbase >= min_pbase) && |
---|
561 | ((required_pbase + vseg->length) <= (pseg->base + pseg->length)) ) |
---|
562 | { |
---|
563 | vseg->pbase = required_pbase; |
---|
564 | vseg->mapped = 1; |
---|
565 | |
---|
566 | // update linked list |
---|
567 | vseg->next_vseg = 0; |
---|
568 | if ((curr == 0) && (prev == 0)) pseg->next_vseg = (unsigned int)vseg; |
---|
569 | else prev->next_vseg = (unsigned int)vseg; |
---|
570 | } |
---|
571 | |
---|
572 | if( vseg->mapped == 0 ) |
---|
573 | { |
---|
574 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr_ident() : vseg "); |
---|
575 | _puts( vseg->name ); |
---|
576 | _puts(" cannot be mapped on pseg "); |
---|
577 | _puts( pseg->name ); |
---|
578 | _puts("\n"); |
---|
579 | _exit(); |
---|
580 | } |
---|
581 | } // end boot_vseg_set_paddr_ident() |
---|
582 | |
---|
583 | |
---|
584 | //////////////////////////////////////////////////////////////////////////// |
---|
585 | // Set pbase for a vseg when there is no identity mapping constraint. |
---|
586 | // This is the physical memory allocator (written by Q.Meunier). |
---|
587 | // The length of the vseg must be known. |
---|
588 | // All identity mapping vsegs must be already mapped. |
---|
589 | // We use a linked list of already mapped vsegs, ordered by incresing pbase. |
---|
590 | // We try to place the vseg in the "first fit" hole in this list. |
---|
591 | //////////////////////////////////////////////////////////////////////////// |
---|
592 | void boot_vseg_set_paddr(mapping_vseg_t * vseg) |
---|
593 | { |
---|
594 | // checking vseg not already mapped |
---|
595 | if ( vseg->mapped != 0 ) |
---|
596 | { |
---|
597 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr() : vseg "); |
---|
598 | _puts( vseg->name ); |
---|
599 | _puts(" already mapped\n"); |
---|
600 | _exit(); |
---|
601 | } |
---|
602 | |
---|
603 | // computes selected pseg pointer |
---|
604 | mapping_pseg_t* pseg = boot_pseg_get( vseg->psegid ); |
---|
605 | |
---|
606 | // computes vseg alignment constraint |
---|
607 | mapping_header_t* header = (mapping_header_t*)&seg_boot_mapping_base; |
---|
608 | mapping_vobj_t* vobj_base = _get_vobj_base( header ); |
---|
609 | unsigned int align = vobj_base[vseg->vobj_offset].align; |
---|
610 | if ( vobj_base[vseg->vobj_offset].align < 12 ) align = 12; |
---|
611 | |
---|
612 | // initialise physical base address, with alignment constraint |
---|
613 | paddr_t possible_pbase = paddr_align_to( pseg->base, align ); |
---|
614 | |
---|
615 | // We are looking for a contiguous space in target pseg |
---|
616 | // If there is vsegs already mapped, we scan the vsegs list to: |
---|
617 | // - try mapping in holes between already mapped vsegs, |
---|
618 | // - update the ordered linked list if success |
---|
619 | // We don't enter the loop if no vsegs is already mapped. |
---|
620 | // implementation note: The next_vseg field is unsigned int, |
---|
621 | // but we use it to store a MIP32 pointer on a vseg... |
---|
622 | |
---|
623 | mapping_vseg_t* curr = 0; |
---|
624 | mapping_vseg_t* prev = 0; |
---|
625 | |
---|
626 | for( curr = (mapping_vseg_t*)pseg->next_vseg ; |
---|
627 | (curr != 0) && (vseg->mapped == 0) ; |
---|
628 | curr = (mapping_vseg_t*)curr->next_vseg ) |
---|
629 | { |
---|
630 | // looking for space before current vseg |
---|
631 | if ( (curr->pbase >= possible_pbase + vseg->length) ) // space before curr |
---|
632 | { |
---|
633 | vseg->pbase = possible_pbase; |
---|
634 | vseg->mapped = 1; |
---|
635 | |
---|
636 | // update linked list |
---|
637 | vseg->next_vseg = (unsigned int)curr; |
---|
638 | if( curr == (mapping_vseg_t*)pseg->next_vseg ) |
---|
639 | pseg->next_vseg = (unsigned int)vseg; |
---|
640 | else |
---|
641 | prev->next_vseg = (unsigned int)vseg; |
---|
642 | } |
---|
643 | else // looking for space after curr |
---|
644 | { |
---|
645 | possible_pbase = paddr_align_to( curr->pbase + curr->length, align ); |
---|
646 | prev = curr; |
---|
647 | } |
---|
648 | } |
---|
649 | |
---|
650 | // when no space found, try to allocate space after already mapped vsegs |
---|
651 | if( (vseg->mapped == 0) && |
---|
652 | ((possible_pbase + vseg->length) <= (pseg->base + pseg->length)) ) |
---|
653 | { |
---|
654 | vseg->pbase = possible_pbase; |
---|
655 | vseg->mapped = 1; |
---|
656 | |
---|
657 | // update linked list |
---|
658 | vseg->next_vseg = 0; |
---|
659 | if ((curr == 0 ) && (prev == 0)) pseg->next_vseg = (unsigned int)vseg; |
---|
660 | else prev->next_vseg = (unsigned int)vseg; |
---|
661 | } |
---|
662 | |
---|
663 | if( vseg->mapped == 0 ) |
---|
664 | { |
---|
665 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr() : vseg "); |
---|
666 | _puts( vseg->name ); |
---|
667 | _puts(" cannot be mapped on pseg "); |
---|
668 | _puts( pseg->name ); |
---|
669 | _puts("\n"); |
---|
670 | _exit(); |
---|
671 | } |
---|
672 | } // end boot_vseg_set_paddr() |
---|
673 | |
---|
674 | /////////////////////////////////////////////////////////////////////////// |
---|
675 | // This function computes the physical base address for a vseg |
---|
676 | // as specified in the mapping info data structure. |
---|
677 | // It updates the pbase and the length fields of the vseg. |
---|
678 | // It updates the pbase and vbase fields of all vobjs in the vseg. |
---|
679 | // It updates the _ptabs_paddr[] and _ptabs_vaddr[] arrays. |
---|
680 | // It is a global vseg if vspace_id = (-1). |
---|
681 | /////////////////////////////////////////////////////////////////////////// |
---|
682 | void boot_vseg_map(mapping_vseg_t * vseg, unsigned int vspace_id) |
---|
683 | { |
---|
684 | unsigned int vobj_id; |
---|
685 | unsigned int cur_vaddr; |
---|
686 | paddr_t cur_paddr; |
---|
687 | paddr_t cur_length; |
---|
688 | unsigned int offset; |
---|
689 | |
---|
690 | mapping_header_t * header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
691 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
692 | |
---|
693 | // loop on the vobjs contained in vseg to compute |
---|
694 | // the vseg length, required for mapping. |
---|
695 | cur_length = 0; |
---|
696 | for ( vobj_id = vseg->vobj_offset; |
---|
697 | vobj_id < (vseg->vobj_offset + vseg->vobjs); |
---|
698 | vobj_id++ ) |
---|
699 | { |
---|
700 | if (vobj[vobj_id].align) |
---|
701 | { |
---|
702 | cur_length = vaddr_align_to(cur_length, vobj[vobj_id].align); |
---|
703 | } |
---|
704 | cur_length += vobj[vobj_id].length; |
---|
705 | } |
---|
706 | vseg->length = paddr_align_to(cur_length, 12); |
---|
707 | |
---|
708 | // mapping: computes vseg pbase address |
---|
709 | if (vseg->ident != 0) // identity mapping |
---|
710 | { |
---|
711 | boot_vseg_set_paddr_ident( vseg ); |
---|
712 | } |
---|
713 | else // unconstrained mapping |
---|
714 | { |
---|
715 | boot_vseg_set_paddr( vseg ); |
---|
716 | } |
---|
717 | |
---|
718 | // second loop on vobjs contained in vseg to : |
---|
719 | // initialize the vaddr and paddr fields of all vobjs, |
---|
720 | // and initialize the page table pointers arrays |
---|
721 | |
---|
722 | cur_vaddr = vseg->vbase; |
---|
723 | cur_paddr = vseg->pbase; |
---|
724 | |
---|
725 | for (vobj_id = vseg->vobj_offset; |
---|
726 | vobj_id < (vseg->vobj_offset + vseg->vobjs); vobj_id++) |
---|
727 | { |
---|
728 | if (vobj[vobj_id].align) |
---|
729 | { |
---|
730 | cur_paddr = paddr_align_to(cur_paddr, vobj[vobj_id].align); |
---|
731 | cur_vaddr = vaddr_align_to(cur_vaddr, vobj[vobj_id].align); |
---|
732 | } |
---|
733 | // set vaddr/paddr for current vobj |
---|
734 | vobj[vobj_id].vaddr = cur_vaddr; |
---|
735 | vobj[vobj_id].paddr = cur_paddr; |
---|
736 | |
---|
737 | // initialize _ptabs_vaddr[] & boot_ptabs-paddr[] if PTAB |
---|
738 | if (vobj[vobj_id].type == VOBJ_TYPE_PTAB) |
---|
739 | { |
---|
740 | if (vspace_id == ((unsigned int) -1)) // global vseg |
---|
741 | { |
---|
742 | _puts("\n[BOOT ERROR] in boot_vseg_map() function: "); |
---|
743 | _puts("a PTAB vobj cannot be global"); |
---|
744 | _exit(); |
---|
745 | } |
---|
746 | // we need at least one PT2 |
---|
747 | if (vobj[vobj_id].length < (PT1_SIZE + PT2_SIZE)) |
---|
748 | { |
---|
749 | _puts("\n[BOOT ERROR] in boot_vseg_map() function, "); |
---|
750 | _puts("PTAB too small, minumum size is: "); |
---|
751 | _putx(PT1_SIZE + PT2_SIZE); |
---|
752 | _exit(); |
---|
753 | } |
---|
754 | // register both physical and virtual page table address |
---|
755 | _ptabs_vaddr[vspace_id] = vobj[vobj_id].vaddr; |
---|
756 | _ptabs_paddr[vspace_id] = vobj[vobj_id].paddr; |
---|
757 | |
---|
758 | // reset all valid bits in PT1 |
---|
759 | for ( offset = 0 ; offset < 8192 ; offset = offset + 4) |
---|
760 | { |
---|
761 | _physical_write(cur_paddr + offset, 0); |
---|
762 | } |
---|
763 | |
---|
764 | // computing the number of second level pages |
---|
765 | _max_pt2[vspace_id] = (vobj[vobj_id].length - PT1_SIZE) / PT2_SIZE; |
---|
766 | } |
---|
767 | |
---|
768 | // set next vaddr/paddr |
---|
769 | cur_vaddr = cur_vaddr + vobj[vobj_id].length; |
---|
770 | cur_paddr = cur_paddr + vobj[vobj_id].length; |
---|
771 | } // end for vobjs |
---|
772 | |
---|
773 | } // end boot_vseg_map() |
---|
774 | |
---|
775 | ///////////////////////////////////////////////////////////////////// |
---|
776 | // This function builds the page tables for all virtual spaces |
---|
777 | // defined in the mapping_info data structure, in three steps: |
---|
778 | // - step 1 : It computes the physical base address for global vsegs |
---|
779 | // and for all associated vobjs. |
---|
780 | // - step 2 : It computes the physical base address for all private |
---|
781 | // vsegs and all vobjs in each virtual space. |
---|
782 | // - step 3 : It actually fill the page table for each vspace. |
---|
783 | // |
---|
784 | // Note: It must exist at least one vspace in the mapping_info... |
---|
785 | ///////////////////////////////////////////////////////////////////// |
---|
786 | void boot_pt_init() |
---|
787 | { |
---|
788 | mapping_header_t * header = (mapping_header_t *) &seg_boot_mapping_base; |
---|
789 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
790 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
791 | |
---|
792 | unsigned int vspace_id; |
---|
793 | unsigned int vseg_id; |
---|
794 | |
---|
795 | if (header->vspaces == 0 ) |
---|
796 | { |
---|
797 | _puts("\n[BOOT ERROR] in boot_pt_init() : mapping "); |
---|
798 | _puts( header->name ); |
---|
799 | _puts(" contains no vspace\n"); |
---|
800 | _exit(); |
---|
801 | } |
---|
802 | |
---|
803 | #if BOOT_DEBUG_PT |
---|
804 | _puts("\n[BOOT DEBUG] ****** mapping global vsegs ******\n"); |
---|
805 | #endif |
---|
806 | |
---|
807 | // step 1 : loop on global vsegs |
---|
808 | |
---|
809 | // vsegs with identity mapping constraint first |
---|
810 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
811 | { |
---|
812 | if (vseg[vseg_id].ident == 1) |
---|
813 | boot_vseg_map(&vseg[vseg_id], ((unsigned int) (-1))); |
---|
814 | } |
---|
815 | |
---|
816 | // unconstrained vsegs second |
---|
817 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
818 | { |
---|
819 | if (vseg[vseg_id].ident == 0) |
---|
820 | boot_vseg_map(&vseg[vseg_id], ((unsigned int) (-1))); |
---|
821 | } |
---|
822 | |
---|
823 | // step 2 : loop on virtual vspaces to map private vsegs |
---|
824 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
825 | { |
---|
826 | |
---|
827 | #if BOOT_DEBUG_PT |
---|
828 | _puts("\n[BOOT DEBUG] ****** mapping private vsegs in vspace "); |
---|
829 | _puts(vspace[vspace_id].name); |
---|
830 | _puts(" ******\n"); |
---|
831 | #endif |
---|
832 | |
---|
833 | // vsegs with identity mapping constraint first |
---|
834 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
835 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
836 | vseg_id++) |
---|
837 | { |
---|
838 | if (vseg[vseg_id].ident == 1) |
---|
839 | boot_vseg_map(&vseg[vseg_id], vspace_id); |
---|
840 | } |
---|
841 | // unconstrained vsegs second |
---|
842 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
843 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
844 | vseg_id++) |
---|
845 | { |
---|
846 | if (vseg[vseg_id].ident == 0) |
---|
847 | boot_vseg_map(&vseg[vseg_id], vspace_id); |
---|
848 | } |
---|
849 | } |
---|
850 | |
---|
851 | #if BOOT_DEBUG_PT |
---|
852 | mapping_vseg_t* curr; |
---|
853 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
854 | unsigned int pseg_id; |
---|
855 | for( pseg_id = 0 ; pseg_id < header->psegs ; pseg_id++ ) |
---|
856 | { |
---|
857 | _puts("\n[BOOT DEBUG] ****** vsegs mapped on pseg "); |
---|
858 | _puts( pseg[pseg_id].name ); |
---|
859 | _putd( pseg[pseg_id].cluster); |
---|
860 | _puts(" ******\n"); |
---|
861 | for( curr = (mapping_vseg_t*)pseg[pseg_id].next_vseg ; |
---|
862 | curr != 0 ; |
---|
863 | curr = (mapping_vseg_t*)curr->next_vseg ) |
---|
864 | { |
---|
865 | _puts(" - vseg "); |
---|
866 | _puts( curr->name ); |
---|
867 | _puts(" : len = "); |
---|
868 | _putx( curr->length ); |
---|
869 | _puts(" / vbase "); |
---|
870 | _putl( curr->vbase ); |
---|
871 | _puts(" / pbase "); |
---|
872 | _putl( curr->pbase ); |
---|
873 | _puts("\n"); |
---|
874 | } |
---|
875 | } |
---|
876 | #endif |
---|
877 | |
---|
878 | // step 3 : loop on the vspaces to build the page tables |
---|
879 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
880 | { |
---|
881 | |
---|
882 | #if BOOT_DEBUG_PT |
---|
883 | _puts("\n[BOOT DEBUG] ****** building page table for vspace "); |
---|
884 | _puts(vspace[vspace_id].name); |
---|
885 | _puts(" ******\n"); |
---|
886 | #endif |
---|
887 | |
---|
888 | boot_vspace_pt_build(vspace_id); |
---|
889 | |
---|
890 | _puts("\n[BOOT] Page Table for vspace "); |
---|
891 | _puts( vspace[vspace_id].name ); |
---|
892 | _puts(" completed at cycle "); |
---|
893 | _putd( _get_proctime() ); |
---|
894 | _puts("\n"); |
---|
895 | |
---|
896 | #if BOOT_DEBUG_PT |
---|
897 | _puts(" vaddr = "); |
---|
898 | _putx( _ptabs_vaddr[vspace_id] ); |
---|
899 | _puts(" / paddr = "); |
---|
900 | _putl( _ptabs_paddr[vspace_id] ); |
---|
901 | _puts(" / PT2 number = "); |
---|
902 | _putd( _max_pt2[vspace_id] ); |
---|
903 | _puts("\n"); |
---|
904 | #endif |
---|
905 | } |
---|
906 | } // end boot_pt_init() |
---|
907 | |
---|
908 | /////////////////////////////////////////////////////////////////////////////// |
---|
909 | // This function initializes all private vobjs defined in the vspaces, |
---|
910 | // such as mwmr channels, barriers and locks, because these vobjs |
---|
911 | // are not known, and not initialized by the compiler. |
---|
912 | // The MMU is supposed to be activated... |
---|
913 | /////////////////////////////////////////////////////////////////////////////// |
---|
914 | void boot_vobjs_init() |
---|
915 | { |
---|
916 | mapping_header_t* header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
917 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
918 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
919 | |
---|
920 | unsigned int vspace_id; |
---|
921 | unsigned int vobj_id; |
---|
922 | |
---|
923 | // loop on the vspaces |
---|
924 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
925 | { |
---|
926 | |
---|
927 | #if BOOT_DEBUG_VOBJS |
---|
928 | _puts("\n[BOOT DEBUG] ****** vobjs initialisation in vspace "); |
---|
929 | _puts(vspace[vspace_id].name); |
---|
930 | _puts(" ******\n"); |
---|
931 | #endif |
---|
932 | |
---|
933 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id] >> 13) ); |
---|
934 | |
---|
935 | unsigned int ptab_found = 0; |
---|
936 | |
---|
937 | // loop on the vobjs |
---|
938 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
939 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
940 | vobj_id++) |
---|
941 | { |
---|
942 | switch (vobj[vobj_id].type) |
---|
943 | { |
---|
944 | case VOBJ_TYPE_MWMR: // storage capacity is (vobj.length/4 - 5) words |
---|
945 | { |
---|
946 | mwmr_channel_t* mwmr = (mwmr_channel_t *) (vobj[vobj_id].vaddr); |
---|
947 | mwmr->ptw = 0; |
---|
948 | mwmr->ptr = 0; |
---|
949 | mwmr->sts = 0; |
---|
950 | mwmr->width = vobj[vobj_id].init; |
---|
951 | mwmr->depth = (vobj[vobj_id].length >> 2) - 6; |
---|
952 | mwmr->lock = 0; |
---|
953 | #if BOOT_DEBUG_VOBJS |
---|
954 | _puts("MWMR : "); |
---|
955 | _puts(vobj[vobj_id].name); |
---|
956 | _puts(" / depth = "); |
---|
957 | _putd(mwmr->depth); |
---|
958 | _puts(" / width = "); |
---|
959 | _putd(mwmr->width); |
---|
960 | _puts("\n"); |
---|
961 | #endif |
---|
962 | break; |
---|
963 | } |
---|
964 | case VOBJ_TYPE_ELF: // initialisation done by the loader |
---|
965 | { |
---|
966 | #if BOOT_DEBUG_VOBJS |
---|
967 | _puts("ELF : "); |
---|
968 | _puts(vobj[vobj_id].name); |
---|
969 | _puts(" / length = "); |
---|
970 | _putx(vobj[vobj_id].length); |
---|
971 | _puts("\n"); |
---|
972 | #endif |
---|
973 | break; |
---|
974 | } |
---|
975 | case VOBJ_TYPE_BLOB: // initialisation done by the loader |
---|
976 | { |
---|
977 | #if BOOT_DEBUG_VOBJS |
---|
978 | _puts("BLOB : "); |
---|
979 | _puts(vobj[vobj_id].name); |
---|
980 | _puts(" / length = "); |
---|
981 | _putx(vobj[vobj_id].length); |
---|
982 | _puts("\n"); |
---|
983 | #endif |
---|
984 | break; |
---|
985 | } |
---|
986 | case VOBJ_TYPE_BARRIER: // init is the number of participants |
---|
987 | { |
---|
988 | giet_barrier_t* barrier = (giet_barrier_t *) (vobj[vobj_id].vaddr); |
---|
989 | barrier->count = vobj[vobj_id].init; |
---|
990 | barrier->init = vobj[vobj_id].init; |
---|
991 | #if BOOT_DEBUG_VOBJS |
---|
992 | _puts("BARRIER : "); |
---|
993 | _puts(vobj[vobj_id].name); |
---|
994 | _puts(" / init_value = "); |
---|
995 | _putd(barrier->init); |
---|
996 | _puts("\n"); |
---|
997 | #endif |
---|
998 | break; |
---|
999 | } |
---|
1000 | case VOBJ_TYPE_LOCK: // init value is "not taken" |
---|
1001 | { |
---|
1002 | unsigned int* lock = (unsigned int *) (vobj[vobj_id].vaddr); |
---|
1003 | *lock = 0; |
---|
1004 | #if BOOT_DEBUG_VOBJS |
---|
1005 | _puts("LOCK : "); |
---|
1006 | _puts(vobj[vobj_id].name); |
---|
1007 | _puts("\n"); |
---|
1008 | #endif |
---|
1009 | break; |
---|
1010 | } |
---|
1011 | case VOBJ_TYPE_BUFFER: // nothing to initialise |
---|
1012 | { |
---|
1013 | #if BOOT_DEBUG_VOBJS |
---|
1014 | _puts("BUFFER : "); |
---|
1015 | _puts(vobj[vobj_id].name); |
---|
1016 | _puts(" / paddr = "); |
---|
1017 | _putl(vobj[vobj_id].paddr); |
---|
1018 | _puts(" / length = "); |
---|
1019 | _putx(vobj[vobj_id].length); |
---|
1020 | _puts("\n"); |
---|
1021 | #endif |
---|
1022 | break; |
---|
1023 | } |
---|
1024 | case VOBJ_TYPE_MEMSPACE: |
---|
1025 | { |
---|
1026 | giet_memspace_t* memspace = (giet_memspace_t *) vobj[vobj_id].vaddr; |
---|
1027 | memspace->buffer = (void *) vobj[vobj_id].vaddr + 8; |
---|
1028 | memspace->size = vobj[vobj_id].length - 8; |
---|
1029 | #if BOOT_DEBUG_VOBJS |
---|
1030 | _puts("MEMSPACE : "); |
---|
1031 | _puts(vobj[vobj_id].name); |
---|
1032 | _puts(" / vaddr = "); |
---|
1033 | _putx(vobj[vobj_id].vaddr); |
---|
1034 | _puts(" / length = "); |
---|
1035 | _putx(vobj[vobj_id].length); |
---|
1036 | _puts(" / buffer = "); |
---|
1037 | _putx((unsigned int)memspace->buffer); |
---|
1038 | _puts(" / size = "); |
---|
1039 | _putx(memspace->size); |
---|
1040 | _puts("\n"); |
---|
1041 | #endif |
---|
1042 | break; |
---|
1043 | } |
---|
1044 | case VOBJ_TYPE_PTAB: // nothing to initialize |
---|
1045 | { |
---|
1046 | ptab_found = 1; |
---|
1047 | #if BOOT_DEBUG_VOBJS |
---|
1048 | _puts("PTAB : "); |
---|
1049 | _puts(vobj[vobj_id].name); |
---|
1050 | _puts(" / length = "); |
---|
1051 | _putx(vobj[vobj_id].length); |
---|
1052 | _puts("\n"); |
---|
1053 | #endif |
---|
1054 | break; |
---|
1055 | } |
---|
1056 | case VOBJ_TYPE_CONST: |
---|
1057 | { |
---|
1058 | unsigned int* addr = (unsigned int *) vobj[vobj_id].vaddr; |
---|
1059 | *addr = vobj[vobj_id].init; |
---|
1060 | #if BOOT_DEBUG_VOBJS |
---|
1061 | _puts("CONST : "); |
---|
1062 | _puts(vobj[vobj_id].name); |
---|
1063 | _puts(" / Paddr :"); |
---|
1064 | _putl(vobj[vobj_id].paddr); |
---|
1065 | _puts(" / init = "); |
---|
1066 | _putx(*addr); |
---|
1067 | _puts("\n"); |
---|
1068 | #endif |
---|
1069 | break; |
---|
1070 | } |
---|
1071 | default: |
---|
1072 | { |
---|
1073 | _puts("\n[BOOT ERROR] illegal vobj type: "); |
---|
1074 | _putd(vobj[vobj_id].type); |
---|
1075 | _puts("\n"); |
---|
1076 | _exit(); |
---|
1077 | } |
---|
1078 | } // end switch type |
---|
1079 | } // end loop on vobjs |
---|
1080 | if (ptab_found == 0) |
---|
1081 | { |
---|
1082 | _puts("\n[BOOT ERROR] Missing PTAB for vspace "); |
---|
1083 | _putd(vspace_id); |
---|
1084 | _exit(); |
---|
1085 | } |
---|
1086 | } // end loop on vspaces |
---|
1087 | |
---|
1088 | } // end boot_vobjs_init() |
---|
1089 | |
---|
1090 | /////////////////////////////////////////////////////////////////////////////// |
---|
1091 | // This function returns in the vbase and length buffers the virtual base |
---|
1092 | // address and the length of the segment allocated to the schedulers array |
---|
1093 | // in the cluster defined by the clusterid argument. |
---|
1094 | /////////////////////////////////////////////////////////////////////////////// |
---|
1095 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
1096 | unsigned int* vbase, |
---|
1097 | unsigned int* length ) |
---|
1098 | { |
---|
1099 | mapping_header_t* header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
1100 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1101 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
1102 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
1103 | |
---|
1104 | unsigned int vseg_id; |
---|
1105 | unsigned int found = 0; |
---|
1106 | |
---|
1107 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
1108 | { |
---|
1109 | if ( (vobj[vseg[vseg_id].vobj_offset].type == VOBJ_TYPE_SCHED) && |
---|
1110 | (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) ) |
---|
1111 | { |
---|
1112 | *vbase = vseg[vseg_id].vbase; |
---|
1113 | *length = vobj[vseg[vseg_id].vobj_offset].length; |
---|
1114 | found = 1; |
---|
1115 | } |
---|
1116 | } |
---|
1117 | if ( found == 0 ) |
---|
1118 | { |
---|
1119 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1120 | _puts("\n[BOOT ERROR] No vobj of type SCHED in cluster ["); |
---|
1121 | _putd( cluster[cluster_id].x ); |
---|
1122 | _puts(","); |
---|
1123 | _putd( cluster[cluster_id].y ); |
---|
1124 | _puts("]\n"); |
---|
1125 | _exit(); |
---|
1126 | } |
---|
1127 | } // end boot_get_sched_vaddr() |
---|
1128 | |
---|
1129 | //////////////////////////////////////////////////////////////////////////////////// |
---|
1130 | // This function initialises all processors schedulers. |
---|
1131 | // This is done by processor 0, and the MMU must be activated. |
---|
1132 | // - In Step 1, it initialises the _schedulers[gpid] pointers array, and scan |
---|
1133 | // the processors to initialise the schedulers, including the |
---|
1134 | // idle_task context (ltid == 14). |
---|
1135 | // - In Step 2, it scan all tasks in all vspaces to initialise the tasks contexts, |
---|
1136 | // as specified in the mapping_info data structure. |
---|
1137 | //////////////////////////////////////////////////////////////////////////////////// |
---|
1138 | void boot_schedulers_init() |
---|
1139 | { |
---|
1140 | mapping_header_t* header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
1141 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1142 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
1143 | mapping_task_t* task = _get_task_base(header); |
---|
1144 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1145 | mapping_proc_t* proc = _get_proc_base(header); |
---|
1146 | mapping_irq_t* irq = _get_irq_base(header); |
---|
1147 | |
---|
1148 | unsigned int cluster_id; // cluster index in mapping_info |
---|
1149 | unsigned int proc_id; // processor index in mapping_info |
---|
1150 | unsigned int irq_id; // irq index in mapping_info |
---|
1151 | unsigned int vspace_id; // vspace index in mapping_info |
---|
1152 | unsigned int task_id; // task index in mapping_info |
---|
1153 | |
---|
1154 | // TTY, NIC, CMA, HBA, TIM and DMA channels allocators |
---|
1155 | // - TTY[0] is reserved for the kernel |
---|
1156 | // - In all clusters the first NB_PROCS_MAX timers |
---|
1157 | // are reserved for the kernel (context switch) |
---|
1158 | |
---|
1159 | unsigned int alloc_tty_channel = 1; // TTY channel allocator |
---|
1160 | unsigned int alloc_nic_channel = 0; // NIC channel allocator |
---|
1161 | unsigned int alloc_cma_channel = 0; // CMA channel allocator |
---|
1162 | unsigned int alloc_hba_channel = 0; // IOC channel allocator |
---|
1163 | unsigned int alloc_tim_channel[X_SIZE*Y_SIZE]; // user TIMER allocators |
---|
1164 | |
---|
1165 | ///////////////////////////////////////////////////////////////////////// |
---|
1166 | // Step 1 : loop on the clusters and on the processors |
---|
1167 | // to initialize the schedulers[] array of pointers, |
---|
1168 | // and the interrupt vectors. |
---|
1169 | // Implementation note: |
---|
1170 | // We need to use both proc_id to scan the mapping info structure, |
---|
1171 | // and lpid to access the schedulers array. |
---|
1172 | // - the _schedulers[] array of pointers can contain "holes", because |
---|
1173 | // it is indexed by the global pid = cluster_xy*NB_PROCS_MAX + lpid |
---|
1174 | // - the mapping info array of processors is contiguous, it is indexed |
---|
1175 | // by proc_id, and use an offset specific in each cluster. |
---|
1176 | |
---|
1177 | for (cluster_id = 0 ; cluster_id < X_SIZE*Y_SIZE ; cluster_id++) |
---|
1178 | { |
---|
1179 | unsigned int x = cluster[cluster_id].x; |
---|
1180 | unsigned int y = cluster[cluster_id].y; |
---|
1181 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1182 | |
---|
1183 | #if BOOT_DEBUG_SCHED |
---|
1184 | _puts("\n[BOOT DEBUG] Initialise schedulers in cluster["); |
---|
1185 | _putd( x ); |
---|
1186 | _puts(","); |
---|
1187 | _putd( y ); |
---|
1188 | _puts("]\n"); |
---|
1189 | #endif |
---|
1190 | alloc_tim_channel[cluster_id] = NB_PROCS_MAX; |
---|
1191 | |
---|
1192 | unsigned int lpid; // processor local index in cluster |
---|
1193 | unsigned int sched_vbase; // schedulers segment virtual base address |
---|
1194 | unsigned int sched_length; // schedulers segment length |
---|
1195 | unsigned int nprocs; // number of processors in cluster |
---|
1196 | |
---|
1197 | nprocs = cluster[cluster_id].procs; |
---|
1198 | |
---|
1199 | // checking processors number |
---|
1200 | if ( nprocs > NB_PROCS_MAX ) |
---|
1201 | { |
---|
1202 | _puts("\n[BOOT ERROR] Too much processors in cluster["); |
---|
1203 | _putd( x ); |
---|
1204 | _puts(","); |
---|
1205 | _putd( y ); |
---|
1206 | _puts("]\n"); |
---|
1207 | _exit(); |
---|
1208 | } |
---|
1209 | |
---|
1210 | // get scheduler array virtual base address and length |
---|
1211 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
1212 | |
---|
1213 | // each processor scheduler requires 4 Kbytes |
---|
1214 | if ( sched_length < (nprocs<<12) ) |
---|
1215 | { |
---|
1216 | _puts("\n[BOOT ERROR] Schedulers segment too small in cluster["); |
---|
1217 | _putd( x ); |
---|
1218 | _puts(","); |
---|
1219 | _putd( y ); |
---|
1220 | _puts("]\n"); |
---|
1221 | _exit(); |
---|
1222 | } |
---|
1223 | |
---|
1224 | // loop on processors |
---|
1225 | for ( proc_id = cluster[cluster_id].proc_offset, lpid = 0 ; |
---|
1226 | proc_id < cluster[cluster_id].proc_offset + cluster[cluster_id].procs; |
---|
1227 | proc_id++, lpid++ ) |
---|
1228 | { |
---|
1229 | // current processor scheduler pointer : psched |
---|
1230 | static_scheduler_t* psched = (static_scheduler_t*)(sched_vbase+(lpid<<12)); |
---|
1231 | |
---|
1232 | // set the schedulers pointers array |
---|
1233 | _schedulers[cluster_xy * NB_PROCS_MAX + lpid] = psched; |
---|
1234 | |
---|
1235 | #if BOOT_DEBUG_SCHED |
---|
1236 | _puts("\nProc_"); |
---|
1237 | _putd( x ); |
---|
1238 | _puts("_"); |
---|
1239 | _putd( y ); |
---|
1240 | _puts("_"); |
---|
1241 | _putd( lpid ); |
---|
1242 | _puts(" : scheduler virtual base address = "); |
---|
1243 | _putx( sched_vbase + (lpid<<12) ); |
---|
1244 | _puts("\n"); |
---|
1245 | #endif |
---|
1246 | |
---|
1247 | // initialise the "tasks" variable : default value is 0 |
---|
1248 | psched->tasks = 0; |
---|
1249 | |
---|
1250 | // initialise the "current" variable : default value is idle_task |
---|
1251 | psched->current = IDLE_TASK_INDEX; |
---|
1252 | |
---|
1253 | // initialise interrupt_vector with default value (valid bit = 0) |
---|
1254 | unsigned int slot; |
---|
1255 | for (slot = 0; slot < 32; slot++) psched->interrupt_vector[slot] = 0; |
---|
1256 | |
---|
1257 | // initialise interrupt vector with the IRQs actually allocated |
---|
1258 | for (irq_id = proc[proc_id].irq_offset; |
---|
1259 | irq_id < proc[proc_id].irq_offset + proc[proc_id].irqs; |
---|
1260 | irq_id++) |
---|
1261 | { |
---|
1262 | unsigned int type = irq[irq_id].type; |
---|
1263 | unsigned int icu_id = irq[irq_id].icuid; |
---|
1264 | unsigned int isr_id = irq[irq_id].isr; |
---|
1265 | unsigned int channel = irq[irq_id].channel; |
---|
1266 | |
---|
1267 | unsigned int value = ((isr_id & 0xFF) ) | |
---|
1268 | ((type & 0xFF) << 8) | |
---|
1269 | ((channel & 0x7FFF) << 16) | |
---|
1270 | 0x80000000; // Valid entry |
---|
1271 | |
---|
1272 | psched->interrupt_vector[icu_id] = value; |
---|
1273 | |
---|
1274 | #if BOOT_DEBUG_SCHED |
---|
1275 | _puts("- IRQ : icu = "); |
---|
1276 | _putd(icu_id); |
---|
1277 | _puts(" / type = "); |
---|
1278 | _putd(type); |
---|
1279 | _puts(" / isr = "); |
---|
1280 | _putd(isr_id); |
---|
1281 | _puts(" / channel = "); |
---|
1282 | _putd(channel); |
---|
1283 | _puts(" => vector_entry = "); |
---|
1284 | _putx( value ); |
---|
1285 | _puts("\n"); |
---|
1286 | #endif |
---|
1287 | } |
---|
1288 | |
---|
1289 | // initializes the idle_task context in scheduler: |
---|
1290 | // - the SR slot is 0xFF03 because this task run in kernel mode. |
---|
1291 | // - it uses the page table of vspace[0] |
---|
1292 | // - it uses the kernel TTY terminal |
---|
1293 | // - slots containing addresses (SP, RA, EPC, PTAB, PTPR) |
---|
1294 | // must be re-initialised by kernel_parallel_init() |
---|
1295 | |
---|
1296 | psched->context[IDLE_TASK_INDEX][CTX_SR_ID] = 0xFF03; |
---|
1297 | psched->context[IDLE_TASK_INDEX][CTX_PTPR_ID] = _ptabs_paddr[0]>>13; |
---|
1298 | psched->context[IDLE_TASK_INDEX][CTX_PTAB_ID] = _ptabs_vaddr[0]; |
---|
1299 | psched->context[IDLE_TASK_INDEX][CTX_TTY_ID] = 0; |
---|
1300 | psched->context[IDLE_TASK_INDEX][CTX_LTID_ID] = IDLE_TASK_INDEX; |
---|
1301 | psched->context[IDLE_TASK_INDEX][CTX_VSID_ID] = 0; |
---|
1302 | psched->context[IDLE_TASK_INDEX][CTX_RUN_ID] = 1; |
---|
1303 | |
---|
1304 | } // end for procs |
---|
1305 | } // end for clusters |
---|
1306 | |
---|
1307 | /////////////////////////////////////////////////////////////////// |
---|
1308 | // Step 2 : loop on the vspaces and the tasks |
---|
1309 | // to initialise the schedulers and the task contexts. |
---|
1310 | |
---|
1311 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1312 | { |
---|
1313 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
1314 | // and the stack address are defined in virtual space. |
---|
1315 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id] >> 13) ); |
---|
1316 | |
---|
1317 | // loop on the tasks in vspace (task_id is the global index) |
---|
1318 | for (task_id = vspace[vspace_id].task_offset; |
---|
1319 | task_id < (vspace[vspace_id].task_offset + vspace[vspace_id].tasks); |
---|
1320 | task_id++) |
---|
1321 | { |
---|
1322 | |
---|
1323 | // compute the cluster coordinates |
---|
1324 | unsigned int x = cluster[task[task_id].clusterid].x; |
---|
1325 | unsigned int y = cluster[task[task_id].clusterid].y; |
---|
1326 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1327 | |
---|
1328 | #if BOOT_DEBUG_SCHED |
---|
1329 | _puts("\n[BOOT DEBUG] Initialise context for task "); |
---|
1330 | _puts( task[task_id].name ); |
---|
1331 | _puts(" in vspace "); |
---|
1332 | _puts( vspace[vspace_id].name ); |
---|
1333 | _puts(" running on cluster["); |
---|
1334 | _putd( x ); |
---|
1335 | _puts(","); |
---|
1336 | _putd( y ); |
---|
1337 | _puts("]\n"); |
---|
1338 | #endif |
---|
1339 | // compute gpid (global processor index) and scheduler base address |
---|
1340 | unsigned int gpid = cluster_xy * NB_PROCS_MAX + task[task_id].proclocid; |
---|
1341 | static_scheduler_t* psched = _schedulers[gpid]; |
---|
1342 | |
---|
1343 | // ctx_sr : value required before an eret instruction |
---|
1344 | unsigned int ctx_sr = 0x0000FF13; |
---|
1345 | |
---|
1346 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
1347 | unsigned int ctx_ptpr = (unsigned int)(_ptabs_paddr[vspace_id] >> 13); |
---|
1348 | |
---|
1349 | // ctx_ptab : page_table virtual base address |
---|
1350 | unsigned int ctx_ptab = _ptabs_vaddr[vspace_id]; |
---|
1351 | |
---|
1352 | // ctx_tty : TTY terminal global index provided by the global allocator |
---|
1353 | unsigned int ctx_tty = 0xFFFFFFFF; |
---|
1354 | if (task[task_id].use_tty) |
---|
1355 | { |
---|
1356 | if (alloc_tty_channel >= NB_TTY_CHANNELS) |
---|
1357 | { |
---|
1358 | _puts("\n[BOOT ERROR] TTY index too large for task "); |
---|
1359 | _puts(task[task_id].name); |
---|
1360 | _puts(" in vspace "); |
---|
1361 | _puts(vspace[vspace_id].name); |
---|
1362 | _puts("\n"); |
---|
1363 | _exit(); |
---|
1364 | } |
---|
1365 | ctx_tty = alloc_tty_channel; |
---|
1366 | alloc_tty_channel++; |
---|
1367 | } |
---|
1368 | // ctx_nic : NIC channel global index provided by the global allocator |
---|
1369 | unsigned int ctx_nic = 0xFFFFFFFF; |
---|
1370 | if (task[task_id].use_nic) |
---|
1371 | { |
---|
1372 | if (alloc_nic_channel >= NB_NIC_CHANNELS) |
---|
1373 | { |
---|
1374 | _puts("\n[BOOT ERROR] NIC channel index too large for task "); |
---|
1375 | _puts(task[task_id].name); |
---|
1376 | _puts(" in vspace "); |
---|
1377 | _puts(vspace[vspace_id].name); |
---|
1378 | _puts("\n"); |
---|
1379 | _exit(); |
---|
1380 | } |
---|
1381 | ctx_nic = alloc_nic_channel; |
---|
1382 | alloc_nic_channel++; |
---|
1383 | } |
---|
1384 | // ctx_cma : CMA channel global index provided by the global allocator |
---|
1385 | unsigned int ctx_cma = 0xFFFFFFFF; |
---|
1386 | if (task[task_id].use_cma) |
---|
1387 | { |
---|
1388 | if (alloc_cma_channel >= NB_CMA_CHANNELS) |
---|
1389 | { |
---|
1390 | _puts("\n[BOOT ERROR] CMA channel index too large for task "); |
---|
1391 | _puts(task[task_id].name); |
---|
1392 | _puts(" in vspace "); |
---|
1393 | _puts(vspace[vspace_id].name); |
---|
1394 | _puts("\n"); |
---|
1395 | _exit(); |
---|
1396 | } |
---|
1397 | ctx_cma = alloc_cma_channel; |
---|
1398 | alloc_cma_channel++; |
---|
1399 | } |
---|
1400 | // ctx_hba : HBA channel global index provided by the global allocator |
---|
1401 | unsigned int ctx_hba = 0xFFFFFFFF; |
---|
1402 | if (task[task_id].use_hba) |
---|
1403 | { |
---|
1404 | if (alloc_hba_channel >= NB_HBA_CHANNELS) |
---|
1405 | { |
---|
1406 | _puts("\n[BOOT ERROR] IOC channel index too large for task "); |
---|
1407 | _puts(task[task_id].name); |
---|
1408 | _puts(" in vspace "); |
---|
1409 | _puts(vspace[vspace_id].name); |
---|
1410 | _puts("\n"); |
---|
1411 | _exit(); |
---|
1412 | } |
---|
1413 | ctx_hba = alloc_hba_channel; |
---|
1414 | alloc_hba_channel++; |
---|
1415 | } |
---|
1416 | // ctx_tim : TIM local channel index provided by the cluster allocator |
---|
1417 | unsigned int ctx_tim = 0xFFFFFFFF; |
---|
1418 | if (task[task_id].use_tim) |
---|
1419 | { |
---|
1420 | unsigned int cluster_id = task[task_id].clusterid; |
---|
1421 | |
---|
1422 | if ( alloc_tim_channel[cluster_id] >= NB_TIM_CHANNELS ) |
---|
1423 | { |
---|
1424 | _puts("\n[BOOT ERROR] local TIMER index too large for task "); |
---|
1425 | _puts(task[task_id].name); |
---|
1426 | _puts(" in vspace "); |
---|
1427 | _puts(vspace[vspace_id].name); |
---|
1428 | _puts("\n"); |
---|
1429 | _exit(); |
---|
1430 | } |
---|
1431 | |
---|
1432 | // checking that there is an ISR_TIMER installed |
---|
1433 | unsigned int found = 0; |
---|
1434 | for ( irq_id = 0 ; irq_id < 32 ; irq_id++ ) |
---|
1435 | { |
---|
1436 | unsigned int entry = psched->interrupt_vector[irq_id]; |
---|
1437 | unsigned int isr = entry & 0x000000FF; |
---|
1438 | unsigned int channel = entry>>16; |
---|
1439 | if ( (isr == ISR_TIMER) && (channel == alloc_tim_channel[cluster_id]) ) |
---|
1440 | { |
---|
1441 | found = 1; |
---|
1442 | ctx_tim = alloc_tim_channel[cluster_id]; |
---|
1443 | alloc_tim_channel[cluster_id]++; |
---|
1444 | break; |
---|
1445 | } |
---|
1446 | } |
---|
1447 | if (!found) |
---|
1448 | { |
---|
1449 | _puts("\n[BOOT ERROR] No ISR_TIMER installed for task "); |
---|
1450 | _puts(task[task_id].name); |
---|
1451 | _puts(" in vspace "); |
---|
1452 | _puts(vspace[vspace_id].name); |
---|
1453 | _puts("\n"); |
---|
1454 | _exit(); |
---|
1455 | } |
---|
1456 | } |
---|
1457 | // ctx_epc : Get the virtual address of the memory location containing |
---|
1458 | // the task entry point : the start_vector is stored by GCC in the seg_data |
---|
1459 | // segment and we must wait the .elf loading to get the entry point value... |
---|
1460 | mapping_vobj_t* pvobj = &vobj[vspace[vspace_id].vobj_offset + |
---|
1461 | vspace[vspace_id].start_offset]; |
---|
1462 | unsigned int ctx_epc = pvobj->vaddr + (task[task_id].startid)*4; |
---|
1463 | |
---|
1464 | // ctx_sp : Get the vobj containing the stack |
---|
1465 | unsigned int vobj_id = task[task_id].stack_vobjid + vspace[vspace_id].vobj_offset; |
---|
1466 | unsigned int ctx_sp = vobj[vobj_id].vaddr + vobj[vobj_id].length; |
---|
1467 | |
---|
1468 | // get local task index in scheduler |
---|
1469 | unsigned int ltid = psched->tasks; |
---|
1470 | |
---|
1471 | if (ltid >= IDLE_TASK_INDEX) |
---|
1472 | { |
---|
1473 | _puts("\n[BOOT ERROR] in boot_schedulers_init() : "); |
---|
1474 | _putd( ltid ); |
---|
1475 | _puts(" tasks allocated to processor "); |
---|
1476 | _putd( gpid ); |
---|
1477 | _puts(" / max is "); |
---|
1478 | _putd( IDLE_TASK_INDEX ); |
---|
1479 | _puts("\n"); |
---|
1480 | _exit(); |
---|
1481 | } |
---|
1482 | |
---|
1483 | // update the "tasks" and "current" fields in scheduler: |
---|
1484 | // the first task to execute is task 0 as soon as there is at least |
---|
1485 | // one task allocated to processor. |
---|
1486 | psched->tasks = ltid + 1; |
---|
1487 | psched->current = 0; |
---|
1488 | |
---|
1489 | // initializes the task context in scheduler |
---|
1490 | psched->context[ltid][CTX_SR_ID] = ctx_sr; |
---|
1491 | psched->context[ltid][CTX_SP_ID] = ctx_sp; |
---|
1492 | psched->context[ltid][CTX_EPC_ID] = ctx_epc; |
---|
1493 | psched->context[ltid][CTX_PTPR_ID] = ctx_ptpr; |
---|
1494 | psched->context[ltid][CTX_TTY_ID] = ctx_tty; |
---|
1495 | psched->context[ltid][CTX_CMA_ID] = ctx_cma; |
---|
1496 | psched->context[ltid][CTX_HBA_ID] = ctx_hba; |
---|
1497 | psched->context[ltid][CTX_NIC_ID] = ctx_nic; |
---|
1498 | psched->context[ltid][CTX_TIM_ID] = ctx_tim; |
---|
1499 | psched->context[ltid][CTX_PTAB_ID] = ctx_ptab; |
---|
1500 | psched->context[ltid][CTX_LTID_ID] = ltid; |
---|
1501 | psched->context[ltid][CTX_GTID_ID] = task_id; |
---|
1502 | psched->context[ltid][CTX_VSID_ID] = vspace_id; |
---|
1503 | psched->context[ltid][CTX_RUN_ID] = 1; |
---|
1504 | |
---|
1505 | #if BOOT_DEBUG_SCHED |
---|
1506 | _puts("\nTask "); |
---|
1507 | _puts( task[task_id].name ); |
---|
1508 | _puts(" ("); |
---|
1509 | _putd( task_id ); |
---|
1510 | _puts(") allocated to processor "); |
---|
1511 | _putd( gpid ); |
---|
1512 | _puts("\n - ctx[LTID] = "); |
---|
1513 | _putd( psched->context[ltid][CTX_LTID_ID] ); |
---|
1514 | _puts("\n - ctx[SR] = "); |
---|
1515 | _putx( psched->context[ltid][CTX_SR_ID] ); |
---|
1516 | _puts("\n - ctx[SP] = "); |
---|
1517 | _putx( psched->context[ltid][CTX_SP_ID] ); |
---|
1518 | _puts("\n - ctx[EPC] = "); |
---|
1519 | _putx( psched->context[ltid][CTX_EPC_ID] ); |
---|
1520 | _puts("\n - ctx[PTPR] = "); |
---|
1521 | _putx( psched->context[ltid][CTX_PTPR_ID] ); |
---|
1522 | _puts("\n - ctx[TTY] = "); |
---|
1523 | _putd( psched->context[ltid][CTX_TTY_ID] ); |
---|
1524 | _puts("\n - ctx[NIC] = "); |
---|
1525 | _putd( psched->context[ltid][CTX_NIC_ID] ); |
---|
1526 | _puts("\n - ctx[CMA] = "); |
---|
1527 | _putd( psched->context[ltid][CTX_CMA_ID] ); |
---|
1528 | _puts("\n - ctx[IOC] = "); |
---|
1529 | _putd( psched->context[ltid][CTX_HBA_ID] ); |
---|
1530 | _puts("\n - ctx[TIM] = "); |
---|
1531 | _putd( psched->context[ltid][CTX_TIM_ID] ); |
---|
1532 | _puts("\n - ctx[PTAB] = "); |
---|
1533 | _putx( psched->context[ltid][CTX_PTAB_ID] ); |
---|
1534 | _puts("\n - ctx[GTID] = "); |
---|
1535 | _putd( psched->context[ltid][CTX_GTID_ID] ); |
---|
1536 | _puts("\n - ctx[VSID] = "); |
---|
1537 | _putd( psched->context[ltid][CTX_VSID_ID] ); |
---|
1538 | _puts("\n"); |
---|
1539 | #endif |
---|
1540 | |
---|
1541 | } // end loop on tasks |
---|
1542 | } // end loop on vspaces |
---|
1543 | } // end _schedulers_init() |
---|
1544 | |
---|
1545 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1546 | // This function loads the map.bin file from block device. |
---|
1547 | // The fat global varible is defined in fat32.c file. |
---|
1548 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1549 | void boot_mapping_init() |
---|
1550 | { |
---|
1551 | // Initializing the FAT descriptor and files descriptor array |
---|
1552 | if ( _fat_init( IOC_BOOT_PA_MODE ) ) |
---|
1553 | { |
---|
1554 | _puts("[BOOT ERROR] Cannot initialize FAT descriptor fom Boot Sector\n"); |
---|
1555 | _exit(); |
---|
1556 | } |
---|
1557 | |
---|
1558 | #if BOOT_DEBUG_MAPPING |
---|
1559 | _puts("\n[BOOT] FAT initialisation completed at cycle "); |
---|
1560 | _putd(_get_proctime()); |
---|
1561 | _puts("\n"); |
---|
1562 | _fat_print(); |
---|
1563 | #endif |
---|
1564 | |
---|
1565 | int fd_id = _fat_open( IOC_BOOT_PA_MODE, |
---|
1566 | "map.bin", |
---|
1567 | 0 ); // no creation |
---|
1568 | |
---|
1569 | if ( fd_id == -1 ) |
---|
1570 | { |
---|
1571 | _puts("\n[BOOT ERROR] : map.bin file not found \n"); |
---|
1572 | _exit(); |
---|
1573 | } |
---|
1574 | |
---|
1575 | #if BOOT_DEBUG_MAPPING |
---|
1576 | _puts("\n[BOOT] map.bin file successfully open at cycle "); |
---|
1577 | _putd(_get_proctime()); |
---|
1578 | _puts("\n"); |
---|
1579 | #endif |
---|
1580 | |
---|
1581 | unsigned int size = fat.fd[fd_id].file_size; |
---|
1582 | unsigned int nblocks = size >> 9; |
---|
1583 | unsigned int offset = size & 0x1FF; |
---|
1584 | if ( offset ) nblocks++; |
---|
1585 | |
---|
1586 | unsigned int ok = _fat_read( IOC_BOOT_PA_MODE, |
---|
1587 | fd_id, |
---|
1588 | (unsigned int*)( &seg_boot_mapping_base), |
---|
1589 | nblocks, |
---|
1590 | 0 ); // offset |
---|
1591 | if ( ok == -1 ) |
---|
1592 | { |
---|
1593 | _puts("\n[BOOT ERROR] : unable to load map.bin file \n"); |
---|
1594 | _exit(); |
---|
1595 | } |
---|
1596 | _fat_close( fd_id ); |
---|
1597 | |
---|
1598 | boot_mapping_check(); |
---|
1599 | } // end boot_mapping_init() |
---|
1600 | |
---|
1601 | |
---|
1602 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1603 | // This function open the .elf file identified by the "pathname" argument. |
---|
1604 | // It loads the complete file in a dedicated buffer, it copies all loadable |
---|
1605 | // segments at the memory virtual address defined in the .elf file, |
---|
1606 | // and close the file. |
---|
1607 | // Notes: |
---|
1608 | // - The processor PTPR should contain the value corresponding to the |
---|
1609 | // vspace containing the .elf file. |
---|
1610 | // - As this function requires a temporary memory buffer |
---|
1611 | // to load the complete .elf file before to copy the various segments |
---|
1612 | // to te proper location, it uses the seg_boot_buffer defined in map.xml. |
---|
1613 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1614 | void load_one_elf_file( unsigned int mode, |
---|
1615 | char* pathname, |
---|
1616 | unsigned int vspace_id ) // to use the proper page_table |
---|
1617 | { |
---|
1618 | unsigned int seg_id; |
---|
1619 | |
---|
1620 | // get boot buffer address and size |
---|
1621 | char* boot_buffer = (char*)(&seg_boot_buffer_base); |
---|
1622 | unsigned int boot_buffer_size = (unsigned int)(&seg_boot_buffer_size); |
---|
1623 | |
---|
1624 | #if BOOT_DEBUG_ELF |
---|
1625 | _puts("\n[BOOT DEBUG] Start searching file "); |
---|
1626 | _puts( pathname ); |
---|
1627 | _puts(" at cycle "); |
---|
1628 | _putd( _get_proctime() ); |
---|
1629 | _puts("\n"); |
---|
1630 | #endif |
---|
1631 | |
---|
1632 | // open .elf file |
---|
1633 | int fd_id = _fat_open( mode, |
---|
1634 | pathname, |
---|
1635 | 0 ); // no creation |
---|
1636 | if ( fd_id < 0 ) |
---|
1637 | { |
---|
1638 | _puts("\n[BOOT ERROR] load_one_elf_file() : "); |
---|
1639 | _puts( pathname ); |
---|
1640 | _puts(" not found\n"); |
---|
1641 | _exit(); |
---|
1642 | } |
---|
1643 | |
---|
1644 | // check boot_buffer size versus file size |
---|
1645 | if ( fat.fd[fd_id].file_size > boot_buffer_size ) |
---|
1646 | { |
---|
1647 | _puts("\n[BOOT ERROR] load_one_elf_file() : "); |
---|
1648 | _puts( pathname ); |
---|
1649 | _puts(" exceeds the seg_boot_buffer size\n"); |
---|
1650 | _exit(); |
---|
1651 | } |
---|
1652 | |
---|
1653 | // compute number of sectors |
---|
1654 | unsigned int nbytes = fat.fd[fd_id].file_size; |
---|
1655 | unsigned int nsectors = nbytes>>9; |
---|
1656 | if( nbytes & 0x1FF) nsectors++; |
---|
1657 | |
---|
1658 | // load file in boot_buffer |
---|
1659 | if( _fat_read( mode, |
---|
1660 | fd_id, |
---|
1661 | boot_buffer, |
---|
1662 | nsectors, |
---|
1663 | 0 ) != nsectors ) |
---|
1664 | { |
---|
1665 | _puts("\n[BOOT ERROR] load_one_elf_file() : unexpected EOF for file "); |
---|
1666 | _puts( pathname ); |
---|
1667 | _puts("\n"); |
---|
1668 | _exit(); |
---|
1669 | } |
---|
1670 | |
---|
1671 | // Check ELF Magic Number in ELF header |
---|
1672 | Elf32_Ehdr* elf_header_ptr = (Elf32_Ehdr*)boot_buffer; |
---|
1673 | |
---|
1674 | if ( (elf_header_ptr->e_ident[EI_MAG0] != ELFMAG0) || |
---|
1675 | (elf_header_ptr->e_ident[EI_MAG1] != ELFMAG1) || |
---|
1676 | (elf_header_ptr->e_ident[EI_MAG2] != ELFMAG2) || |
---|
1677 | (elf_header_ptr->e_ident[EI_MAG3] != ELFMAG3) ) |
---|
1678 | { |
---|
1679 | _puts("\n[BOOT ERROR] load_elf() : file "); |
---|
1680 | _puts( pathname ); |
---|
1681 | _puts(" does not use ELF format\n"); |
---|
1682 | _exit(); |
---|
1683 | } |
---|
1684 | |
---|
1685 | // get program header table pointer |
---|
1686 | unsigned int pht_index = elf_header_ptr->e_phoff; |
---|
1687 | if( pht_index == 0 ) |
---|
1688 | { |
---|
1689 | _puts("\n[BOOT ERROR] load_one_elf_file() : file "); |
---|
1690 | _puts( pathname ); |
---|
1691 | _puts(" does not contain loadable segment\n"); |
---|
1692 | _exit(); |
---|
1693 | } |
---|
1694 | Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(boot_buffer + pht_index); |
---|
1695 | |
---|
1696 | // get number of segments |
---|
1697 | unsigned int nsegments = elf_header_ptr->e_phnum; |
---|
1698 | |
---|
1699 | #if BOOT_DEBUG_ELF |
---|
1700 | _puts("\n[BOOT DEBUG] File "); |
---|
1701 | _puts( pathname ); |
---|
1702 | _puts(" loaded at cycle "); |
---|
1703 | _putd( _get_proctime() ); |
---|
1704 | _puts(" / bytes = "); |
---|
1705 | _putd( nbytes ); |
---|
1706 | _puts(" / sectors = "); |
---|
1707 | _putd( nsectors ); |
---|
1708 | _puts("\n"); |
---|
1709 | #endif |
---|
1710 | |
---|
1711 | // Loop on loadable segments in the ELF file |
---|
1712 | for (seg_id = 0 ; seg_id < nsegments ; seg_id++) |
---|
1713 | { |
---|
1714 | if(elf_pht_ptr[seg_id].p_type == PT_LOAD) |
---|
1715 | { |
---|
1716 | // Get segment attributes |
---|
1717 | unsigned int seg_vaddr = elf_pht_ptr[seg_id].p_vaddr; |
---|
1718 | unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset; |
---|
1719 | unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz; |
---|
1720 | unsigned int seg_memsz = elf_pht_ptr[seg_id].p_memsz; |
---|
1721 | |
---|
1722 | if( seg_memsz < seg_filesz ) |
---|
1723 | { |
---|
1724 | _puts("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = "); |
---|
1725 | _putx( seg_vaddr ); |
---|
1726 | _puts(" in file "); |
---|
1727 | _puts( pathname ); |
---|
1728 | _puts(" has a wrong size \n"); |
---|
1729 | _exit(); |
---|
1730 | } |
---|
1731 | |
---|
1732 | // fill empty space with 0 as required |
---|
1733 | if( seg_memsz > seg_filesz ) |
---|
1734 | { |
---|
1735 | unsigned int i; |
---|
1736 | for( i = seg_filesz ; i < seg_memsz; i++ ) boot_buffer[i] = 0; |
---|
1737 | } |
---|
1738 | |
---|
1739 | unsigned int src_vaddr = (unsigned int)boot_buffer + seg_offset; |
---|
1740 | |
---|
1741 | #if BOOT_DEBUG_ELF |
---|
1742 | _puts(" - segment "); |
---|
1743 | _putd( seg_id ); |
---|
1744 | _puts(" / dst_vaddr = "); |
---|
1745 | _putx( seg_vaddr ); |
---|
1746 | _puts(" / src_vaddr = "); |
---|
1747 | _putx( src_vaddr ); |
---|
1748 | _puts(" / size = "); |
---|
1749 | _putx( seg_filesz ); |
---|
1750 | _puts("\n"); |
---|
1751 | #endif |
---|
1752 | |
---|
1753 | // copy the segment from boot buffer to destination buffer |
---|
1754 | if( NB_DMA_CHANNELS > 0 ) |
---|
1755 | { |
---|
1756 | _dma_copy( vspace_id, // required for V2P translation |
---|
1757 | (char*)seg_vaddr, |
---|
1758 | (char*)src_vaddr, |
---|
1759 | seg_filesz ); |
---|
1760 | } |
---|
1761 | else |
---|
1762 | { |
---|
1763 | _memcpy( (char*)seg_vaddr, |
---|
1764 | (char*)src_vaddr, |
---|
1765 | seg_filesz ); |
---|
1766 | } |
---|
1767 | } |
---|
1768 | } // end for segments |
---|
1769 | |
---|
1770 | // close .elf file |
---|
1771 | _fat_close( fd_id ); |
---|
1772 | |
---|
1773 | } // end load_one_elf_file() |
---|
1774 | |
---|
1775 | |
---|
1776 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1777 | // This function uses the map.bin data structure to load the "kernel.elf" file |
---|
1778 | // as well as the various "application.elf" files. |
---|
1779 | // The "preloader.elf" file is not loaded, because it has been burned in the ROM. |
---|
1780 | // The "boot.elf" file is not loaded, because it has been loaded by the preloader. |
---|
1781 | // It scans all vobjs defined in the map.bin data structure to collect |
---|
1782 | // all .elf files pathnames, and calls the load_one_elf_file() function to |
---|
1783 | // load all loadable segments at the virtual address found in the .elf file. |
---|
1784 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1785 | void boot_elf_load() |
---|
1786 | { |
---|
1787 | mapping_header_t* header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
1788 | mapping_vspace_t* vspace = _get_vspace_base( header ); |
---|
1789 | mapping_vobj_t* vobj = _get_vobj_base( header ); |
---|
1790 | unsigned int vspace_id; |
---|
1791 | unsigned int vobj_id; |
---|
1792 | unsigned int found; |
---|
1793 | |
---|
1794 | // Scan all vobjs corresponding to global vsegs, |
---|
1795 | // to find the pathname to the kernel.elf file |
---|
1796 | found = 0; |
---|
1797 | for( vobj_id = 0 ; vobj_id < header->globals ; vobj_id++ ) |
---|
1798 | { |
---|
1799 | if(vobj[vobj_id].type == VOBJ_TYPE_ELF) |
---|
1800 | { |
---|
1801 | found = 1; |
---|
1802 | break; |
---|
1803 | } |
---|
1804 | } |
---|
1805 | |
---|
1806 | // We need one kernel.elf file |
---|
1807 | if (found == 0) |
---|
1808 | { |
---|
1809 | _puts("[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n"); |
---|
1810 | _exit(); |
---|
1811 | } |
---|
1812 | |
---|
1813 | load_one_elf_file( IOC_BOOT_VA_MODE, |
---|
1814 | vobj[vobj_id].binpath, |
---|
1815 | 0 ); // vspace 0 |
---|
1816 | |
---|
1817 | _puts("\n[BOOT] File "); |
---|
1818 | _puts( vobj[vobj_id].binpath ); |
---|
1819 | _puts(" loaded at cycle "); |
---|
1820 | _putd( _get_proctime() ); |
---|
1821 | _puts("\n"); |
---|
1822 | |
---|
1823 | // loop on the vspaces, scanning all vobjs in a vspace, |
---|
1824 | // to find the pathname of the .elf file associated to the vspace. |
---|
1825 | for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ ) |
---|
1826 | { |
---|
1827 | // Set PTPR depending on the vspace, as seg_data is defined in virtual space. |
---|
1828 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id] >> 13) ); |
---|
1829 | |
---|
1830 | // loop on the vobjs in vspace (vobj_id is the global index) |
---|
1831 | unsigned int found = 0; |
---|
1832 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
1833 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
1834 | vobj_id++) |
---|
1835 | { |
---|
1836 | if(vobj[vobj_id].type == VOBJ_TYPE_ELF) |
---|
1837 | { |
---|
1838 | found = 1; |
---|
1839 | break; |
---|
1840 | } |
---|
1841 | } |
---|
1842 | |
---|
1843 | // We want one .elf file per vspace |
---|
1844 | if (found == 0) |
---|
1845 | { |
---|
1846 | _puts("[BOOT ERROR] boot_elf_load() : .elf file not found for vspace "); |
---|
1847 | _puts( vspace[vspace_id].name ); |
---|
1848 | _puts("\n"); |
---|
1849 | _exit(); |
---|
1850 | } |
---|
1851 | |
---|
1852 | load_one_elf_file( IOC_BOOT_VA_MODE, |
---|
1853 | vobj[vobj_id].binpath, |
---|
1854 | vspace_id ); |
---|
1855 | |
---|
1856 | _puts("\n[BOOT] File "); |
---|
1857 | _puts( vobj[vobj_id].binpath ); |
---|
1858 | _puts(" loaded at cycle "); |
---|
1859 | _putd( _get_proctime() ); |
---|
1860 | _puts("\n"); |
---|
1861 | |
---|
1862 | } // end for vspaces |
---|
1863 | |
---|
1864 | // restaure vspace 0 PTPR |
---|
1865 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0] >> 13) ); |
---|
1866 | |
---|
1867 | } // end boot_elf_load() |
---|
1868 | |
---|
1869 | //////////////////////////////////////////////////////////////////////////////// |
---|
1870 | // This function intializes the periherals and coprocessors, as specified |
---|
1871 | // in the mapping_info file. |
---|
1872 | //////////////////////////////////////////////////////////////////////////////// |
---|
1873 | void boot_peripherals_init() |
---|
1874 | { |
---|
1875 | mapping_header_t * header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
1876 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
1877 | mapping_periph_t * periph = _get_periph_base(header); |
---|
1878 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
1879 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
1880 | mapping_coproc_t * coproc = _get_coproc_base(header); |
---|
1881 | mapping_cp_port_t * cp_port = _get_cp_port_base(header); |
---|
1882 | |
---|
1883 | unsigned int cluster_id; |
---|
1884 | unsigned int periph_id; |
---|
1885 | unsigned int coproc_id; |
---|
1886 | unsigned int cp_port_id; |
---|
1887 | unsigned int channel_id; |
---|
1888 | |
---|
1889 | // loop on all physical clusters |
---|
1890 | for (cluster_id = 0; cluster_id < X_SIZE*Y_SIZE; cluster_id++) |
---|
1891 | { |
---|
1892 | // computes cluster coordinates |
---|
1893 | unsigned int x = cluster[cluster_id].x; |
---|
1894 | unsigned int y = cluster[cluster_id].y; |
---|
1895 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1896 | |
---|
1897 | #if BOOT_DEBUG_PERI |
---|
1898 | _puts("\n[BOOT DEBUG] ****** peripherals initialisation in cluster["); |
---|
1899 | _putd( x ); |
---|
1900 | _puts(","); |
---|
1901 | _putd( y ); |
---|
1902 | _puts("] ******\n"); |
---|
1903 | #endif |
---|
1904 | |
---|
1905 | // loop on peripherals |
---|
1906 | for (periph_id = cluster[cluster_id].periph_offset; |
---|
1907 | periph_id < cluster[cluster_id].periph_offset + |
---|
1908 | cluster[cluster_id].periphs; periph_id++) |
---|
1909 | { |
---|
1910 | unsigned int type = periph[periph_id].type; |
---|
1911 | unsigned int channels = periph[periph_id].channels; |
---|
1912 | |
---|
1913 | switch (type) |
---|
1914 | { |
---|
1915 | case PERIPH_TYPE_IOC: // vci_block_device component |
---|
1916 | { |
---|
1917 | _ioc_init(); |
---|
1918 | #if BOOT_DEBUG_PERI |
---|
1919 | _puts("- IOC / channels = "); |
---|
1920 | _putd(channels); |
---|
1921 | _puts("\n"); |
---|
1922 | #endif |
---|
1923 | break; |
---|
1924 | } |
---|
1925 | case PERIPH_TYPE_DMA: // vci_multi_dma component |
---|
1926 | { |
---|
1927 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1928 | { |
---|
1929 | _dma_init( cluster_xy, channel_id ); |
---|
1930 | } |
---|
1931 | #if BOOT_DEBUG_PERI |
---|
1932 | _puts("- DMA / channels = "); |
---|
1933 | _putd(channels); |
---|
1934 | _puts("\n"); |
---|
1935 | #endif |
---|
1936 | break; |
---|
1937 | } |
---|
1938 | case PERIPH_TYPE_FBF: // vci_block_device component |
---|
1939 | { |
---|
1940 | // nothing to do |
---|
1941 | #if BOOT_DEBUG_PERI |
---|
1942 | _puts("- FBF / channels = "); |
---|
1943 | _putd(channels); |
---|
1944 | _puts("\n"); |
---|
1945 | #endif |
---|
1946 | break; |
---|
1947 | } |
---|
1948 | case PERIPH_TYPE_HBA: // vci_multi_ahci component |
---|
1949 | { |
---|
1950 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1951 | { |
---|
1952 | // TODO |
---|
1953 | } |
---|
1954 | #if BOOT_DEBUG_PERI |
---|
1955 | _puts("- HBA / channels = "); |
---|
1956 | _putd(channels); |
---|
1957 | _puts("\n"); |
---|
1958 | #endif |
---|
1959 | break; |
---|
1960 | } |
---|
1961 | case PERIPH_TYPE_CMA: // vci_chbuf_dma component |
---|
1962 | { |
---|
1963 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1964 | { |
---|
1965 | // TODO |
---|
1966 | } |
---|
1967 | #if BOOT_DEBUG_PERI |
---|
1968 | _puts("- CMA / channels = "); |
---|
1969 | _putd(channels); |
---|
1970 | _puts("\n"); |
---|
1971 | #endif |
---|
1972 | break; |
---|
1973 | } |
---|
1974 | case PERIPH_TYPE_NIC: // vci_multi_nic component |
---|
1975 | { |
---|
1976 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1977 | { |
---|
1978 | // TODO |
---|
1979 | } |
---|
1980 | #if BOOT_DEBUG_PERI |
---|
1981 | _puts("- NIC / channels = "); |
---|
1982 | _putd(channels); |
---|
1983 | _puts("\n"); |
---|
1984 | #endif |
---|
1985 | break; |
---|
1986 | } |
---|
1987 | case PERIPH_TYPE_XCU: // vci_xicu component |
---|
1988 | { |
---|
1989 | // nothing to do |
---|
1990 | #if BOOT_DEBUG_PERI |
---|
1991 | _puts("- XCU / channels = "); |
---|
1992 | _putd(channels); |
---|
1993 | _puts("\n"); |
---|
1994 | #endif |
---|
1995 | break; |
---|
1996 | } |
---|
1997 | case PERIPH_TYPE_MMC: // vci_memcache config |
---|
1998 | { |
---|
1999 | // nothing to do |
---|
2000 | #if BOOT_DEBUG_PERI |
---|
2001 | _puts("- MMC / channels = "); |
---|
2002 | _putd(channels); |
---|
2003 | _puts("\n"); |
---|
2004 | #endif |
---|
2005 | break; |
---|
2006 | } |
---|
2007 | case PERIPH_TYPE_TTY: // vci_multi_tty component |
---|
2008 | { |
---|
2009 | #if BOOT_DEBUG_PERI |
---|
2010 | _puts("- TTY / channels = "); |
---|
2011 | _putd(channels); |
---|
2012 | _puts("\n"); |
---|
2013 | #endif |
---|
2014 | break; |
---|
2015 | } |
---|
2016 | case PERIPH_TYPE_IOB: // vci_io_bridge component |
---|
2017 | { |
---|
2018 | if (USE_IOB) |
---|
2019 | { |
---|
2020 | // TODO |
---|
2021 | // get the iommu page table physical address |
---|
2022 | // define IPI address mapping the IOC interrupt |
---|
2023 | // set IOMMU page table address |
---|
2024 | // pseg_base[IOB_IOMMU_PTPR] = ptab_pbase; |
---|
2025 | // activate IOMMU |
---|
2026 | // pseg_base[IOB_IOMMU_ACTIVE] = 1; |
---|
2027 | } |
---|
2028 | #if BOOT_DEBUG_PERI |
---|
2029 | _puts("- IOB / channels = "); |
---|
2030 | _putd(channels); |
---|
2031 | _puts("\n"); |
---|
2032 | #endif |
---|
2033 | break; |
---|
2034 | } |
---|
2035 | } // end switch periph type |
---|
2036 | } // end for periphs |
---|
2037 | |
---|
2038 | #if BOOT_DEBUG_PERI |
---|
2039 | _puts("\n[BOOT DEBUG] ****** coprocessors initialisation in cluster["); |
---|
2040 | _putd( x ); |
---|
2041 | _puts(","); |
---|
2042 | _putd( y ); |
---|
2043 | _puts("] ******\n"); |
---|
2044 | #endif |
---|
2045 | |
---|
2046 | // loop on coprocessors |
---|
2047 | for ( coproc_id = cluster[cluster_id].coproc_offset; |
---|
2048 | coproc_id < cluster[cluster_id].coproc_offset + |
---|
2049 | cluster[cluster_id].coprocs; coproc_id++ ) |
---|
2050 | { |
---|
2051 | |
---|
2052 | #if BOOT_DEBUG_PERI |
---|
2053 | _puts("- coprocessor name : "); |
---|
2054 | _puts(coproc[coproc_id].name); |
---|
2055 | _puts(" / nb ports = "); |
---|
2056 | _putd((unsigned int) coproc[coproc_id].ports); |
---|
2057 | _puts("\n"); |
---|
2058 | #endif |
---|
2059 | // loop on the coprocessor ports |
---|
2060 | for ( cp_port_id = coproc[coproc_id].port_offset; |
---|
2061 | cp_port_id < coproc[coproc_id].port_offset + coproc[coproc_id].ports; |
---|
2062 | cp_port_id++ ) |
---|
2063 | { |
---|
2064 | unsigned int vspace_id = cp_port[cp_port_id].vspaceid; |
---|
2065 | unsigned int vobj_id = cp_port[cp_port_id].mwmr_vobjid + |
---|
2066 | vspace[vspace_id].vobj_offset; |
---|
2067 | |
---|
2068 | // Get MWMR channel base address |
---|
2069 | paddr_t mwmr_channel_pbase = vobj[vobj_id].paddr; |
---|
2070 | |
---|
2071 | _mwr_hw_init( cluster_xy, |
---|
2072 | cp_port_id, |
---|
2073 | cp_port[cp_port_id].direction, |
---|
2074 | mwmr_channel_pbase ); |
---|
2075 | #if BOOT_DEBUG_PERI |
---|
2076 | _puts(" port direction: "); |
---|
2077 | _putd( (unsigned int)cp_port[cp_port_id].direction ); |
---|
2078 | _puts(" / mwmr_channel_pbase = "); |
---|
2079 | _putl( mwmr_channel_pbase ); |
---|
2080 | _puts(" / name = "); |
---|
2081 | _puts(vobj[vobj_id].name); |
---|
2082 | _puts(" / in vspace "); |
---|
2083 | _puts(vspace[vspace_id].name); |
---|
2084 | _puts("\n"); |
---|
2085 | #endif |
---|
2086 | } // end for cp_ports |
---|
2087 | } // end for coprocs |
---|
2088 | } // end for clusters |
---|
2089 | } // end boot_peripherals_init() |
---|
2090 | |
---|
2091 | ///////////////////////////////////////////////////////////////////////// |
---|
2092 | // This function is the entry point of the boot code for all processors. |
---|
2093 | // Most of this code is executed by Processor 0 only. |
---|
2094 | ///////////////////////////////////////////////////////////////////////// |
---|
2095 | void boot_init() |
---|
2096 | { |
---|
2097 | mapping_header_t* header = (mapping_header_t *) & seg_boot_mapping_base; |
---|
2098 | unsigned int gpid = _get_procid(); |
---|
2099 | unsigned int cluster_xy = gpid / NB_PROCS_MAX; |
---|
2100 | unsigned int lpid = gpid % NB_PROCS_MAX; |
---|
2101 | |
---|
2102 | if ( gpid == 0 ) // only Processor 0 does it |
---|
2103 | { |
---|
2104 | _puts("\n[BOOT] boot_init start at cycle "); |
---|
2105 | _putd(_get_proctime()); |
---|
2106 | _puts("\n"); |
---|
2107 | |
---|
2108 | // Loading the map.bin file into memory and checking it |
---|
2109 | boot_mapping_init(); |
---|
2110 | |
---|
2111 | _puts("\n[BOOT] Mapping "); |
---|
2112 | _puts( header->name ); |
---|
2113 | _puts(" loaded at cycle "); |
---|
2114 | _putd(_get_proctime()); |
---|
2115 | _puts("\n"); |
---|
2116 | |
---|
2117 | // Building all page tables |
---|
2118 | boot_pt_init(); |
---|
2119 | |
---|
2120 | _puts("\n[BOOT] Page Tables initialisation completed at cycle "); |
---|
2121 | _putd(_get_proctime()); |
---|
2122 | _puts("\n"); |
---|
2123 | |
---|
2124 | // Activating proc 0 MMU |
---|
2125 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0]>>13) ); |
---|
2126 | _set_mmu_mode( 0xF ); |
---|
2127 | |
---|
2128 | _puts("\n[BOOT] Processor[0,0,0] : MMU activation at cycle "); |
---|
2129 | _putd(_get_proctime()); |
---|
2130 | _puts("\n"); |
---|
2131 | |
---|
2132 | // Initialising private vobjs in vspaces |
---|
2133 | boot_vobjs_init(); |
---|
2134 | |
---|
2135 | _puts("\n[BOOT] Private vobjs initialised at cycle "); |
---|
2136 | _putd(_get_proctime()); |
---|
2137 | _puts("\n"); |
---|
2138 | |
---|
2139 | // Initializing schedulers |
---|
2140 | boot_schedulers_init(); |
---|
2141 | |
---|
2142 | _puts("\n[BOOT] All schedulers initialised at cycle "); |
---|
2143 | _putd(_get_proctime()); |
---|
2144 | _puts("\n"); |
---|
2145 | |
---|
2146 | // Setting CP0_SCHED register for proc 0 |
---|
2147 | _set_sched( (unsigned int)_schedulers[0] ); |
---|
2148 | |
---|
2149 | // Initializing peripherals |
---|
2150 | boot_peripherals_init(); |
---|
2151 | |
---|
2152 | _puts("\n[BOOT] All peripherals initialised at cycle "); |
---|
2153 | _putd(_get_proctime()); |
---|
2154 | _puts("\n"); |
---|
2155 | |
---|
2156 | // Loading all .elf files |
---|
2157 | boot_elf_load(); |
---|
2158 | |
---|
2159 | _puts("\n[BOOT] All ELF files loaded at cycle "); |
---|
2160 | _putd(_get_proctime()); |
---|
2161 | _puts("\n"); |
---|
2162 | |
---|
2163 | // P0 starts all other processors |
---|
2164 | unsigned int x,y,p; |
---|
2165 | for (x = 0 ; x < X_SIZE ; x++) |
---|
2166 | { |
---|
2167 | for (y = 0 ; y < Y_SIZE ; y++) |
---|
2168 | { |
---|
2169 | for(p = 0; p < NB_PROCS_MAX; p++) |
---|
2170 | { |
---|
2171 | if ( (x != 0) || (y != 0) || (p != 0) ) |
---|
2172 | { |
---|
2173 | _xcu_send_ipi( (x<<Y_WIDTH) + y, |
---|
2174 | p, |
---|
2175 | (unsigned int)boot_init ); |
---|
2176 | } |
---|
2177 | } |
---|
2178 | } |
---|
2179 | } |
---|
2180 | } // end monoprocessor boot |
---|
2181 | |
---|
2182 | // reset BEV bit in the status register to use GIET exception |
---|
2183 | // handler instead of the PRELOADER exception handler |
---|
2184 | _set_sr( 0 ); |
---|
2185 | |
---|
2186 | // all processor initialise SCHED register |
---|
2187 | _set_sched( (unsigned int)_schedulers[gpid] ); |
---|
2188 | |
---|
2189 | // all processors (but Proc 0) activate MMU |
---|
2190 | if ( gpid != 0 ) |
---|
2191 | { |
---|
2192 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0]>>13) ); |
---|
2193 | _set_mmu_mode( 0xF ); |
---|
2194 | |
---|
2195 | _tty_get_lock( 0 ); |
---|
2196 | _puts("\n[BOOT] Processor["); |
---|
2197 | _putd( cluster_xy >> Y_WIDTH ); |
---|
2198 | _puts(","); |
---|
2199 | _putd( cluster_xy & ((1<<Y_WIDTH)-1) ); |
---|
2200 | _puts(","); |
---|
2201 | _putd( lpid ); |
---|
2202 | _puts("] : MMU activation at cycle "); |
---|
2203 | _putd(_get_proctime()); |
---|
2204 | _puts("\n"); |
---|
2205 | _tty_release_lock( 0 ); |
---|
2206 | } |
---|
2207 | |
---|
2208 | // all processors jump to kernel_init |
---|
2209 | unsigned int kernel_entry = (unsigned int)&seg_kernel_init_base; |
---|
2210 | |
---|
2211 | _tty_get_lock( 0 ); |
---|
2212 | _puts("\n[BOOT] Processor["); |
---|
2213 | _putd( cluster_xy >> Y_WIDTH ); |
---|
2214 | _puts(","); |
---|
2215 | _putd( cluster_xy & ((1<<Y_WIDTH)-1) ); |
---|
2216 | _puts(","); |
---|
2217 | _putd( lpid ); |
---|
2218 | _puts("] enters kernel at cycle "); |
---|
2219 | _putd( _get_proctime() ); |
---|
2220 | _puts(" / kernel entry = "); |
---|
2221 | _putx( kernel_entry ); |
---|
2222 | _puts("\n"); |
---|
2223 | _tty_release_lock( 0 ); |
---|
2224 | |
---|
2225 | asm volatile( "jr %0" ::"r"(kernel_entry) ); |
---|
2226 | |
---|
2227 | } // end boot_init() |
---|
2228 | |
---|
2229 | |
---|
2230 | // Local Variables: |
---|
2231 | // tab-width: 4 |
---|
2232 | // c-basic-offset: 4 |
---|
2233 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
2234 | // indent-tabs-mode: nil |
---|
2235 | // End: |
---|
2236 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
2237 | |
---|