1 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : boot.c |
---|
3 | // Date : 01/11/2013 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The boot.c file is part of the GIET-VM nano-kernel. |
---|
8 | // |
---|
9 | // This nano-kernel has been written for the MIPS32 processor. |
---|
10 | // The virtual adresses are on 32 bits and use the (unsigned int) type. The |
---|
11 | // physicals addresses can have up to 40 bits, and use the (unsigned long long) type. |
---|
12 | // It natively supports clusterised shared mmemory multi-processors architectures, |
---|
13 | // where each processor is identified by a composite index (cluster_xy, local_id), |
---|
14 | // and where there is one physical memory bank per cluster. |
---|
15 | // |
---|
16 | // This code, executed in the boot phase by proc[0,0,0], performs the following tasks: |
---|
17 | // - load into memory various binary files, from a FAT32 file system, |
---|
18 | // - build the various page tables (one page table per vspace) |
---|
19 | // - initialize the shedulers (one scheduler per processor) |
---|
20 | // |
---|
21 | // 1) The binary files to be loaded are: |
---|
22 | // - the "map.bin" file contains the hardware architecture description and the |
---|
23 | // mapping directives. It must be stored in the the seg_boot_mapping segment |
---|
24 | // (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file). |
---|
25 | // - the "sys.elf" file contains the kernel binary code and data. |
---|
26 | // - the various "application.elf" files. |
---|
27 | // |
---|
28 | // 2) The map.bin file contains the binary representation of the map.xml file defining: |
---|
29 | // - the hardware architecture: number of clusters, number or processors, |
---|
30 | // size of the memory segments, and peripherals in each cluster. |
---|
31 | // - The structure of the various multi-threaded software applications: |
---|
32 | // number of tasks, communication channels. |
---|
33 | // - The mapping: grouping of virtual objects (vobj) in the virtual segments (vseg), |
---|
34 | // placement of virtual segments (vseg) in the physical segments (pseg), placement |
---|
35 | // of software tasks on the processors, |
---|
36 | // |
---|
37 | // 3) The GIET-VM uses the paged virtual memory to provides two services: |
---|
38 | // - classical memory protection, when several independant applications compiled |
---|
39 | // in different virtual spaces are executing on the same hardware platform. |
---|
40 | // - data placement in NUMA architectures, when we want to control the placement |
---|
41 | // of the software objects (virtual segments) on the physical memory banks. |
---|
42 | // |
---|
43 | // The page table are statically build in the boot phase, and they do not |
---|
44 | // change during execution. The GIET uses only 4 Kbytes pages. |
---|
45 | // As most applications use only a limited number of segments, the number of PT2s |
---|
46 | // actually used by a given virtual space is generally smaller than 2048, and is |
---|
47 | // computed during the boot phase. |
---|
48 | // The max number of virtual spaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
49 | // |
---|
50 | // Each page table (one page table per virtual space) is monolithic, and contains |
---|
51 | // one PT1 and up to (GIET_NB_PT2_MAX) PT2s. The PT1 is addressed using the ix1 field |
---|
52 | // (11 bits) of the VPN, and the selected PT2 is addressed using the ix2 field (9 bits). |
---|
53 | // - PT1[2048] : a first 8K aligned array of unsigned int, indexed by (ix1) field of VPN. |
---|
54 | // Each entry in the PT1 contains a 32 bits PTD. The MSB bit PTD[31] is |
---|
55 | // the PTD valid bit, and LSB bits PTD[19:0] are the 20 MSB bits of the physical base |
---|
56 | // address of the selected PT2. |
---|
57 | // The PT1 contains 2048 PTD of 4 bytes => 8K bytes. |
---|
58 | // - PT2[1024][GIET_NB_PT2_MAX] : an array of array of unsigned int. |
---|
59 | // Each PT2[1024] must be 4K aligned, each entry in a PT2 contains two unsigned int: |
---|
60 | // the first word contains the protection flags, and the second word contains the PPN. |
---|
61 | // Each PT2 contains 512 PTE2 of 8bytes => 4K bytes. |
---|
62 | // The total size of a page table is finally = 8K + (GIET_NB_PT2_MAX)*4K bytes. |
---|
63 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
64 | // Implementation Notes: |
---|
65 | // |
---|
66 | // 1) The cluster_id variable is a linear index in the mapping_info array of clusters. |
---|
67 | // We use the cluster_xy variable for the tological index = x << Y_WIDTH + y |
---|
68 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
69 | |
---|
70 | #include <giet_config.h> |
---|
71 | #include <mwmr_channel.h> |
---|
72 | #include <barrier.h> |
---|
73 | #include <memspace.h> |
---|
74 | #include <tty_driver.h> |
---|
75 | #include <xcu_driver.h> |
---|
76 | #include <bdv_driver.h> |
---|
77 | #include <dma_driver.h> |
---|
78 | #include <cma_driver.h> |
---|
79 | #include <nic_driver.h> |
---|
80 | #include <ioc_driver.h> |
---|
81 | #include <iob_driver.h> |
---|
82 | #include <pic_driver.h> |
---|
83 | #include <mwr_driver.h> |
---|
84 | #include <ctx_handler.h> |
---|
85 | #include <irq_handler.h> |
---|
86 | #include <vmem.h> |
---|
87 | #include <utils.h> |
---|
88 | #include <elf-types.h> |
---|
89 | |
---|
90 | // for boot FAT initialisation |
---|
91 | #include <fat32.h> |
---|
92 | |
---|
93 | #include <mips32_registers.h> |
---|
94 | #include <stdarg.h> |
---|
95 | |
---|
96 | #if !defined(X_SIZE) |
---|
97 | # error: The X_SIZE value must be defined in the 'hard_config.h' file ! |
---|
98 | #endif |
---|
99 | |
---|
100 | #if !defined(Y_SIZE) |
---|
101 | # error: The Y_SIZE value must be defined in the 'hard_config.h' file ! |
---|
102 | #endif |
---|
103 | |
---|
104 | #if !defined(X_WIDTH) |
---|
105 | # error: The X_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
106 | #endif |
---|
107 | |
---|
108 | #if !defined(Y_WIDTH) |
---|
109 | # error: The Y_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
110 | #endif |
---|
111 | |
---|
112 | #if !defined(SEG_BOOT_MAPPING_BASE) |
---|
113 | # error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file ! |
---|
114 | #endif |
---|
115 | |
---|
116 | #if !defined(NB_PROCS_MAX) |
---|
117 | # error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file ! |
---|
118 | #endif |
---|
119 | |
---|
120 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
121 | # error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
122 | #endif |
---|
123 | |
---|
124 | #if !defined(GIET_ELF_BUFFER_SIZE) |
---|
125 | # error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file ! |
---|
126 | #endif |
---|
127 | |
---|
128 | //////////////////////////////////////////////////////////////////////////// |
---|
129 | // Global variables for boot code |
---|
130 | // Both the page tables for the various virtual spaces, and the schedulers |
---|
131 | // for the processors are physically distributed on the clusters. |
---|
132 | //////////////////////////////////////////////////////////////////////////// |
---|
133 | |
---|
134 | extern void boot_entry(); |
---|
135 | |
---|
136 | // This global variable is allocated in "fat32.c" file |
---|
137 | extern fat32_fs_t fat; |
---|
138 | |
---|
139 | // Page tables virtual base addresses (one per vspace) |
---|
140 | __attribute__((section (".bootdata"))) |
---|
141 | unsigned int _ptabs_vaddr[GIET_NB_VSPACE_MAX]; |
---|
142 | |
---|
143 | // Page tables physical base addresses (one per vspace / one per cluster) |
---|
144 | __attribute__((section (".bootdata"))) |
---|
145 | paddr_t _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
146 | |
---|
147 | // Page table max_pt2 (one per vspace / one per cluster ) |
---|
148 | __attribute__((section (".bootdata"))) |
---|
149 | unsigned int _ptabs_max_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
150 | |
---|
151 | // Page tables pt2 allocators (one per vspace / one per cluster) |
---|
152 | __attribute__((section (".bootdata"))) |
---|
153 | unsigned int _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
154 | |
---|
155 | // Scheduler pointers array (virtual addresses) |
---|
156 | // indexed by (x,y,lpid) : (((x << Y_WIDTH) + y) * NB_PROCS_MAX) + lpid |
---|
157 | __attribute__((section (".bootdata"))) |
---|
158 | static_scheduler_t* _schedulers[1<<X_WIDTH][1<<Y_WIDTH][NB_PROCS_MAX]; |
---|
159 | |
---|
160 | // Temporaty buffer used to load one complete .elf file |
---|
161 | __attribute__((section (".bootdata"))) |
---|
162 | char boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(512))); |
---|
163 | |
---|
164 | ///////////////////////////////////////////////////////////////////// |
---|
165 | // This function checks consistence beween the mapping_info data |
---|
166 | // structure (soft), and the giet_config file (hard). |
---|
167 | ///////////////////////////////////////////////////////////////////// |
---|
168 | void boot_mapping_check() |
---|
169 | { |
---|
170 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
171 | |
---|
172 | // checking mapping availability |
---|
173 | if (header->signature != IN_MAPPING_SIGNATURE) |
---|
174 | { |
---|
175 | _puts("\n[BOOT ERROR] Illegal mapping signature: "); |
---|
176 | _putx(header->signature); |
---|
177 | _puts("\n"); |
---|
178 | _exit(); |
---|
179 | } |
---|
180 | |
---|
181 | // checking number of clusters |
---|
182 | if ( (header->x_size != X_SIZE) || |
---|
183 | (header->y_size != Y_SIZE) || |
---|
184 | (header->x_width != X_WIDTH) || |
---|
185 | (header->y_width != Y_WIDTH) ) |
---|
186 | { |
---|
187 | _puts("\n[BOOT ERROR] Incoherent X_SIZE or Y_SIZE "); |
---|
188 | _puts("\n - In hard_config: X_SIZE = "); |
---|
189 | _putd( X_SIZE ); |
---|
190 | _puts(" / Y_SIZE = "); |
---|
191 | _putd( Y_SIZE ); |
---|
192 | _puts(" / X_WIDTH = "); |
---|
193 | _putd( X_WIDTH ); |
---|
194 | _puts(" / Y_WIDTH = "); |
---|
195 | _putd( Y_WIDTH ); |
---|
196 | _puts("\n - In mapping_info: x_size = "); |
---|
197 | _putd( header->x_size ); |
---|
198 | _puts(" / y_size = "); |
---|
199 | _putd( header->y_size ); |
---|
200 | _puts(" / x_width = "); |
---|
201 | _putd( header->x_width ); |
---|
202 | _puts(" / y_width = "); |
---|
203 | _putd( header->y_width ); |
---|
204 | _puts("\n"); |
---|
205 | _exit(); |
---|
206 | } |
---|
207 | // checking number of virtual spaces |
---|
208 | if (header->vspaces > GIET_NB_VSPACE_MAX) |
---|
209 | { |
---|
210 | _puts("\n[BOOT ERROR] : number of vspaces > GIET_NB_VSPACE_MAX\n"); |
---|
211 | _puts("\n"); |
---|
212 | _exit(); |
---|
213 | } |
---|
214 | |
---|
215 | #if BOOT_DEBUG_MAPPING |
---|
216 | _puts("\n - x_size = "); |
---|
217 | _putd( header->x_size ); |
---|
218 | _puts("\n - y_size = "); |
---|
219 | _putd( header->y_size ); |
---|
220 | _puts("\n - procs = "); |
---|
221 | _putd( header->procs ); |
---|
222 | _puts("\n - periphs = "); |
---|
223 | _putd( header->periphs ); |
---|
224 | _puts("\n - vspaces = "); |
---|
225 | _putd( header->vspaces ); |
---|
226 | _puts("\n - tasks = "); |
---|
227 | _putd( header->tasks ); |
---|
228 | _puts("\n"); |
---|
229 | _puts("\n - size of header = "); |
---|
230 | _putd( MAPPING_HEADER_SIZE ); |
---|
231 | _puts("\n - size of cluster = "); |
---|
232 | _putd( MAPPING_CLUSTER_SIZE ); |
---|
233 | _puts("\n - size of pseg = "); |
---|
234 | _putd( MAPPING_PSEG_SIZE ); |
---|
235 | _puts("\n - size of proc = "); |
---|
236 | _putd( MAPPING_PROC_SIZE ); |
---|
237 | _puts("\n - size of vspace = "); |
---|
238 | _putd( MAPPING_VSPACE_SIZE ); |
---|
239 | _puts("\n - size of vseg = "); |
---|
240 | _putd( MAPPING_VSEG_SIZE ); |
---|
241 | _puts("\n - size of vobj = "); |
---|
242 | _putd( MAPPING_VOBJ_SIZE ); |
---|
243 | _puts("\n - size of task = "); |
---|
244 | _putd( MAPPING_TASK_SIZE ); |
---|
245 | _puts("\n"); |
---|
246 | |
---|
247 | unsigned int cluster_id; |
---|
248 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
249 | for( cluster_id = 0; cluster_id < X_SIZE*Y_SIZE ; cluster_id++) |
---|
250 | { |
---|
251 | _puts("\n - cluster["); |
---|
252 | _putd( cluster[cluster_id].x ); |
---|
253 | _puts(","); |
---|
254 | _putd( cluster[cluster_id].y ); |
---|
255 | _puts("]\n procs = "); |
---|
256 | _putd( cluster[cluster_id].procs ); |
---|
257 | _puts("\n psegs = "); |
---|
258 | _putd( cluster[cluster_id].psegs ); |
---|
259 | _puts("\n periphs = "); |
---|
260 | _putd( cluster[cluster_id].periphs ); |
---|
261 | _puts("\n"); |
---|
262 | } |
---|
263 | #endif |
---|
264 | |
---|
265 | } // end boot_mapping_check() |
---|
266 | |
---|
267 | |
---|
268 | ////////////////////////////////////////////////////////////////////////////// |
---|
269 | // boot_pseg_get() |
---|
270 | // This function returns the pointer on a physical segment |
---|
271 | // identified by the pseg index. |
---|
272 | ////////////////////////////////////////////////////////////////////////////// |
---|
273 | mapping_pseg_t *boot_pseg_get(unsigned int seg_id) |
---|
274 | { |
---|
275 | mapping_header_t* header = (mapping_header_t*)SEG_BOOT_MAPPING_BASE; |
---|
276 | mapping_pseg_t * pseg = _get_pseg_base(header); |
---|
277 | |
---|
278 | // checking argument |
---|
279 | if (seg_id >= header->psegs) |
---|
280 | { |
---|
281 | _puts("\n[BOOT ERROR] : seg_id argument too large\n"); |
---|
282 | _puts(" in function boot_pseg_get()\n"); |
---|
283 | _exit(); |
---|
284 | } |
---|
285 | |
---|
286 | return &pseg[seg_id]; |
---|
287 | } |
---|
288 | |
---|
289 | ////////////////////////////////////////////////////////////////////////////// |
---|
290 | // boot_add_pte() |
---|
291 | // This function registers a new PTE in the page table defined |
---|
292 | // by the vspace_id argument, and the (x,y) coordinates. |
---|
293 | // It updates both the PT1 and PT2, and a new PT2 is used if required. |
---|
294 | // As the set of PT2s is implemented as a fixed size array (no dynamic |
---|
295 | // allocation), this function checks a possible overflow of the PT2 array. |
---|
296 | ////////////////////////////////////////////////////////////////////////////// |
---|
297 | void boot_add_pte(unsigned int vspace_id, |
---|
298 | unsigned int x, |
---|
299 | unsigned int y, |
---|
300 | unsigned int vpn, |
---|
301 | unsigned int flags, |
---|
302 | unsigned int ppn, |
---|
303 | unsigned int verbose) |
---|
304 | { |
---|
305 | unsigned int ix1; |
---|
306 | unsigned int ix2; |
---|
307 | paddr_t pt2_pbase; // PT2 physical base address |
---|
308 | paddr_t pte_paddr; // PTE physical address |
---|
309 | unsigned int pt2_id; // PT2 index |
---|
310 | unsigned int ptd; // PTD : entry in PT1 |
---|
311 | |
---|
312 | ix1 = vpn >> 9; // 11 bits |
---|
313 | ix2 = vpn & 0x1FF; // 9 bits |
---|
314 | |
---|
315 | // get page table physical base address and size |
---|
316 | paddr_t pt1_pbase = _ptabs_paddr[vspace_id][x][y]; |
---|
317 | unsigned int max_pt2 = _ptabs_max_pt2[vspace_id][x][y]; |
---|
318 | |
---|
319 | if (max_pt2 == 0) |
---|
320 | { |
---|
321 | _puts("Undefined page table for vspace "); |
---|
322 | _putd(vspace_id); |
---|
323 | _puts("\n"); |
---|
324 | _exit(); |
---|
325 | } |
---|
326 | |
---|
327 | // get ptd in PT1 |
---|
328 | ptd = _physical_read(pt1_pbase + 4 * ix1); |
---|
329 | |
---|
330 | if ((ptd & PTE_V) == 0) // undefined PTD: compute PT2 base address, |
---|
331 | // and set a new PTD in PT1 |
---|
332 | { |
---|
333 | pt2_id = _ptabs_next_pt2[vspace_id][x][y]; |
---|
334 | if (pt2_id == max_pt2) |
---|
335 | { |
---|
336 | _puts("\n[BOOT ERROR] in boot_add_pte() function\n"); |
---|
337 | _puts("the length of the PTAB vobj is too small\n"); |
---|
338 | _puts(" max_pt2 = "); |
---|
339 | _putd( max_pt2 ); |
---|
340 | _puts("\n"); |
---|
341 | _puts(" pt2_id = "); |
---|
342 | _putd( pt2_id ); |
---|
343 | _puts("\n"); |
---|
344 | _exit(); |
---|
345 | } |
---|
346 | |
---|
347 | pt2_pbase = pt1_pbase + PT1_SIZE + PT2_SIZE * pt2_id; |
---|
348 | ptd = PTE_V | PTE_T | (unsigned int) (pt2_pbase >> 12); |
---|
349 | _physical_write( pt1_pbase + 4 * ix1, ptd); |
---|
350 | _ptabs_next_pt2[vspace_id][x][y] = pt2_id + 1; |
---|
351 | } |
---|
352 | else // valid PTD: compute PT2 base address |
---|
353 | { |
---|
354 | pt2_pbase = ((paddr_t)(ptd & 0x0FFFFFFF)) << 12; |
---|
355 | } |
---|
356 | |
---|
357 | // set PTE in PT2 : flags & PPN in two 32 bits words |
---|
358 | pte_paddr = pt2_pbase + 8 * ix2; |
---|
359 | _physical_write(pte_paddr , flags); |
---|
360 | _physical_write(pte_paddr + 4, ppn); |
---|
361 | |
---|
362 | if (verbose) |
---|
363 | { |
---|
364 | _puts(" / vpn = "); |
---|
365 | _putx( vpn ); |
---|
366 | _puts(" / ix1 = "); |
---|
367 | _putx( ix1 ); |
---|
368 | _puts(" / ix2 = "); |
---|
369 | _putx( ix2 ); |
---|
370 | _puts(" / pt1_pbase = "); |
---|
371 | _putl( pt1_pbase ); |
---|
372 | _puts(" / ptd = "); |
---|
373 | _putl( ptd ); |
---|
374 | _puts(" / pt2_pbase = "); |
---|
375 | _putl( pt2_pbase ); |
---|
376 | _puts(" / pte_paddr = "); |
---|
377 | _putl( pte_paddr ); |
---|
378 | _puts(" / ppn = "); |
---|
379 | _putx( ppn ); |
---|
380 | _puts("/\n"); |
---|
381 | } |
---|
382 | |
---|
383 | } // end boot_add_pte() |
---|
384 | |
---|
385 | |
---|
386 | //////////////////////////////////////////////////////////////////////// |
---|
387 | // This function build the page table(s) for a given vspace. |
---|
388 | // It build as many pages tables as the number of vobjs having |
---|
389 | // the PTAB type in the vspace, because page tables can be replicated. |
---|
390 | // The physical base addresses for all vsegs (global and private) |
---|
391 | // must have been previously computed and stored in the mapping. |
---|
392 | // |
---|
393 | // General rule regarding local / shared vsegs: |
---|
394 | // - shared vsegs are mapped in all page tables |
---|
395 | // - local vsegs are mapped only in the "local" page table |
---|
396 | //////////////////////////////////////////////////////////////////////// |
---|
397 | void boot_vspace_pt_build(unsigned int vspace_id) |
---|
398 | { |
---|
399 | unsigned int ptab_id; // global index for a vseg containing a PTAB |
---|
400 | unsigned int priv_id; // global index for a private vseg in a vspace |
---|
401 | unsigned int glob_id; // global index for a global vseg |
---|
402 | unsigned int npages; |
---|
403 | unsigned int ppn; |
---|
404 | unsigned int vpn; |
---|
405 | unsigned int flags; |
---|
406 | unsigned int page_id; |
---|
407 | unsigned int verbose = 0; // can be used to activate trace in add_pte() |
---|
408 | |
---|
409 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
410 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
411 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
412 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
413 | mapping_pseg_t * pseg = _get_pseg_base(header); |
---|
414 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
415 | |
---|
416 | // external loop on private vsegs to find all PTAB vobjs in vspace |
---|
417 | for (ptab_id = vspace[vspace_id].vseg_offset; |
---|
418 | ptab_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
419 | ptab_id++) |
---|
420 | { |
---|
421 | // get global index of first vobj in vseg |
---|
422 | unsigned int vobj_id = vseg[ptab_id].vobj_offset; |
---|
423 | |
---|
424 | if ( vobj[vobj_id].type == VOBJ_TYPE_PTAB ) |
---|
425 | { |
---|
426 | // get cluster coordinates for the PTAB |
---|
427 | unsigned int ptab_pseg_id = vseg[ptab_id].psegid; |
---|
428 | unsigned int ptab_cluster_id = pseg[ptab_pseg_id].clusterid; |
---|
429 | unsigned int x_ptab = cluster[ptab_cluster_id].x; |
---|
430 | unsigned int y_ptab = cluster[ptab_cluster_id].y; |
---|
431 | |
---|
432 | // internal loop on private vsegs to build |
---|
433 | // the (vspace_id, x_ptab, y_ptab) page table |
---|
434 | for (priv_id = vspace[vspace_id].vseg_offset; |
---|
435 | priv_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
436 | priv_id++) |
---|
437 | { |
---|
438 | // get cluster coordinates for private vseg |
---|
439 | unsigned int priv_pseg_id = vseg[priv_id].psegid; |
---|
440 | unsigned int priv_cluster_id = pseg[priv_pseg_id].clusterid; |
---|
441 | unsigned int x_priv = cluster[priv_cluster_id].x; |
---|
442 | unsigned int y_priv = cluster[priv_cluster_id].y; |
---|
443 | |
---|
444 | // only non local or matching private vsegs must be mapped |
---|
445 | if ( (vseg[priv_id].local == 0 ) || |
---|
446 | ((x_ptab == x_priv) && (y_ptab == y_priv)) ) |
---|
447 | { |
---|
448 | vpn = vseg[priv_id].vbase >> 12; |
---|
449 | ppn = (unsigned int) (vseg[priv_id].pbase >> 12); |
---|
450 | npages = vseg[priv_id].length >> 12; |
---|
451 | if ((vseg[priv_id].length & 0xFFF) != 0) npages++; |
---|
452 | |
---|
453 | flags = PTE_V; |
---|
454 | if (vseg[priv_id].mode & C_MODE_MASK) flags |= PTE_C; |
---|
455 | if (vseg[priv_id].mode & X_MODE_MASK) flags |= PTE_X; |
---|
456 | if (vseg[priv_id].mode & W_MODE_MASK) flags |= PTE_W; |
---|
457 | if (vseg[priv_id].mode & U_MODE_MASK) flags |= PTE_U; |
---|
458 | |
---|
459 | // The three flags (Local, Remote and Dirty) are set to 1 to reduce |
---|
460 | // latency of TLB miss (L/R) and write (D): Avoid hardware update |
---|
461 | // mechanism for these flags because GIET_VM does use these flags. |
---|
462 | |
---|
463 | flags |= PTE_L; |
---|
464 | flags |= PTE_R; |
---|
465 | flags |= PTE_D; |
---|
466 | |
---|
467 | #if BOOT_DEBUG_PT |
---|
468 | _puts(vseg[priv_id].name); |
---|
469 | _puts(" : flags = "); |
---|
470 | _putx(flags); |
---|
471 | _puts(" / npages = "); |
---|
472 | _putd(npages); |
---|
473 | _puts(" / pbase = "); |
---|
474 | _putl(vseg[priv_id].pbase); |
---|
475 | _puts("\n"); |
---|
476 | #endif |
---|
477 | // loop on 4K pages |
---|
478 | for (page_id = 0; page_id < npages; page_id++) |
---|
479 | { |
---|
480 | boot_add_pte(vspace_id, x_ptab, y_ptab, vpn, flags, ppn, verbose); |
---|
481 | vpn++; |
---|
482 | ppn++; |
---|
483 | } |
---|
484 | } |
---|
485 | } // end internal loop on private vsegs |
---|
486 | |
---|
487 | // internal loop on global vsegs to build the (x_ptab,y_ptab) page table |
---|
488 | for (glob_id = 0; glob_id < header->globals; glob_id++) |
---|
489 | { |
---|
490 | // get cluster coordinates for global vseg |
---|
491 | unsigned int glob_pseg_id = vseg[glob_id].psegid; |
---|
492 | unsigned int glob_cluster_id = pseg[glob_pseg_id].clusterid; |
---|
493 | unsigned int x_glob = cluster[glob_cluster_id].x; |
---|
494 | unsigned int y_glob = cluster[glob_cluster_id].y; |
---|
495 | |
---|
496 | // only non local or matching global vsegs must be mapped |
---|
497 | if ( (vseg[glob_id].local == 0 ) || |
---|
498 | ((x_ptab == x_glob) && (y_ptab == y_glob)) ) |
---|
499 | { |
---|
500 | vpn = vseg[glob_id].vbase >> 12; |
---|
501 | ppn = (unsigned int)(vseg[glob_id].pbase >> 12); |
---|
502 | npages = vseg[glob_id].length >> 12; |
---|
503 | if ((vseg[glob_id].length & 0xFFF) != 0) npages++; |
---|
504 | |
---|
505 | flags = PTE_V; |
---|
506 | if (vseg[glob_id].mode & C_MODE_MASK) flags |= PTE_C; |
---|
507 | if (vseg[glob_id].mode & X_MODE_MASK) flags |= PTE_X; |
---|
508 | if (vseg[glob_id].mode & W_MODE_MASK) flags |= PTE_W; |
---|
509 | if (vseg[glob_id].mode & U_MODE_MASK) flags |= PTE_U; |
---|
510 | |
---|
511 | // Flags set for optimization (as explained above) |
---|
512 | |
---|
513 | flags |= PTE_L; |
---|
514 | flags |= PTE_R; |
---|
515 | flags |= PTE_D; |
---|
516 | |
---|
517 | #if BOOT_DEBUG_PT |
---|
518 | _puts(vseg[glob_id].name); |
---|
519 | _puts(" : flags = "); |
---|
520 | _putx(flags); |
---|
521 | _puts(" / npages = "); |
---|
522 | _putd(npages); |
---|
523 | _puts(" / pbase = "); |
---|
524 | _putl(vseg[glob_id].pbase); |
---|
525 | _puts("\n"); |
---|
526 | #endif |
---|
527 | // loop on 4K pages |
---|
528 | for (page_id = 0; page_id < npages; page_id++) |
---|
529 | { |
---|
530 | boot_add_pte(vspace_id, x_ptab, y_ptab, vpn, flags, ppn, verbose); |
---|
531 | vpn++; |
---|
532 | ppn++; |
---|
533 | } |
---|
534 | } |
---|
535 | } // end internal loop on global vsegs |
---|
536 | |
---|
537 | _puts("\n[BOOT] Page Table for vspace "); |
---|
538 | _puts( vspace[vspace_id].name ); |
---|
539 | _puts(" in cluster["); |
---|
540 | _putd( x_ptab ); |
---|
541 | _puts(","); |
---|
542 | _putd( y_ptab ); |
---|
543 | _puts("] completed at cycle "); |
---|
544 | _putd( _get_proctime() ); |
---|
545 | _puts("\n"); |
---|
546 | |
---|
547 | #if BOOT_DEBUG_PT |
---|
548 | _puts("vaddr = "); |
---|
549 | _putx( _ptabs_vaddr[vspace_id] ); |
---|
550 | _puts(" / paddr = "); |
---|
551 | _putl( _ptabs_paddr[vspace_id][x_ptab][y_ptab] ); |
---|
552 | _puts(" / PT2 number = "); |
---|
553 | _putd( _ptabs_next_pt2[vspace_id][x_ptab][y_ptab] ); |
---|
554 | _puts("\n"); |
---|
555 | #endif |
---|
556 | |
---|
557 | } // end if PTAB |
---|
558 | } // end first loop on private vsegs |
---|
559 | } // end boot_vspace_pt_build() |
---|
560 | |
---|
561 | |
---|
562 | /////////////////////////////////////////////////////////////////////////// |
---|
563 | // Align the value of paddr or vaddr to the required alignement, |
---|
564 | // defined by alignPow2 == L2(alignement). |
---|
565 | /////////////////////////////////////////////////////////////////////////// |
---|
566 | paddr_t paddr_align_to(paddr_t paddr, unsigned int alignPow2) |
---|
567 | { |
---|
568 | paddr_t mask = (1 << alignPow2) - 1; |
---|
569 | return ((paddr + mask) & ~mask); |
---|
570 | } |
---|
571 | |
---|
572 | unsigned int vaddr_align_to(unsigned int vaddr, unsigned int alignPow2) |
---|
573 | { |
---|
574 | unsigned int mask = (1 << alignPow2) - 1; |
---|
575 | return ((vaddr + mask) & ~mask); |
---|
576 | } |
---|
577 | |
---|
578 | /////////////////////////////////////////////////////////////////////////// |
---|
579 | // Set pbase for a vseg when identity mapping is required. |
---|
580 | // The length of the vseg must be known. |
---|
581 | // The ordered linked list of vsegs mapped on pseg is updated, |
---|
582 | // and overlap with previously mapped vsegs is checked. |
---|
583 | /////////////////////////////////////////////////////////////////////////// |
---|
584 | void boot_vseg_set_paddr_ident(mapping_vseg_t * vseg) |
---|
585 | { |
---|
586 | // checking vseg not already mapped |
---|
587 | if (vseg->mapped != 0) |
---|
588 | { |
---|
589 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr_ident() : vseg "); |
---|
590 | _puts( vseg->name ); |
---|
591 | _puts(" already mapped\n"); |
---|
592 | _exit(); |
---|
593 | } |
---|
594 | |
---|
595 | // computes selected pseg pointer |
---|
596 | mapping_pseg_t* pseg = boot_pseg_get( vseg->psegid ); |
---|
597 | |
---|
598 | // computes vseg alignment constraint |
---|
599 | mapping_header_t* header = (mapping_header_t*)SEG_BOOT_MAPPING_BASE; |
---|
600 | mapping_vobj_t* vobj_base = _get_vobj_base( header ); |
---|
601 | unsigned int align = vobj_base[vseg->vobj_offset].align; |
---|
602 | if ( vobj_base[vseg->vobj_offset].align < 12 ) align = 12; |
---|
603 | |
---|
604 | // computes required_pbase for identity mapping, |
---|
605 | paddr_t required_pbase = (paddr_t)vseg->vbase; |
---|
606 | |
---|
607 | // checks identity constraint against alignment constraint |
---|
608 | if ( paddr_align_to( required_pbase, align) != required_pbase ) |
---|
609 | { |
---|
610 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr_ident() : vseg "); |
---|
611 | _puts( vseg->name ); |
---|
612 | _puts(" has uncompatible identity and alignment constraints\n"); |
---|
613 | _exit(); |
---|
614 | } |
---|
615 | |
---|
616 | // We are looking for a contiguous space in target pseg. |
---|
617 | // If there is vsegs already mapped, we scan the vsegs list to: |
---|
618 | // - check overlap with already mapped vsegs, |
---|
619 | // - try mapping in holes between already mapped vsegs, |
---|
620 | // - update the ordered linked list if success |
---|
621 | // We don't enter the loop if no vsegs is already mapped. |
---|
622 | // implementation note: The next_vseg field is unsigned int, |
---|
623 | // but we use it to store a MIP32 pointer on a vseg... |
---|
624 | |
---|
625 | mapping_vseg_t* curr = 0; |
---|
626 | mapping_vseg_t* prev = 0; |
---|
627 | unsigned int min_pbase = pseg->base; |
---|
628 | |
---|
629 | for ( curr = (mapping_vseg_t*)pseg->next_vseg ; |
---|
630 | (curr != 0) && (vseg->mapped == 0) ; |
---|
631 | curr = (mapping_vseg_t*)curr->next_vseg ) |
---|
632 | { |
---|
633 | // looking before current vseg |
---|
634 | if( (required_pbase >= min_pbase) && |
---|
635 | (curr->pbase >= (required_pbase + vseg->length)) ) // space found |
---|
636 | { |
---|
637 | vseg->pbase = required_pbase; |
---|
638 | vseg->mapped = 1; |
---|
639 | |
---|
640 | // update linked list |
---|
641 | vseg->next_vseg = (unsigned int)curr; |
---|
642 | if( curr == (mapping_vseg_t*)pseg->next_vseg ) |
---|
643 | pseg->next_vseg = (unsigned int)vseg; |
---|
644 | else |
---|
645 | prev->next_vseg = (unsigned int)vseg; |
---|
646 | } |
---|
647 | else // looking in space after curr |
---|
648 | { |
---|
649 | prev = curr; |
---|
650 | min_pbase = curr->pbase + curr->length; |
---|
651 | } |
---|
652 | } |
---|
653 | |
---|
654 | // no success in the loop |
---|
655 | if( (vseg->mapped == 0) && |
---|
656 | (required_pbase >= min_pbase) && |
---|
657 | ((required_pbase + vseg->length) <= (pseg->base + pseg->length)) ) |
---|
658 | { |
---|
659 | vseg->pbase = required_pbase; |
---|
660 | vseg->mapped = 1; |
---|
661 | |
---|
662 | // update linked list |
---|
663 | vseg->next_vseg = 0; |
---|
664 | if ((curr == 0) && (prev == 0)) pseg->next_vseg = (unsigned int)vseg; |
---|
665 | else prev->next_vseg = (unsigned int)vseg; |
---|
666 | } |
---|
667 | |
---|
668 | if( vseg->mapped == 0 ) |
---|
669 | { |
---|
670 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr_ident() : vseg "); |
---|
671 | _puts( vseg->name ); |
---|
672 | _puts(" cannot be mapped on pseg "); |
---|
673 | _puts( pseg->name ); |
---|
674 | _puts("\n"); |
---|
675 | _exit(); |
---|
676 | } |
---|
677 | } // end boot_vseg_set_paddr_ident() |
---|
678 | |
---|
679 | |
---|
680 | //////////////////////////////////////////////////////////////////////////// |
---|
681 | // Set pbase for a vseg when there is no identity mapping constraint. |
---|
682 | // This is the physical memory allocator (written by Q.Meunier). |
---|
683 | // The length of the vseg must be known. |
---|
684 | // All identity mapping vsegs must be already mapped. |
---|
685 | // We use a linked list of already mapped vsegs, ordered by incresing pbase. |
---|
686 | // We try to place the vseg in the "first fit" hole in this list. |
---|
687 | //////////////////////////////////////////////////////////////////////////// |
---|
688 | void boot_vseg_set_paddr(mapping_vseg_t * vseg) |
---|
689 | { |
---|
690 | // checking vseg not already mapped |
---|
691 | if ( vseg->mapped != 0 ) |
---|
692 | { |
---|
693 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr() : vseg "); |
---|
694 | _puts( vseg->name ); |
---|
695 | _puts(" already mapped\n"); |
---|
696 | _exit(); |
---|
697 | } |
---|
698 | |
---|
699 | // computes selected pseg pointer |
---|
700 | mapping_pseg_t* pseg = boot_pseg_get( vseg->psegid ); |
---|
701 | |
---|
702 | // computes vseg alignment constraint |
---|
703 | mapping_header_t* header = (mapping_header_t*)SEG_BOOT_MAPPING_BASE; |
---|
704 | mapping_vobj_t* vobj_base = _get_vobj_base( header ); |
---|
705 | unsigned int align = vobj_base[vseg->vobj_offset].align; |
---|
706 | if ( vobj_base[vseg->vobj_offset].align < 12 ) align = 12; |
---|
707 | |
---|
708 | // initialise physical base address, with alignment constraint |
---|
709 | paddr_t possible_pbase = paddr_align_to( pseg->base, align ); |
---|
710 | |
---|
711 | // We are looking for a contiguous space in target pseg |
---|
712 | // If there is vsegs already mapped, we scan the vsegs list to: |
---|
713 | // - try mapping in holes between already mapped vsegs, |
---|
714 | // - update the ordered linked list if success |
---|
715 | // We don't enter the loop if no vsegs is already mapped. |
---|
716 | // implementation note: The next_vseg field is unsigned int, |
---|
717 | // but we use it to store a MIP32 pointer on a vseg... |
---|
718 | |
---|
719 | mapping_vseg_t* curr = 0; |
---|
720 | mapping_vseg_t* prev = 0; |
---|
721 | |
---|
722 | for( curr = (mapping_vseg_t*)pseg->next_vseg ; |
---|
723 | (curr != 0) && (vseg->mapped == 0) ; |
---|
724 | curr = (mapping_vseg_t*)curr->next_vseg ) |
---|
725 | { |
---|
726 | // looking for space before current vseg |
---|
727 | if ( (curr->pbase >= possible_pbase + vseg->length) ) // space before curr |
---|
728 | { |
---|
729 | vseg->pbase = possible_pbase; |
---|
730 | vseg->mapped = 1; |
---|
731 | |
---|
732 | // update linked list |
---|
733 | vseg->next_vseg = (unsigned int)curr; |
---|
734 | if( curr == (mapping_vseg_t*)pseg->next_vseg ) |
---|
735 | pseg->next_vseg = (unsigned int)vseg; |
---|
736 | else |
---|
737 | prev->next_vseg = (unsigned int)vseg; |
---|
738 | } |
---|
739 | else // looking for space after curr |
---|
740 | { |
---|
741 | possible_pbase = paddr_align_to( curr->pbase + curr->length, align ); |
---|
742 | prev = curr; |
---|
743 | } |
---|
744 | } |
---|
745 | |
---|
746 | // when no space found, try to allocate space after already mapped vsegs |
---|
747 | if( (vseg->mapped == 0) && |
---|
748 | ((possible_pbase + vseg->length) <= (pseg->base + pseg->length)) ) |
---|
749 | { |
---|
750 | vseg->pbase = possible_pbase; |
---|
751 | vseg->mapped = 1; |
---|
752 | |
---|
753 | // update linked list |
---|
754 | vseg->next_vseg = 0; |
---|
755 | if ((curr == 0 ) && (prev == 0)) pseg->next_vseg = (unsigned int)vseg; |
---|
756 | else prev->next_vseg = (unsigned int)vseg; |
---|
757 | } |
---|
758 | |
---|
759 | if( vseg->mapped == 0 ) |
---|
760 | { |
---|
761 | _puts("\n[BOOT ERROR] in boot_vseg_set_paddr() : vseg "); |
---|
762 | _puts( vseg->name ); |
---|
763 | _puts(" cannot be mapped on pseg "); |
---|
764 | _puts( pseg->name ); |
---|
765 | _puts(" in cluster["); |
---|
766 | _putd( pseg->clusterid ); |
---|
767 | _puts("]\n"); |
---|
768 | _exit(); |
---|
769 | } |
---|
770 | } // end boot_vseg_set_paddr() |
---|
771 | |
---|
772 | /////////////////////////////////////////////////////////////////////////// |
---|
773 | // This function computes the physical base address for a vseg |
---|
774 | // as specified in the mapping info data structure. |
---|
775 | // It updates the pbase and the length fields of the vseg. |
---|
776 | // It updates the pbase and vbase fields of all vobjs in the vseg. |
---|
777 | // It updates the _ptabs_paddr[] and _ptabs_vaddr[], _ptabs_max_pt2[], |
---|
778 | // and _ptabs_next_pt2[] arrays. |
---|
779 | // It is a global vseg if vspace_id = (-1). |
---|
780 | /////////////////////////////////////////////////////////////////////////// |
---|
781 | void boot_vseg_map(mapping_vseg_t * vseg, unsigned int vspace_id) |
---|
782 | { |
---|
783 | unsigned int vobj_id; |
---|
784 | unsigned int cur_vaddr; |
---|
785 | paddr_t cur_paddr; |
---|
786 | paddr_t cur_length; |
---|
787 | unsigned int offset; |
---|
788 | |
---|
789 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
790 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
791 | |
---|
792 | // first loop on the vobjs contained in vseg to compute |
---|
793 | // the vseg length, required for mapping. |
---|
794 | cur_length = 0; |
---|
795 | for ( vobj_id = vseg->vobj_offset; |
---|
796 | vobj_id < (vseg->vobj_offset + vseg->vobjs); |
---|
797 | vobj_id++ ) |
---|
798 | { |
---|
799 | if (vobj[vobj_id].align) |
---|
800 | { |
---|
801 | cur_length = vaddr_align_to(cur_length, vobj[vobj_id].align); |
---|
802 | } |
---|
803 | cur_length += vobj[vobj_id].length; |
---|
804 | } |
---|
805 | vseg->length = paddr_align_to(cur_length, 12); |
---|
806 | |
---|
807 | // mapping: computes vseg pbase address |
---|
808 | if (vseg->ident != 0) // identity mapping |
---|
809 | { |
---|
810 | boot_vseg_set_paddr_ident( vseg ); |
---|
811 | } |
---|
812 | else // unconstrained mapping |
---|
813 | { |
---|
814 | boot_vseg_set_paddr( vseg ); |
---|
815 | } |
---|
816 | |
---|
817 | // second loop on vobjs contained in vseg to : |
---|
818 | // initialize the vaddr and paddr fields of all vobjs, |
---|
819 | // and initialize the page table pointers arrays |
---|
820 | |
---|
821 | cur_vaddr = vseg->vbase; |
---|
822 | cur_paddr = vseg->pbase; |
---|
823 | |
---|
824 | for (vobj_id = vseg->vobj_offset; |
---|
825 | vobj_id < (vseg->vobj_offset + vseg->vobjs); vobj_id++) |
---|
826 | { |
---|
827 | if (vobj[vobj_id].align) |
---|
828 | { |
---|
829 | cur_paddr = paddr_align_to(cur_paddr, vobj[vobj_id].align); |
---|
830 | cur_vaddr = vaddr_align_to(cur_vaddr, vobj[vobj_id].align); |
---|
831 | } |
---|
832 | // set vaddr/paddr for current vobj |
---|
833 | vobj[vobj_id].vaddr = cur_vaddr; |
---|
834 | vobj[vobj_id].paddr = cur_paddr; |
---|
835 | |
---|
836 | // initialize _ptabs_vaddr[] , _ptabs-paddr[] , _ptabs_max_pt2[] if PTAB |
---|
837 | if (vobj[vobj_id].type == VOBJ_TYPE_PTAB) |
---|
838 | { |
---|
839 | if (vspace_id == ((unsigned int) -1)) // global vseg |
---|
840 | { |
---|
841 | _puts("\n[BOOT ERROR] in boot_vseg_map() function: "); |
---|
842 | _puts("a PTAB vobj cannot be global"); |
---|
843 | _exit(); |
---|
844 | } |
---|
845 | // we need at least one PT2 |
---|
846 | if (vobj[vobj_id].length < (PT1_SIZE + PT2_SIZE)) |
---|
847 | { |
---|
848 | _puts("\n[BOOT ERROR] in boot_vseg_map() function, "); |
---|
849 | _puts("PTAB too small, minumum size is: "); |
---|
850 | _putx(PT1_SIZE + PT2_SIZE); |
---|
851 | _exit(); |
---|
852 | } |
---|
853 | // get cluster coordinates for PTAB |
---|
854 | unsigned int cluster_xy = (unsigned int)(cur_paddr>>32); |
---|
855 | unsigned int x = cluster_xy >> Y_WIDTH; |
---|
856 | unsigned int y = cluster_xy & ((1<<Y_WIDTH)-1); |
---|
857 | |
---|
858 | // register physical and virtual page table addresses, size, and next PT2 |
---|
859 | _ptabs_vaddr[vspace_id] = vobj[vobj_id].vaddr; |
---|
860 | _ptabs_paddr[vspace_id][x][y] = vobj[vobj_id].paddr; |
---|
861 | _ptabs_max_pt2[vspace_id][x][y] = (vobj[vobj_id].length - PT1_SIZE) / PT2_SIZE; |
---|
862 | _ptabs_next_pt2[vspace_id][x][y] = 0; |
---|
863 | |
---|
864 | // reset all valid bits in PT1 |
---|
865 | for ( offset = 0 ; offset < 8192 ; offset = offset + 4) |
---|
866 | { |
---|
867 | _physical_write(cur_paddr + offset, 0); |
---|
868 | } |
---|
869 | } |
---|
870 | |
---|
871 | // set next vaddr/paddr |
---|
872 | cur_vaddr = cur_vaddr + vobj[vobj_id].length; |
---|
873 | cur_paddr = cur_paddr + vobj[vobj_id].length; |
---|
874 | } // end for vobjs |
---|
875 | |
---|
876 | } // end boot_vseg_map() |
---|
877 | |
---|
878 | /////////////////////////////////////////////////////////////////////////// |
---|
879 | // This function builds the page tables for all virtual spaces |
---|
880 | // defined in the mapping_info data structure, in three steps: |
---|
881 | // - step 1 : It computes the physical base address for global vsegs |
---|
882 | // and for all associated vobjs. |
---|
883 | // - step 2 : It computes the physical base address for all private |
---|
884 | // vsegs and all vobjs in each virtual space. |
---|
885 | // - step 3 : It actually fill the page table(s) for each vspace. |
---|
886 | // |
---|
887 | // It must exist at least one vspace in the mapping. |
---|
888 | // For each vspace, it can exist one page table per cluster. |
---|
889 | /////////////////////////////////////////////////////////////////////////// |
---|
890 | void boot_pt_init() |
---|
891 | { |
---|
892 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
893 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
894 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
895 | |
---|
896 | unsigned int vspace_id; |
---|
897 | unsigned int vseg_id; |
---|
898 | |
---|
899 | if (header->vspaces == 0 ) |
---|
900 | { |
---|
901 | _puts("\n[BOOT ERROR] in boot_pt_init() : mapping "); |
---|
902 | _puts( header->name ); |
---|
903 | _puts(" contains no vspace\n"); |
---|
904 | _exit(); |
---|
905 | } |
---|
906 | |
---|
907 | #if BOOT_DEBUG_PT |
---|
908 | _puts("\n[BOOT DEBUG] ****** mapping global vsegs ******\n"); |
---|
909 | #endif |
---|
910 | |
---|
911 | ////////////////////////////////// |
---|
912 | // step 1 : loop on global vsegs |
---|
913 | |
---|
914 | // vsegs with identity mapping constraint first |
---|
915 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
916 | { |
---|
917 | if (vseg[vseg_id].ident == 1) |
---|
918 | boot_vseg_map(&vseg[vseg_id], ((unsigned int) (-1))); |
---|
919 | } |
---|
920 | |
---|
921 | // unconstrained vsegs second |
---|
922 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
923 | { |
---|
924 | if (vseg[vseg_id].ident == 0) |
---|
925 | boot_vseg_map(&vseg[vseg_id], ((unsigned int) (-1))); |
---|
926 | } |
---|
927 | |
---|
928 | //////////////////////////////////////////////////////////// |
---|
929 | // step 2 : loop on virtual vspaces to map private vsegs |
---|
930 | |
---|
931 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
932 | { |
---|
933 | |
---|
934 | #if BOOT_DEBUG_PT |
---|
935 | _puts("\n[BOOT DEBUG] ****** mapping private vsegs in vspace "); |
---|
936 | _puts(vspace[vspace_id].name); |
---|
937 | _puts(" ******\n"); |
---|
938 | #endif |
---|
939 | |
---|
940 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
941 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
942 | vseg_id++) |
---|
943 | { |
---|
944 | // private vsegs cannot be identity mapping |
---|
945 | if (vseg[vseg_id].ident != 0) |
---|
946 | { |
---|
947 | _puts("\n[BOOT ERROR] in boot_pt_init() : vspace "); |
---|
948 | _puts( vspace[vspace_id].name ); |
---|
949 | _puts(" contains vseg with identity mapping\n"); |
---|
950 | _exit(); |
---|
951 | } |
---|
952 | |
---|
953 | boot_vseg_map(&vseg[vseg_id], vspace_id); |
---|
954 | } |
---|
955 | } |
---|
956 | |
---|
957 | #if BOOT_DEBUG_PT |
---|
958 | mapping_vseg_t* curr; |
---|
959 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
960 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
961 | unsigned int pseg_id; |
---|
962 | for( pseg_id = 0 ; pseg_id < header->psegs ; pseg_id++ ) |
---|
963 | { |
---|
964 | unsigned int cluster_id = pseg[pseg_id].clusterid; |
---|
965 | _puts("\n[BOOT DEBUG] ****** vsegs mapped on pseg "); |
---|
966 | _puts( pseg[pseg_id].name ); |
---|
967 | _puts(" in cluster["); |
---|
968 | _putd( cluster[cluster_id].x ); |
---|
969 | _puts(","); |
---|
970 | _putd( cluster[cluster_id].y ); |
---|
971 | _puts("] ******\n"); |
---|
972 | for( curr = (mapping_vseg_t*)pseg[pseg_id].next_vseg ; |
---|
973 | curr != 0 ; |
---|
974 | curr = (mapping_vseg_t*)curr->next_vseg ) |
---|
975 | { |
---|
976 | _puts(" - vseg "); |
---|
977 | _puts( curr->name ); |
---|
978 | _puts(" : len = "); |
---|
979 | _putx( curr->length ); |
---|
980 | _puts(" / vbase "); |
---|
981 | _putx( curr->vbase ); |
---|
982 | _puts(" / pbase "); |
---|
983 | _putl( curr->pbase ); |
---|
984 | _puts("\n"); |
---|
985 | } |
---|
986 | } |
---|
987 | #endif |
---|
988 | |
---|
989 | ///////////////////////////////////////////////////////////// |
---|
990 | // step 3 : loop on the vspaces to build the page tables |
---|
991 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
992 | { |
---|
993 | |
---|
994 | #if BOOT_DEBUG_PT |
---|
995 | _puts("\n[BOOT DEBUG] ****** building page table for vspace "); |
---|
996 | _puts(vspace[vspace_id].name); |
---|
997 | _puts(" ******\n"); |
---|
998 | #endif |
---|
999 | |
---|
1000 | boot_vspace_pt_build(vspace_id); |
---|
1001 | |
---|
1002 | } |
---|
1003 | } // end boot_pt_init() |
---|
1004 | |
---|
1005 | /////////////////////////////////////////////////////////////////////////////// |
---|
1006 | // This function initializes all private vobjs defined in the vspaces, |
---|
1007 | // such as mwmr channels, barriers and locks, because these vobjs |
---|
1008 | // are not known, and not initialized by the compiler. |
---|
1009 | // The MMU is supposed to be activated... |
---|
1010 | /////////////////////////////////////////////////////////////////////////////// |
---|
1011 | void boot_vobjs_init() |
---|
1012 | { |
---|
1013 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1014 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
1015 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1016 | |
---|
1017 | unsigned int vspace_id; |
---|
1018 | unsigned int vobj_id; |
---|
1019 | |
---|
1020 | // loop on the vspaces |
---|
1021 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1022 | { |
---|
1023 | |
---|
1024 | #if BOOT_DEBUG_VOBJS |
---|
1025 | _puts("\n[BOOT DEBUG] ****** vobjs initialisation in vspace "); |
---|
1026 | _puts(vspace[vspace_id].name); |
---|
1027 | _puts(" ******\n"); |
---|
1028 | #endif |
---|
1029 | |
---|
1030 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][0][0] >> 13) ); |
---|
1031 | |
---|
1032 | unsigned int ptab_found = 0; |
---|
1033 | |
---|
1034 | // loop on the vobjs |
---|
1035 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
1036 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
1037 | vobj_id++) |
---|
1038 | { |
---|
1039 | switch (vobj[vobj_id].type) |
---|
1040 | { |
---|
1041 | case VOBJ_TYPE_MWMR: // storage capacity is (vobj.length/4 - 5) words |
---|
1042 | { |
---|
1043 | #if BOOT_DEBUG_VOBJS |
---|
1044 | _puts("MWMR : "); |
---|
1045 | _puts(vobj[vobj_id].name); |
---|
1046 | _puts(" / vaddr = "); |
---|
1047 | _putx(vobj[vobj_id].vaddr); |
---|
1048 | _puts(" / paddr = "); |
---|
1049 | _putl(vobj[vobj_id].paddr); |
---|
1050 | _puts(" / length = "); |
---|
1051 | _putx(vobj[vobj_id].length); |
---|
1052 | _puts("\n"); |
---|
1053 | #endif |
---|
1054 | mwmr_channel_t* mwmr = (mwmr_channel_t *) (vobj[vobj_id].vaddr); |
---|
1055 | mwmr->ptw = 0; |
---|
1056 | mwmr->ptr = 0; |
---|
1057 | mwmr->sts = 0; |
---|
1058 | mwmr->width = vobj[vobj_id].init; |
---|
1059 | mwmr->depth = (vobj[vobj_id].length >> 2) - 6; |
---|
1060 | mwmr->lock = 0; |
---|
1061 | #if BOOT_DEBUG_VOBJS |
---|
1062 | _puts(" fifo depth = "); |
---|
1063 | _putd(mwmr->depth); |
---|
1064 | _puts(" / width = "); |
---|
1065 | _putd(mwmr->width); |
---|
1066 | _puts("\n"); |
---|
1067 | #endif |
---|
1068 | break; |
---|
1069 | } |
---|
1070 | case VOBJ_TYPE_ELF: // initialisation done by the loader |
---|
1071 | { |
---|
1072 | #if BOOT_DEBUG_VOBJS |
---|
1073 | _puts("ELF : "); |
---|
1074 | _puts(vobj[vobj_id].name); |
---|
1075 | _puts(" / vaddr = "); |
---|
1076 | _putx(vobj[vobj_id].vaddr); |
---|
1077 | _puts(" / paddr = "); |
---|
1078 | _putl(vobj[vobj_id].paddr); |
---|
1079 | _puts(" / length = "); |
---|
1080 | _putx(vobj[vobj_id].length); |
---|
1081 | _puts("\n"); |
---|
1082 | #endif |
---|
1083 | break; |
---|
1084 | } |
---|
1085 | case VOBJ_TYPE_BLOB: // initialisation done by the loader |
---|
1086 | { |
---|
1087 | #if BOOT_DEBUG_VOBJS |
---|
1088 | _puts("BLOB : "); |
---|
1089 | _puts(vobj[vobj_id].name); |
---|
1090 | _puts(" / vaddr = "); |
---|
1091 | _putx(vobj[vobj_id].vaddr); |
---|
1092 | _puts(" / paddr = "); |
---|
1093 | _putl(vobj[vobj_id].paddr); |
---|
1094 | _puts(" / length = "); |
---|
1095 | _putx(vobj[vobj_id].length); |
---|
1096 | _puts("\n"); |
---|
1097 | #endif |
---|
1098 | break; |
---|
1099 | } |
---|
1100 | case VOBJ_TYPE_BARRIER: // init is the number of participants |
---|
1101 | { |
---|
1102 | #if BOOT_DEBUG_VOBJS |
---|
1103 | _puts("BARRIER : "); |
---|
1104 | _puts(vobj[vobj_id].name); |
---|
1105 | _puts(" / vaddr = "); |
---|
1106 | _putx(vobj[vobj_id].vaddr); |
---|
1107 | _puts(" / paddr = "); |
---|
1108 | _putl(vobj[vobj_id].paddr); |
---|
1109 | _puts(" / length = "); |
---|
1110 | _putx(vobj[vobj_id].length); |
---|
1111 | _puts("\n"); |
---|
1112 | #endif |
---|
1113 | giet_barrier_t* barrier = (giet_barrier_t *) (vobj[vobj_id].vaddr); |
---|
1114 | barrier->count = vobj[vobj_id].init; |
---|
1115 | barrier->ntasks = vobj[vobj_id].init; |
---|
1116 | barrier->sense = 0; |
---|
1117 | #if BOOT_DEBUG_VOBJS |
---|
1118 | _puts(" init_value = "); |
---|
1119 | _putd(barrier->init); |
---|
1120 | _puts("\n"); |
---|
1121 | #endif |
---|
1122 | break; |
---|
1123 | } |
---|
1124 | case VOBJ_TYPE_LOCK: // init value is "not taken" |
---|
1125 | { |
---|
1126 | #if BOOT_DEBUG_VOBJS |
---|
1127 | _puts("LOCK : "); |
---|
1128 | _puts(vobj[vobj_id].name); |
---|
1129 | _puts(" / vaddr = "); |
---|
1130 | _putx(vobj[vobj_id].vaddr); |
---|
1131 | _puts(" / paddr = "); |
---|
1132 | _putl(vobj[vobj_id].paddr); |
---|
1133 | _puts(" / length = "); |
---|
1134 | _putx(vobj[vobj_id].length); |
---|
1135 | _puts("\n"); |
---|
1136 | #endif |
---|
1137 | unsigned int* lock = (unsigned int *) (vobj[vobj_id].vaddr); |
---|
1138 | *lock = 0; |
---|
1139 | break; |
---|
1140 | } |
---|
1141 | case VOBJ_TYPE_BUFFER: // nothing to initialise |
---|
1142 | { |
---|
1143 | #if BOOT_DEBUG_VOBJS |
---|
1144 | _puts("BUFFER : "); |
---|
1145 | _puts(vobj[vobj_id].name); |
---|
1146 | _puts(" / vaddr = "); |
---|
1147 | _putx(vobj[vobj_id].vaddr); |
---|
1148 | _puts(" / paddr = "); |
---|
1149 | _putl(vobj[vobj_id].paddr); |
---|
1150 | _puts(" / length = "); |
---|
1151 | _putx(vobj[vobj_id].length); |
---|
1152 | _puts("\n"); |
---|
1153 | #endif |
---|
1154 | break; |
---|
1155 | } |
---|
1156 | case VOBJ_TYPE_MEMSPACE: |
---|
1157 | { |
---|
1158 | #if BOOT_DEBUG_VOBJS |
---|
1159 | _puts("MEMSPACE : "); |
---|
1160 | _puts(vobj[vobj_id].name); |
---|
1161 | _puts(" / vaddr = "); |
---|
1162 | _putx(vobj[vobj_id].vaddr); |
---|
1163 | _puts(" / paddr = "); |
---|
1164 | _putl(vobj[vobj_id].paddr); |
---|
1165 | _puts(" / length = "); |
---|
1166 | _putx(vobj[vobj_id].length); |
---|
1167 | _puts("\n"); |
---|
1168 | #endif |
---|
1169 | giet_memspace_t* memspace = (giet_memspace_t *) vobj[vobj_id].vaddr; |
---|
1170 | memspace->buffer = (void *) vobj[vobj_id].vaddr + 8; |
---|
1171 | memspace->size = vobj[vobj_id].length - 8; |
---|
1172 | #if BOOT_DEBUG_VOBJS |
---|
1173 | _puts(" buffer vbase = "); |
---|
1174 | _putx((unsigned int)memspace->buffer); |
---|
1175 | _puts(" / size = "); |
---|
1176 | _putx(memspace->size); |
---|
1177 | _puts("\n"); |
---|
1178 | #endif |
---|
1179 | break; |
---|
1180 | } |
---|
1181 | case VOBJ_TYPE_PTAB: // nothing to initialize |
---|
1182 | { |
---|
1183 | #if BOOT_DEBUG_VOBJS |
---|
1184 | _puts("PTAB : "); |
---|
1185 | _puts(vobj[vobj_id].name); |
---|
1186 | _puts(" / vaddr = "); |
---|
1187 | _putx(vobj[vobj_id].vaddr); |
---|
1188 | _puts(" / paddr = "); |
---|
1189 | _putl(vobj[vobj_id].paddr); |
---|
1190 | _puts(" / length = "); |
---|
1191 | _putx(vobj[vobj_id].length); |
---|
1192 | _puts("\n"); |
---|
1193 | #endif |
---|
1194 | ptab_found = 1; |
---|
1195 | break; |
---|
1196 | } |
---|
1197 | case VOBJ_TYPE_CONST: |
---|
1198 | { |
---|
1199 | #if BOOT_DEBUG_VOBJS |
---|
1200 | _puts("CONST : "); |
---|
1201 | _puts(vobj[vobj_id].name); |
---|
1202 | _puts(" / vaddr = "); |
---|
1203 | _putx(vobj[vobj_id].vaddr); |
---|
1204 | _puts(" / paddr = "); |
---|
1205 | _putl(vobj[vobj_id].paddr); |
---|
1206 | _puts(" / length = "); |
---|
1207 | _putx(vobj[vobj_id].length); |
---|
1208 | _puts(" / init = "); |
---|
1209 | _putx(vobj[vobj_id].init); |
---|
1210 | _puts("\n"); |
---|
1211 | #endif |
---|
1212 | unsigned int* addr = (unsigned int *) vobj[vobj_id].vaddr; |
---|
1213 | *addr = vobj[vobj_id].init; |
---|
1214 | |
---|
1215 | #if BOOT_DEBUG_VOBJS |
---|
1216 | _puts(" init = "); |
---|
1217 | _putx(*addr); |
---|
1218 | _puts("\n"); |
---|
1219 | #endif |
---|
1220 | break; |
---|
1221 | } |
---|
1222 | default: |
---|
1223 | { |
---|
1224 | _puts("\n[BOOT ERROR] illegal vobj type: "); |
---|
1225 | _putd(vobj[vobj_id].type); |
---|
1226 | _puts("\n"); |
---|
1227 | _exit(); |
---|
1228 | } |
---|
1229 | } // end switch type |
---|
1230 | } // end loop on vobjs |
---|
1231 | if (ptab_found == 0) |
---|
1232 | { |
---|
1233 | _puts("\n[BOOT ERROR] Missing PTAB for vspace "); |
---|
1234 | _putd(vspace_id); |
---|
1235 | _exit(); |
---|
1236 | } |
---|
1237 | } // end loop on vspaces |
---|
1238 | |
---|
1239 | } // end boot_vobjs_init() |
---|
1240 | |
---|
1241 | /////////////////////////////////////////////////////////////////////////////// |
---|
1242 | // This function returns in the vbase and length buffers the virtual base |
---|
1243 | // address and the length of the segment allocated to the schedulers array |
---|
1244 | // in the cluster defined by the clusterid argument. |
---|
1245 | /////////////////////////////////////////////////////////////////////////////// |
---|
1246 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
1247 | unsigned int* vbase, |
---|
1248 | unsigned int* length ) |
---|
1249 | { |
---|
1250 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1251 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1252 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
1253 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
1254 | |
---|
1255 | unsigned int vseg_id; |
---|
1256 | unsigned int found = 0; |
---|
1257 | |
---|
1258 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
1259 | { |
---|
1260 | if ( (vobj[vseg[vseg_id].vobj_offset].type == VOBJ_TYPE_SCHED) && |
---|
1261 | (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) ) |
---|
1262 | { |
---|
1263 | *vbase = vseg[vseg_id].vbase; |
---|
1264 | *length = vobj[vseg[vseg_id].vobj_offset].length; |
---|
1265 | found = 1; |
---|
1266 | } |
---|
1267 | } |
---|
1268 | if ( found == 0 ) |
---|
1269 | { |
---|
1270 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1271 | _puts("\n[BOOT ERROR] No vobj of type SCHED in cluster ["); |
---|
1272 | _putd( cluster[cluster_id].x ); |
---|
1273 | _puts(","); |
---|
1274 | _putd( cluster[cluster_id].y ); |
---|
1275 | _puts("]\n"); |
---|
1276 | _exit(); |
---|
1277 | } |
---|
1278 | } // end boot_get_sched_vaddr() |
---|
1279 | |
---|
1280 | //////////////////////////////////////////////////////////////////////////////////// |
---|
1281 | // This function initialises all processors schedulers. |
---|
1282 | // This is done by processor 0, and the MMU must be activated. |
---|
1283 | // - In Step 1, it initialises the _schedulers[] pointers array, and scan |
---|
1284 | // the processors to initialise the schedulers, including the |
---|
1285 | // idle_task context (ltid == 14) and HWI / SWI / PTI vectors. |
---|
1286 | // - In Step 2, it scan all tasks in all vspaces to complete the tasks contexts, |
---|
1287 | // initialisation as specified in the mapping_info data structure. |
---|
1288 | //////////////////////////////////////////////////////////////////////////////////// |
---|
1289 | void boot_schedulers_init() |
---|
1290 | { |
---|
1291 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1292 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1293 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
1294 | mapping_task_t* task = _get_task_base(header); |
---|
1295 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1296 | mapping_periph_t* periph = _get_periph_base(header); |
---|
1297 | mapping_irq_t* irq = _get_irq_base(header); |
---|
1298 | |
---|
1299 | unsigned int cluster_id; // cluster index in mapping_info |
---|
1300 | unsigned int periph_id; // peripheral index in mapping_info |
---|
1301 | unsigned int irq_id; // irq index in mapping_info |
---|
1302 | unsigned int vspace_id; // vspace index in mapping_info |
---|
1303 | unsigned int task_id; // task index in mapping_info |
---|
1304 | unsigned int vobj_id; // vobj index in mapping_info |
---|
1305 | |
---|
1306 | unsigned int lpid; // local processor index (for several loops) |
---|
1307 | |
---|
1308 | // TTY, NIC, CMA, HBA, user timer, and WTI channel allocators to user tasks: |
---|
1309 | // - TTY[0] is reserved for the kernel |
---|
1310 | // - In all clusters the first NB_PROCS_MAX timers |
---|
1311 | // are reserved for the kernel (context switch) |
---|
1312 | unsigned int alloc_tty_channel = 1; // global |
---|
1313 | unsigned int alloc_nic_channel = 0; // global |
---|
1314 | unsigned int alloc_cma_channel = 0; // global |
---|
1315 | unsigned int alloc_hba_channel = 0; // global |
---|
1316 | unsigned int alloc_tim_channel[X_SIZE*Y_SIZE]; // one per cluster |
---|
1317 | |
---|
1318 | // WTI allocators to processors |
---|
1319 | // In all clusters, first NB_PROCS_MAX WTIs are for WAKUP |
---|
1320 | unsigned int alloc_wti_channel[X_SIZE*Y_SIZE]; // one per cluster |
---|
1321 | |
---|
1322 | // pointers on the XCU and PIC peripherals |
---|
1323 | mapping_periph_t* xcu = NULL; |
---|
1324 | mapping_periph_t* pic = NULL; |
---|
1325 | |
---|
1326 | // schedulers array base address in a cluster |
---|
1327 | unsigned int sched_vbase; |
---|
1328 | unsigned int sched_length; |
---|
1329 | static_scheduler_t* psched; |
---|
1330 | |
---|
1331 | ///////////////////////////////////////////////////////////////////////// |
---|
1332 | // Step 1 : loop on the clusters and on the processors |
---|
1333 | // to initialize the schedulers[] array of pointers, |
---|
1334 | // and the interrupt vectors. |
---|
1335 | // Implementation note: |
---|
1336 | // We need to use both (proc_id) to scan the mapping info structure, |
---|
1337 | // and (x,y,lpid) to access the schedulers array. |
---|
1338 | |
---|
1339 | for (cluster_id = 0 ; cluster_id < X_SIZE*Y_SIZE ; cluster_id++) |
---|
1340 | { |
---|
1341 | unsigned int x = cluster[cluster_id].x; |
---|
1342 | unsigned int y = cluster[cluster_id].y; |
---|
1343 | |
---|
1344 | #if BOOT_DEBUG_SCHED |
---|
1345 | _puts("\n[BOOT DEBUG] Initialise schedulers in cluster["); |
---|
1346 | _putd( x ); |
---|
1347 | _puts(","); |
---|
1348 | _putd( y ); |
---|
1349 | _puts("]\n"); |
---|
1350 | #endif |
---|
1351 | alloc_tim_channel[cluster_id] = NB_PROCS_MAX; |
---|
1352 | alloc_wti_channel[cluster_id] = NB_PROCS_MAX; |
---|
1353 | |
---|
1354 | // checking processors number |
---|
1355 | if ( cluster[cluster_id].procs > NB_PROCS_MAX ) |
---|
1356 | { |
---|
1357 | _puts("\n[BOOT ERROR] Too much processors in cluster["); |
---|
1358 | _putd( x ); |
---|
1359 | _puts(","); |
---|
1360 | _putd( y ); |
---|
1361 | _puts("]\n"); |
---|
1362 | _exit(); |
---|
1363 | } |
---|
1364 | |
---|
1365 | // no schedulers initialisation if nprocs == 0 |
---|
1366 | if ( cluster[cluster_id].procs > 0 ) |
---|
1367 | { |
---|
1368 | // get scheduler array virtual base address from mapping |
---|
1369 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
1370 | |
---|
1371 | if ( sched_length < (cluster[cluster_id].procs<<12) ) // 4 Kbytes per scheduler |
---|
1372 | { |
---|
1373 | _puts("\n[BOOT ERROR] Schedulers segment too small in cluster["); |
---|
1374 | _putd( x ); |
---|
1375 | _puts(","); |
---|
1376 | _putd( y ); |
---|
1377 | _puts("]\n"); |
---|
1378 | _exit(); |
---|
1379 | } |
---|
1380 | |
---|
1381 | psched = (static_scheduler_t*)sched_vbase; |
---|
1382 | |
---|
1383 | // scan peripherals to find the ICU/XCU and the PIC component |
---|
1384 | |
---|
1385 | xcu = NULL; |
---|
1386 | for ( periph_id = cluster[cluster_id].periph_offset ; |
---|
1387 | periph_id < cluster[cluster_id].periph_offset + cluster[cluster_id].periphs; |
---|
1388 | periph_id++ ) |
---|
1389 | { |
---|
1390 | if( (periph[periph_id].type == PERIPH_TYPE_XCU) || |
---|
1391 | (periph[periph_id].type == PERIPH_TYPE_ICU) ) |
---|
1392 | { |
---|
1393 | xcu = &periph[periph_id]; |
---|
1394 | |
---|
1395 | if ( xcu->arg < cluster[cluster_id].procs ) |
---|
1396 | { |
---|
1397 | _puts("\n[BOOT ERROR] Not enough inputs for XCU["); |
---|
1398 | _putd( x ); |
---|
1399 | _puts(","); |
---|
1400 | _putd( y ); |
---|
1401 | _puts("]\n"); |
---|
1402 | _exit(); |
---|
1403 | } |
---|
1404 | } |
---|
1405 | if( periph[periph_id].type == PERIPH_TYPE_PIC ) |
---|
1406 | { |
---|
1407 | pic = &periph[periph_id]; |
---|
1408 | } |
---|
1409 | } |
---|
1410 | if ( xcu == NULL ) |
---|
1411 | { |
---|
1412 | _puts("\n[BOOT ERROR] No ICU / XCU component in cluster["); |
---|
1413 | _putd( x ); |
---|
1414 | _puts(","); |
---|
1415 | _putd( y ); |
---|
1416 | _puts("]\n"); |
---|
1417 | _exit(); |
---|
1418 | } |
---|
1419 | |
---|
1420 | // loop on processors for sechedulers default values |
---|
1421 | // initialisation, including WTI and PTI vectors |
---|
1422 | for ( lpid = 0 ; lpid < cluster[cluster_id].procs ; lpid++ ) |
---|
1423 | { |
---|
1424 | // set the schedulers pointers array |
---|
1425 | _schedulers[x][y][lpid] = (static_scheduler_t*)&psched[lpid]; |
---|
1426 | |
---|
1427 | #if BOOT_DEBUG_SCHED |
---|
1428 | _puts("\nProc["); |
---|
1429 | _putd( x ); |
---|
1430 | _puts(","); |
---|
1431 | _putd( y ); |
---|
1432 | _puts(","); |
---|
1433 | _putd( lpid ); |
---|
1434 | _puts("] : scheduler virtual base address = "); |
---|
1435 | _putx( (unsigned int)&psched[lpid] ); |
---|
1436 | _puts("\n"); |
---|
1437 | #endif |
---|
1438 | // initialise the "tasks" and "current" variables default values |
---|
1439 | psched[lpid].tasks = 0; |
---|
1440 | psched[lpid].current = IDLE_TASK_INDEX; |
---|
1441 | |
---|
1442 | // default values for HWI / PTI / SWI vectors (valid bit = 0) |
---|
1443 | unsigned int slot; |
---|
1444 | for (slot = 0; slot < 32; slot++) |
---|
1445 | { |
---|
1446 | psched[lpid].hwi_vector[slot] = 0; |
---|
1447 | psched[lpid].pti_vector[slot] = 0; |
---|
1448 | psched[lpid].wti_vector[slot] = 0; |
---|
1449 | } |
---|
1450 | |
---|
1451 | // WTI[lpid] <= ISR_WAKUP / PTI[lpid] <= ISR_TICK |
---|
1452 | psched[lpid].wti_vector[lpid] = ISR_WAKUP | 0x80000000; |
---|
1453 | psched[lpid].pti_vector[lpid] = ISR_TICK | 0x80000000; |
---|
1454 | |
---|
1455 | // initializes the idle_task context in scheduler: |
---|
1456 | // - the SR slot is 0xFF03 because this task run in kernel mode. |
---|
1457 | // - it uses the page table of vspace[0] |
---|
1458 | // - it uses the kernel TTY terminal |
---|
1459 | // - slots containing addresses (SP, RA, EPC, PTAB, PTPR) |
---|
1460 | // must be re-initialised by kernel_parallel_init() |
---|
1461 | |
---|
1462 | psched[lpid].context[IDLE_TASK_INDEX][CTX_CR_ID] = 0; |
---|
1463 | psched[lpid].context[IDLE_TASK_INDEX][CTX_SR_ID] = 0xFF03; |
---|
1464 | psched[lpid].context[IDLE_TASK_INDEX][CTX_PTPR_ID] = _ptabs_paddr[0][x][y]>>13; |
---|
1465 | psched[lpid].context[IDLE_TASK_INDEX][CTX_PTAB_ID] = _ptabs_vaddr[0]; |
---|
1466 | psched[lpid].context[IDLE_TASK_INDEX][CTX_TTY_ID] = 0; |
---|
1467 | psched[lpid].context[IDLE_TASK_INDEX][CTX_LTID_ID] = IDLE_TASK_INDEX; |
---|
1468 | psched[lpid].context[IDLE_TASK_INDEX][CTX_VSID_ID] = 0; |
---|
1469 | psched[lpid].context[IDLE_TASK_INDEX][CTX_RUN_ID] = 1; |
---|
1470 | } // end for processors |
---|
1471 | |
---|
1472 | // scan HWIs connected to local XCU |
---|
1473 | // for round-robin allocation to processors |
---|
1474 | lpid = 0; |
---|
1475 | for ( irq_id = xcu->irq_offset ; |
---|
1476 | irq_id < xcu->irq_offset + xcu->irqs ; |
---|
1477 | irq_id++ ) |
---|
1478 | { |
---|
1479 | unsigned int type = irq[irq_id].srctype; |
---|
1480 | unsigned int srcid = irq[irq_id].srcid; |
---|
1481 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
1482 | unsigned int channel = irq[irq_id].channel << 16; |
---|
1483 | |
---|
1484 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
1485 | { |
---|
1486 | _puts("\n[BOOT ERROR] Bad IRQ in XCU of cluster["); |
---|
1487 | _putd( x ); |
---|
1488 | _puts(","); |
---|
1489 | _putd( y ); |
---|
1490 | _puts("]\n"); |
---|
1491 | _exit(); |
---|
1492 | } |
---|
1493 | |
---|
1494 | psched[lpid].hwi_vector[srcid] = isr | channel | 0x80000000; |
---|
1495 | lpid = (lpid + 1) % cluster[cluster_id].procs; |
---|
1496 | |
---|
1497 | } // end for irqs |
---|
1498 | } // end if nprocs > 0 |
---|
1499 | } // end for clusters |
---|
1500 | |
---|
1501 | // If there is an external PIC component, we scan HWIs connected to PIC |
---|
1502 | // for Round Robin allocation (as WTI) to processors. |
---|
1503 | // We allocate one WTI per processor, starting from proc[0,0,0], |
---|
1504 | // and we increment (cluster_id, lpid) as required. |
---|
1505 | if ( pic != NULL ) |
---|
1506 | { |
---|
1507 | unsigned int cluster_id = 0; // index in clusters array |
---|
1508 | unsigned int lpid = 0; // processor local index |
---|
1509 | |
---|
1510 | // scan IRQS defined in PIC |
---|
1511 | for ( irq_id = pic->irq_offset ; |
---|
1512 | irq_id < pic->irq_offset + pic->irqs ; |
---|
1513 | irq_id++ ) |
---|
1514 | { |
---|
1515 | // compute next values for (cluster_id,lpid) |
---|
1516 | // if no more procesor available in current cluster |
---|
1517 | unsigned int overflow = 0; |
---|
1518 | while ( (lpid >= cluster[cluster_id].procs) || |
---|
1519 | (alloc_wti_channel[cluster_id] >= xcu->arg) ) |
---|
1520 | { |
---|
1521 | overflow++; |
---|
1522 | cluster_id = (cluster_id + 1) % (X_SIZE*Y_SIZE); |
---|
1523 | lpid = 0; |
---|
1524 | |
---|
1525 | // overflow detection |
---|
1526 | if ( overflow > (X_SIZE*Y_SIZE*NB_PROCS_MAX*32) ) |
---|
1527 | { |
---|
1528 | _puts("\n[BOOT ERROR] Not enough processors for external IRQs\n"); |
---|
1529 | _exit(); |
---|
1530 | } |
---|
1531 | } |
---|
1532 | |
---|
1533 | unsigned int type = irq[irq_id].srctype; |
---|
1534 | unsigned int srcid = irq[irq_id].srcid; |
---|
1535 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
1536 | unsigned int channel = irq[irq_id].channel << 16; |
---|
1537 | |
---|
1538 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
1539 | { |
---|
1540 | _puts("\n[BOOT ERROR] Bad IRQ in PIC component\n"); |
---|
1541 | _exit(); |
---|
1542 | } |
---|
1543 | |
---|
1544 | // get scheduler[cluster_id] address |
---|
1545 | unsigned int x = cluster[cluster_id].x; |
---|
1546 | unsigned int y = cluster[cluster_id].y; |
---|
1547 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1548 | psched = _schedulers[x][y][0]; |
---|
1549 | |
---|
1550 | // update WTI vector for scheduler[cluster_id][lpid] |
---|
1551 | unsigned int index = alloc_wti_channel[cluster_id]; |
---|
1552 | psched[lpid].wti_vector[index] = isr | channel | 0x80000000; |
---|
1553 | alloc_wti_channel[cluster_id] = index + 1; |
---|
1554 | lpid = lpid + 1; |
---|
1555 | |
---|
1556 | // update IRQ fields in mapping for PIC initialisation |
---|
1557 | irq[irq_id].dest_id = index; |
---|
1558 | irq[irq_id].dest_xy = cluster_xy; |
---|
1559 | |
---|
1560 | } // end for IRQs |
---|
1561 | } // end if PIC |
---|
1562 | |
---|
1563 | #if BOOT_DEBUG_SCHED |
---|
1564 | for ( cluster_id = 0 ; cluster_id < (X_SIZE*Y_SIZE) ; cluster_id++ ) |
---|
1565 | { |
---|
1566 | unsigned int x = cluster[cluster_id].x; |
---|
1567 | unsigned int y = cluster[cluster_id].y; |
---|
1568 | psched = _schedulers[x][y][0]; |
---|
1569 | unsigned int slot; |
---|
1570 | unsigned int entry; |
---|
1571 | for ( lpid = 0 ; lpid < cluster[cluster_id].procs ; lpid++ ) |
---|
1572 | { |
---|
1573 | _puts("\n*** IRQS for proc["); |
---|
1574 | _putd( x ); |
---|
1575 | _puts(","); |
---|
1576 | _putd( y ); |
---|
1577 | _puts(","); |
---|
1578 | _putd( lpid ); |
---|
1579 | _puts("]\n"); |
---|
1580 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1581 | { |
---|
1582 | entry = psched[lpid].hwi_vector[slot]; |
---|
1583 | if ( entry & 0x80000000 ) |
---|
1584 | { |
---|
1585 | _puts(" - HWI "); |
---|
1586 | _putd( slot ); |
---|
1587 | _puts(" / isrtype = "); |
---|
1588 | _putd( entry & 0xFFFF ); |
---|
1589 | _puts(" / channel = "); |
---|
1590 | _putd( (entry >> 16) & 0x7FFF ); |
---|
1591 | _puts("\n"); |
---|
1592 | } |
---|
1593 | } |
---|
1594 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1595 | { |
---|
1596 | entry = psched[lpid].wti_vector[slot]; |
---|
1597 | if ( entry & 0x80000000 ) |
---|
1598 | { |
---|
1599 | _puts(" - WTI "); |
---|
1600 | _putd( slot ); |
---|
1601 | _puts(" / isrtype = "); |
---|
1602 | _putd( entry & 0xFFFF ); |
---|
1603 | _puts(" / channel = "); |
---|
1604 | _putd( (entry >> 16) & 0x7FFF ); |
---|
1605 | _puts("\n"); |
---|
1606 | } |
---|
1607 | } |
---|
1608 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1609 | { |
---|
1610 | entry = psched[lpid].pti_vector[slot]; |
---|
1611 | if ( entry & 0x80000000 ) |
---|
1612 | { |
---|
1613 | _puts(" - PTI "); |
---|
1614 | _putd( slot ); |
---|
1615 | _puts(" / isrtype = "); |
---|
1616 | _putd( entry & 0xFFFF ); |
---|
1617 | _puts(" / channel = "); |
---|
1618 | _putd( (entry >> 16) & 0x7FFF ); |
---|
1619 | _puts("\n"); |
---|
1620 | } |
---|
1621 | } |
---|
1622 | } |
---|
1623 | } |
---|
1624 | #endif |
---|
1625 | |
---|
1626 | /////////////////////////////////////////////////////////////////// |
---|
1627 | // Step 2 : loop on the vspaces and the tasks to complete |
---|
1628 | // the schedulers and task contexts initialisation. |
---|
1629 | |
---|
1630 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1631 | { |
---|
1632 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
1633 | // and the stack address are defined in virtual space. |
---|
1634 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][0][0] >> 13) ); |
---|
1635 | |
---|
1636 | // loop on the tasks in vspace (task_id is the global index) |
---|
1637 | for (task_id = vspace[vspace_id].task_offset; |
---|
1638 | task_id < (vspace[vspace_id].task_offset + vspace[vspace_id].tasks); |
---|
1639 | task_id++) |
---|
1640 | { |
---|
1641 | // compute the cluster coordinates & local processor index |
---|
1642 | unsigned int x = cluster[task[task_id].clusterid].x; |
---|
1643 | unsigned int y = cluster[task[task_id].clusterid].y; |
---|
1644 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1645 | unsigned int lpid = task[task_id].proclocid; |
---|
1646 | |
---|
1647 | #if BOOT_DEBUG_SCHED |
---|
1648 | _puts("\n[BOOT DEBUG] Initialise context for task "); |
---|
1649 | _puts( task[task_id].name ); |
---|
1650 | _puts(" in vspace "); |
---|
1651 | _puts( vspace[vspace_id].name ); |
---|
1652 | _puts("\n"); |
---|
1653 | #endif |
---|
1654 | // compute gpid (global processor index) and scheduler base address |
---|
1655 | unsigned int gpid = cluster_xy * NB_PROCS_MAX + lpid; |
---|
1656 | psched = _schedulers[x][y][lpid]; |
---|
1657 | |
---|
1658 | // ctx_sr : value required before an eret instruction |
---|
1659 | unsigned int ctx_sr = 0x0000FF13; |
---|
1660 | |
---|
1661 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
1662 | unsigned int ctx_ptpr = (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13); |
---|
1663 | |
---|
1664 | // ctx_ptab : page_table virtual base address |
---|
1665 | unsigned int ctx_ptab = _ptabs_vaddr[vspace_id]; |
---|
1666 | |
---|
1667 | // ctx_tty : TTY terminal global index provided by the global allocator |
---|
1668 | // Each user terminal is a private ressource: the number of |
---|
1669 | // requested terminal cannot be larger than NB_TTY_CHANNELS. |
---|
1670 | unsigned int ctx_tty = 0xFFFFFFFF; |
---|
1671 | if (task[task_id].use_tty) |
---|
1672 | { |
---|
1673 | if (alloc_tty_channel >= NB_TTY_CHANNELS) |
---|
1674 | { |
---|
1675 | _puts("\n[BOOT ERROR] TTY channel index too large for task "); |
---|
1676 | _puts(task[task_id].name); |
---|
1677 | _puts(" in vspace "); |
---|
1678 | _puts(vspace[vspace_id].name); |
---|
1679 | _puts("\n"); |
---|
1680 | _exit(); |
---|
1681 | } |
---|
1682 | ctx_tty = alloc_tty_channel; |
---|
1683 | alloc_tty_channel++; |
---|
1684 | } |
---|
1685 | |
---|
1686 | // ctx_nic : NIC channel global index provided by the global allocator |
---|
1687 | // Each channel is a private ressource: the number of |
---|
1688 | // requested channels cannot be larger than NB_NIC_CHANNELS. |
---|
1689 | unsigned int ctx_nic = 0xFFFFFFFF; |
---|
1690 | if (task[task_id].use_nic) |
---|
1691 | { |
---|
1692 | if (alloc_nic_channel >= NB_NIC_CHANNELS) |
---|
1693 | { |
---|
1694 | _puts("\n[BOOT ERROR] NIC channel index too large for task "); |
---|
1695 | _puts(task[task_id].name); |
---|
1696 | _puts(" in vspace "); |
---|
1697 | _puts(vspace[vspace_id].name); |
---|
1698 | _puts("\n"); |
---|
1699 | _exit(); |
---|
1700 | } |
---|
1701 | ctx_nic = alloc_nic_channel; |
---|
1702 | alloc_nic_channel++; |
---|
1703 | } |
---|
1704 | |
---|
1705 | // ctx_cma : CMA channel global index provided by the global allocator |
---|
1706 | // Each channel is a private ressource: the number of |
---|
1707 | // requested channels cannot be larger than NB_NIC_CHANNELS. |
---|
1708 | unsigned int ctx_cma = 0xFFFFFFFF; |
---|
1709 | if (task[task_id].use_cma) |
---|
1710 | { |
---|
1711 | if (alloc_cma_channel >= NB_CMA_CHANNELS) |
---|
1712 | { |
---|
1713 | _puts("\n[BOOT ERROR] CMA channel index too large for task "); |
---|
1714 | _puts(task[task_id].name); |
---|
1715 | _puts(" in vspace "); |
---|
1716 | _puts(vspace[vspace_id].name); |
---|
1717 | _puts("\n"); |
---|
1718 | _exit(); |
---|
1719 | } |
---|
1720 | ctx_cma = alloc_cma_channel; |
---|
1721 | alloc_cma_channel++; |
---|
1722 | } |
---|
1723 | |
---|
1724 | // ctx_hba : HBA channel global index provided by the global allocator |
---|
1725 | // Each channel is a private ressource: the number of |
---|
1726 | // requested channels cannot be larger than NB_NIC_CHANNELS. |
---|
1727 | unsigned int ctx_hba = 0xFFFFFFFF; |
---|
1728 | if (task[task_id].use_hba) |
---|
1729 | { |
---|
1730 | if (alloc_hba_channel >= NB_IOC_CHANNELS) |
---|
1731 | { |
---|
1732 | _puts("\n[BOOT ERROR] IOC channel index too large for task "); |
---|
1733 | _puts(task[task_id].name); |
---|
1734 | _puts(" in vspace "); |
---|
1735 | _puts(vspace[vspace_id].name); |
---|
1736 | _puts("\n"); |
---|
1737 | _exit(); |
---|
1738 | } |
---|
1739 | ctx_hba = alloc_hba_channel; |
---|
1740 | alloc_hba_channel++; |
---|
1741 | } |
---|
1742 | // ctx_tim : TIMER local channel index provided by the cluster allocator |
---|
1743 | // Each timer is a private ressource |
---|
1744 | unsigned int ctx_tim = 0xFFFFFFFF; |
---|
1745 | if (task[task_id].use_tim) |
---|
1746 | { |
---|
1747 | unsigned int cluster_id = task[task_id].clusterid; |
---|
1748 | |
---|
1749 | if ( alloc_tim_channel[cluster_id] >= NB_TIM_CHANNELS ) |
---|
1750 | { |
---|
1751 | _puts("\n[BOOT ERROR] local TIMER index too large for task "); |
---|
1752 | _puts(task[task_id].name); |
---|
1753 | _puts(" in vspace "); |
---|
1754 | _puts(vspace[vspace_id].name); |
---|
1755 | _puts("\n"); |
---|
1756 | _exit(); |
---|
1757 | } |
---|
1758 | ctx_tim = alloc_tim_channel[cluster_id]; |
---|
1759 | alloc_tim_channel[cluster_id]++; |
---|
1760 | } |
---|
1761 | // ctx_epc : Get the virtual address of the memory location containing |
---|
1762 | // the task entry point : the start_vector is stored by GCC in the seg_data |
---|
1763 | // segment and we must wait the .elf loading to get the entry point value... |
---|
1764 | vobj_id = vspace[vspace_id].start_vobj_id; |
---|
1765 | unsigned int ctx_epc = vobj[vobj_id].vaddr + (task[task_id].startid)*4; |
---|
1766 | |
---|
1767 | // ctx_sp : Get the vobj containing the stack |
---|
1768 | vobj_id = task[task_id].stack_vobj_id; |
---|
1769 | unsigned int ctx_sp = vobj[vobj_id].vaddr + vobj[vobj_id].length; |
---|
1770 | |
---|
1771 | // get local task index in scheduler |
---|
1772 | unsigned int ltid = psched->tasks; |
---|
1773 | |
---|
1774 | // get vspace thread index |
---|
1775 | unsigned int thread_id = task[task_id].trdid; |
---|
1776 | |
---|
1777 | if (ltid >= IDLE_TASK_INDEX) |
---|
1778 | { |
---|
1779 | _puts("\n[BOOT ERROR] in boot_schedulers_init() : "); |
---|
1780 | _putd( ltid ); |
---|
1781 | _puts(" tasks allocated to processor "); |
---|
1782 | _putd( gpid ); |
---|
1783 | _puts(" / max is "); |
---|
1784 | _putd( IDLE_TASK_INDEX ); |
---|
1785 | _puts("\n"); |
---|
1786 | _exit(); |
---|
1787 | } |
---|
1788 | |
---|
1789 | // update the "tasks" and "current" fields in scheduler: |
---|
1790 | // the first task to execute is task 0 as soon as there is at least |
---|
1791 | // one task allocated to processor. |
---|
1792 | psched->tasks = ltid + 1; |
---|
1793 | psched->current = 0; |
---|
1794 | |
---|
1795 | // initializes the task context in scheduler |
---|
1796 | psched->context[ltid][CTX_CR_ID] = 0; |
---|
1797 | psched->context[ltid][CTX_SR_ID] = ctx_sr; |
---|
1798 | psched->context[ltid][CTX_SP_ID] = ctx_sp; |
---|
1799 | psched->context[ltid][CTX_EPC_ID] = ctx_epc; |
---|
1800 | psched->context[ltid][CTX_PTPR_ID] = ctx_ptpr; |
---|
1801 | psched->context[ltid][CTX_TTY_ID] = ctx_tty; |
---|
1802 | psched->context[ltid][CTX_CMA_ID] = ctx_cma; |
---|
1803 | psched->context[ltid][CTX_HBA_ID] = ctx_hba; |
---|
1804 | psched->context[ltid][CTX_NIC_ID] = ctx_nic; |
---|
1805 | psched->context[ltid][CTX_TIM_ID] = ctx_tim; |
---|
1806 | psched->context[ltid][CTX_PTAB_ID] = ctx_ptab; |
---|
1807 | psched->context[ltid][CTX_LTID_ID] = ltid; |
---|
1808 | psched->context[ltid][CTX_GTID_ID] = task_id; |
---|
1809 | psched->context[ltid][CTX_TRDID_ID] = thread_id; |
---|
1810 | psched->context[ltid][CTX_VSID_ID] = vspace_id; |
---|
1811 | psched->context[ltid][CTX_RUN_ID] = 1; |
---|
1812 | |
---|
1813 | #if BOOT_DEBUG_SCHED |
---|
1814 | _puts("\nTask "); |
---|
1815 | _putd( task_id ); |
---|
1816 | _puts(" allocated to processor["); |
---|
1817 | _putd( x ); |
---|
1818 | _puts(","); |
---|
1819 | _putd( y ); |
---|
1820 | _puts(","); |
---|
1821 | _putd( lpid ); |
---|
1822 | _puts("]\n - ctx[LTID] = "); |
---|
1823 | _putd( psched->context[ltid][CTX_LTID_ID] ); |
---|
1824 | _puts("\n - ctx[SR] = "); |
---|
1825 | _putx( psched->context[ltid][CTX_SR_ID] ); |
---|
1826 | _puts("\n - ctx[SP] = "); |
---|
1827 | _putx( psched->context[ltid][CTX_SP_ID] ); |
---|
1828 | _puts("\n - ctx[EPC] = "); |
---|
1829 | _putx( psched->context[ltid][CTX_EPC_ID] ); |
---|
1830 | _puts("\n - ctx[PTPR] = "); |
---|
1831 | _putx( psched->context[ltid][CTX_PTPR_ID] ); |
---|
1832 | _puts("\n - ctx[TTY] = "); |
---|
1833 | _putx( psched->context[ltid][CTX_TTY_ID] ); |
---|
1834 | _puts("\n - ctx[NIC] = "); |
---|
1835 | _putx( psched->context[ltid][CTX_NIC_ID] ); |
---|
1836 | _puts("\n - ctx[CMA] = "); |
---|
1837 | _putx( psched->context[ltid][CTX_CMA_ID] ); |
---|
1838 | _puts("\n - ctx[IOC] = "); |
---|
1839 | _putx( psched->context[ltid][CTX_HBA_ID] ); |
---|
1840 | _puts("\n - ctx[TIM] = "); |
---|
1841 | _putx( psched->context[ltid][CTX_TIM_ID] ); |
---|
1842 | _puts("\n - ctx[PTAB] = "); |
---|
1843 | _putx( psched->context[ltid][CTX_PTAB_ID] ); |
---|
1844 | _puts("\n - ctx[GTID] = "); |
---|
1845 | _putx( psched->context[ltid][CTX_GTID_ID] ); |
---|
1846 | _puts("\n - ctx[VSID] = "); |
---|
1847 | _putx( psched->context[ltid][CTX_VSID_ID] ); |
---|
1848 | _puts("\n - ctx[TRDID] = "); |
---|
1849 | _putx( psched->context[ltid][CTX_TRDID_ID] ); |
---|
1850 | _puts("\n"); |
---|
1851 | #endif |
---|
1852 | |
---|
1853 | } // end loop on tasks |
---|
1854 | } // end loop on vspaces |
---|
1855 | } // end _schedulers_init() |
---|
1856 | |
---|
1857 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1858 | // This function loads the map.bin file from block device. |
---|
1859 | // The fat global varible is defined in fat32.c file. |
---|
1860 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1861 | void boot_mapping_init() |
---|
1862 | { |
---|
1863 | // desactivates IOC interrupt |
---|
1864 | _ioc_init( 0 ); |
---|
1865 | |
---|
1866 | // open file "map.bin" |
---|
1867 | int fd_id = _fat_open( IOC_BOOT_MODE, |
---|
1868 | "map.bin", |
---|
1869 | 0 ); // no creation |
---|
1870 | if ( fd_id == -1 ) |
---|
1871 | { |
---|
1872 | _puts("\n[BOOT ERROR] : map.bin file not found \n"); |
---|
1873 | _exit(); |
---|
1874 | } |
---|
1875 | |
---|
1876 | #if BOOT_DEBUG_MAPPING |
---|
1877 | _puts("\n[BOOT] map.bin file successfully open at cycle "); |
---|
1878 | _putd(_get_proctime()); |
---|
1879 | _puts("\n"); |
---|
1880 | #endif |
---|
1881 | |
---|
1882 | // get "map.bin" file size (from fat32) and check it |
---|
1883 | unsigned int size = fat.fd[fd_id].file_size; |
---|
1884 | |
---|
1885 | if ( size > SEG_BOOT_MAPPING_SIZE ) |
---|
1886 | { |
---|
1887 | _puts("\n[BOOT ERROR] : allocated segment too small for map.bin file\n"); |
---|
1888 | _exit(); |
---|
1889 | } |
---|
1890 | |
---|
1891 | // load "map.bin" file into buffer |
---|
1892 | unsigned int nblocks = size >> 9; |
---|
1893 | unsigned int offset = size & 0x1FF; |
---|
1894 | if ( offset ) nblocks++; |
---|
1895 | |
---|
1896 | unsigned int ok = _fat_read( IOC_BOOT_MODE, |
---|
1897 | fd_id, |
---|
1898 | (unsigned int*)SEG_BOOT_MAPPING_BASE, |
---|
1899 | nblocks, |
---|
1900 | 0 ); // offset |
---|
1901 | if ( ok == -1 ) |
---|
1902 | { |
---|
1903 | _puts("\n[BOOT ERROR] : unable to load map.bin file \n"); |
---|
1904 | _exit(); |
---|
1905 | } |
---|
1906 | _fat_close( fd_id ); |
---|
1907 | |
---|
1908 | // close file "map.bin" |
---|
1909 | boot_mapping_check(); |
---|
1910 | |
---|
1911 | } // end boot_mapping_init() |
---|
1912 | |
---|
1913 | |
---|
1914 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
1915 | // This function load all loadable segments for one .elf file, identified |
---|
1916 | // by the "pathname" argument. Some loadable segments can be copied in several |
---|
1917 | // clusters: same virtual address but different physical addresses. |
---|
1918 | // - It open the file. |
---|
1919 | // - It loads the complete file in the dedicated boot_elf_buffer. |
---|
1920 | // - It copies each loadable segments at the virtual address defined in |
---|
1921 | // the .elf file, making several copies if the target vseg is not local. |
---|
1922 | // - It closes the file. |
---|
1923 | // This function is supposed to be executed by processor[0,0,0]. |
---|
1924 | // Note: |
---|
1925 | // We must use physical addresses to reach the destination buffers that |
---|
1926 | // can be located in remote clusters. We use either a _physical_memcpy(), |
---|
1927 | // or a _dma_physical_copy() if DMA is available. |
---|
1928 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
1929 | void load_one_elf_file( unsigned int is_kernel, // kernel file if non zero |
---|
1930 | char* pathname, |
---|
1931 | unsigned int vspace_id ) // to scan the proper vspace |
---|
1932 | { |
---|
1933 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1934 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
1935 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
1936 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
1937 | |
---|
1938 | unsigned int seg_id; |
---|
1939 | |
---|
1940 | #if BOOT_DEBUG_ELF |
---|
1941 | _puts("\n[BOOT DEBUG] Start searching file "); |
---|
1942 | _puts( pathname ); |
---|
1943 | _puts(" at cycle "); |
---|
1944 | _putd( _get_proctime() ); |
---|
1945 | _puts("\n"); |
---|
1946 | #endif |
---|
1947 | |
---|
1948 | // open .elf file |
---|
1949 | int fd_id = _fat_open( IOC_BOOT_MODE, |
---|
1950 | pathname, |
---|
1951 | 0 ); // no creation |
---|
1952 | if ( fd_id < 0 ) |
---|
1953 | { |
---|
1954 | _puts("\n[BOOT ERROR] load_one_elf_file() : "); |
---|
1955 | _puts( pathname ); |
---|
1956 | _puts(" not found\n"); |
---|
1957 | _exit(); |
---|
1958 | } |
---|
1959 | |
---|
1960 | // check buffer size versus file size |
---|
1961 | if ( fat.fd[fd_id].file_size > GIET_ELF_BUFFER_SIZE ) |
---|
1962 | { |
---|
1963 | _puts("\n[BOOT ERROR] load_one_elf_file() : "); |
---|
1964 | _puts( pathname ); |
---|
1965 | _puts(" exceeds the GIET_ELF_BUFFERSIZE defined in giet_config.h\n"); |
---|
1966 | _exit(); |
---|
1967 | } |
---|
1968 | |
---|
1969 | // compute number of sectors |
---|
1970 | unsigned int nbytes = fat.fd[fd_id].file_size; |
---|
1971 | unsigned int nsectors = nbytes>>9; |
---|
1972 | if( nbytes & 0x1FF) nsectors++; |
---|
1973 | |
---|
1974 | // load file in elf buffer |
---|
1975 | if( _fat_read( IOC_BOOT_MODE, |
---|
1976 | fd_id, |
---|
1977 | boot_elf_buffer, |
---|
1978 | nsectors, |
---|
1979 | 0 ) != nsectors ) |
---|
1980 | { |
---|
1981 | _puts("\n[BOOT ERROR] load_one_elf_file() : unexpected EOF for file "); |
---|
1982 | _puts( pathname ); |
---|
1983 | _puts("\n"); |
---|
1984 | _exit(); |
---|
1985 | } |
---|
1986 | |
---|
1987 | // Check ELF Magic Number in ELF header |
---|
1988 | Elf32_Ehdr* elf_header_ptr = (Elf32_Ehdr*)boot_elf_buffer; |
---|
1989 | |
---|
1990 | if ( (elf_header_ptr->e_ident[EI_MAG0] != ELFMAG0) || |
---|
1991 | (elf_header_ptr->e_ident[EI_MAG1] != ELFMAG1) || |
---|
1992 | (elf_header_ptr->e_ident[EI_MAG2] != ELFMAG2) || |
---|
1993 | (elf_header_ptr->e_ident[EI_MAG3] != ELFMAG3) ) |
---|
1994 | { |
---|
1995 | _puts("\n[BOOT ERROR] load_elf() : file "); |
---|
1996 | _puts( pathname ); |
---|
1997 | _puts(" does not use ELF format\n"); |
---|
1998 | _exit(); |
---|
1999 | } |
---|
2000 | |
---|
2001 | // get program header table pointer |
---|
2002 | unsigned int pht_index = elf_header_ptr->e_phoff; |
---|
2003 | if( pht_index == 0 ) |
---|
2004 | { |
---|
2005 | _puts("\n[BOOT ERROR] load_one_elf_file() : file "); |
---|
2006 | _puts( pathname ); |
---|
2007 | _puts(" does not contain loadable segment\n"); |
---|
2008 | _exit(); |
---|
2009 | } |
---|
2010 | Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(boot_elf_buffer + pht_index); |
---|
2011 | |
---|
2012 | // get number of segments |
---|
2013 | unsigned int nsegments = elf_header_ptr->e_phnum; |
---|
2014 | |
---|
2015 | _puts("\n[BOOT] File "); |
---|
2016 | _puts( pathname ); |
---|
2017 | _puts(" loaded at cycle "); |
---|
2018 | _putd( _get_proctime() ); |
---|
2019 | _puts("\n"); |
---|
2020 | |
---|
2021 | // Loop on loadable segments in the .elf file |
---|
2022 | for (seg_id = 0 ; seg_id < nsegments ; seg_id++) |
---|
2023 | { |
---|
2024 | if(elf_pht_ptr[seg_id].p_type == PT_LOAD) |
---|
2025 | { |
---|
2026 | // Get segment attributes |
---|
2027 | unsigned int seg_vaddr = elf_pht_ptr[seg_id].p_vaddr; |
---|
2028 | unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset; |
---|
2029 | unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz; |
---|
2030 | unsigned int seg_memsz = elf_pht_ptr[seg_id].p_memsz; |
---|
2031 | |
---|
2032 | #if BOOT_DEBUG_ELF |
---|
2033 | _puts(" - segment "); |
---|
2034 | _putd( seg_id ); |
---|
2035 | _puts(" / vaddr = "); |
---|
2036 | _putx( seg_vaddr ); |
---|
2037 | _puts(" / file_size = "); |
---|
2038 | _putx( seg_filesz ); |
---|
2039 | _puts("\n"); |
---|
2040 | #endif |
---|
2041 | |
---|
2042 | if( seg_memsz < seg_filesz ) |
---|
2043 | { |
---|
2044 | _puts("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = "); |
---|
2045 | _putx( seg_vaddr ); |
---|
2046 | _puts(" in file "); |
---|
2047 | _puts( pathname ); |
---|
2048 | _puts(" has memsz < filesz \n"); |
---|
2049 | _exit(); |
---|
2050 | } |
---|
2051 | |
---|
2052 | // fill empty space with 0 as required |
---|
2053 | if( seg_memsz > seg_filesz ) |
---|
2054 | { |
---|
2055 | unsigned int i; |
---|
2056 | for( i = seg_filesz ; i < seg_memsz ; i++ ) boot_elf_buffer[i+seg_offset] = 0; |
---|
2057 | } |
---|
2058 | |
---|
2059 | unsigned int src_vaddr = (unsigned int)boot_elf_buffer + seg_offset; |
---|
2060 | |
---|
2061 | // search all vsegs matching the virtual address |
---|
2062 | unsigned int vseg_first; |
---|
2063 | unsigned int vseg_last; |
---|
2064 | unsigned int vseg_id; |
---|
2065 | unsigned int found = 0; |
---|
2066 | if ( is_kernel ) |
---|
2067 | { |
---|
2068 | vseg_first = 0; |
---|
2069 | vseg_last = header->globals; |
---|
2070 | } |
---|
2071 | else |
---|
2072 | { |
---|
2073 | vseg_first = vspace[vspace_id].vseg_offset; |
---|
2074 | vseg_last = vseg_first + vspace[vspace_id].vsegs; |
---|
2075 | } |
---|
2076 | |
---|
2077 | for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ ) |
---|
2078 | { |
---|
2079 | if ( seg_vaddr == vseg[vseg_id].vbase ) // matching |
---|
2080 | { |
---|
2081 | found = 1; |
---|
2082 | |
---|
2083 | // get destination buffer physical address and size |
---|
2084 | paddr_t seg_paddr = vseg[vseg_id].pbase; |
---|
2085 | unsigned int vobj_id = vseg[vseg_id].vobj_offset; |
---|
2086 | unsigned int seg_size = vobj[vobj_id].length; |
---|
2087 | |
---|
2088 | #if BOOT_DEBUG_ELF |
---|
2089 | _puts(" loaded into vseg "); |
---|
2090 | _puts( vseg[vseg_id].name ); |
---|
2091 | _puts(" at paddr = "); |
---|
2092 | _putl( seg_paddr ); |
---|
2093 | _puts(" (buffer size = "); |
---|
2094 | _putx( seg_size ); |
---|
2095 | _puts(")\n"); |
---|
2096 | #endif |
---|
2097 | // check vseg size |
---|
2098 | if ( seg_size < seg_filesz ) |
---|
2099 | { |
---|
2100 | _puts("\n[BOOT ERROR] in load_one_elf_file()\n"); |
---|
2101 | _puts("vseg "); |
---|
2102 | _puts( vseg[vseg_id].name ); |
---|
2103 | _puts(" is to small for loadable segment "); |
---|
2104 | _putx( seg_vaddr ); |
---|
2105 | _puts(" in file "); |
---|
2106 | _puts( pathname ); |
---|
2107 | _puts(" \n"); |
---|
2108 | _exit(); |
---|
2109 | } |
---|
2110 | |
---|
2111 | // copy the segment from boot buffer to destination buffer |
---|
2112 | // using DMA channel[0,0,0] if it is available. |
---|
2113 | if( NB_DMA_CHANNELS > 0 ) |
---|
2114 | { |
---|
2115 | _dma_physical_copy( 0, // DMA in cluster[0,0] |
---|
2116 | 0, // DMA channel 0 |
---|
2117 | (paddr_t)seg_paddr, // destination paddr |
---|
2118 | (paddr_t)src_vaddr, // source paddr |
---|
2119 | seg_filesz ); // size |
---|
2120 | } |
---|
2121 | else |
---|
2122 | { |
---|
2123 | _physical_memcpy( (paddr_t)seg_paddr, // destination paddr |
---|
2124 | (paddr_t)src_vaddr, // source paddr |
---|
2125 | seg_filesz ); // size |
---|
2126 | } |
---|
2127 | } |
---|
2128 | } // end for vsegs in vspace |
---|
2129 | |
---|
2130 | // check at least one matching vseg |
---|
2131 | if ( found == 0 ) |
---|
2132 | { |
---|
2133 | _puts("\n[BOOT ERROR] in load_one_elf_file()\n"); |
---|
2134 | _puts("vseg for loadable segment "); |
---|
2135 | _putx( seg_vaddr ); |
---|
2136 | _puts(" in file "); |
---|
2137 | _puts( pathname ); |
---|
2138 | _puts(" not found \n"); |
---|
2139 | _exit(); |
---|
2140 | } |
---|
2141 | } |
---|
2142 | } // end for loadable segments |
---|
2143 | |
---|
2144 | // close .elf file |
---|
2145 | _fat_close( fd_id ); |
---|
2146 | |
---|
2147 | } // end load_one_elf_file() |
---|
2148 | |
---|
2149 | |
---|
2150 | /////i//////////////////////////////////////////////////////////////////////////////// |
---|
2151 | // This function uses the map.bin data structure to load the "kernel.elf" file |
---|
2152 | // as well as the various "application.elf" files into memory. |
---|
2153 | // - The "preloader.elf" file is not loaded, because it has been burned in the ROM. |
---|
2154 | // - The "boot.elf" file is not loaded, because it has been loaded by the preloader. |
---|
2155 | // This function scans all vobjs defined in the map.bin data structure to collect |
---|
2156 | // all .elf files pathnames, and calls the load_one_elf_file() for each .elf file. |
---|
2157 | // As the code can be replicated in several vsegs, the same code can be copied |
---|
2158 | // in one or several clusters by the load_one_elf_file() function. |
---|
2159 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
2160 | void boot_elf_load() |
---|
2161 | { |
---|
2162 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
2163 | mapping_vspace_t* vspace = _get_vspace_base( header ); |
---|
2164 | mapping_vobj_t* vobj = _get_vobj_base( header ); |
---|
2165 | unsigned int vspace_id; |
---|
2166 | unsigned int vobj_id; |
---|
2167 | unsigned int found; |
---|
2168 | |
---|
2169 | // Scan all vobjs corresponding to global vsegs, |
---|
2170 | // to find the pathname to the kernel.elf file |
---|
2171 | found = 0; |
---|
2172 | for( vobj_id = 0 ; vobj_id < header->globals ; vobj_id++ ) |
---|
2173 | { |
---|
2174 | if(vobj[vobj_id].type == VOBJ_TYPE_ELF) |
---|
2175 | { |
---|
2176 | found = 1; |
---|
2177 | break; |
---|
2178 | } |
---|
2179 | } |
---|
2180 | |
---|
2181 | // We need one kernel.elf file |
---|
2182 | if (found == 0) |
---|
2183 | { |
---|
2184 | _puts("[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n"); |
---|
2185 | _exit(); |
---|
2186 | } |
---|
2187 | |
---|
2188 | // Load the kernel |
---|
2189 | load_one_elf_file( 1, // kernel file |
---|
2190 | vobj[vobj_id].binpath, // file pathname |
---|
2191 | 0 ); // vspace 0 |
---|
2192 | |
---|
2193 | // loop on the vspaces, scanning all vobjs in the vspace, |
---|
2194 | // to find the pathname of the .elf file associated to the vspace. |
---|
2195 | for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ ) |
---|
2196 | { |
---|
2197 | // loop on the vobjs in vspace (vobj_id is the global index) |
---|
2198 | unsigned int found = 0; |
---|
2199 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
2200 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
2201 | vobj_id++) |
---|
2202 | { |
---|
2203 | if(vobj[vobj_id].type == VOBJ_TYPE_ELF) |
---|
2204 | { |
---|
2205 | found = 1; |
---|
2206 | break; |
---|
2207 | } |
---|
2208 | } |
---|
2209 | |
---|
2210 | // We want one .elf file per vspace |
---|
2211 | if (found == 0) |
---|
2212 | { |
---|
2213 | _puts("[BOOT ERROR] boot_elf_load() : .elf file not found for vspace "); |
---|
2214 | _puts( vspace[vspace_id].name ); |
---|
2215 | _puts("\n"); |
---|
2216 | _exit(); |
---|
2217 | } |
---|
2218 | |
---|
2219 | load_one_elf_file( 0, // not a kernel file |
---|
2220 | vobj[vobj_id].binpath, // file pathname |
---|
2221 | vspace_id ); // vspace index |
---|
2222 | |
---|
2223 | } // end for vspaces |
---|
2224 | |
---|
2225 | } // end boot_elf_load() |
---|
2226 | |
---|
2227 | //////////////////////////////////////////////////////////////////////////////// |
---|
2228 | // This function intializes the periherals and coprocessors, as specified |
---|
2229 | // in the mapping_info file. |
---|
2230 | //////////////////////////////////////////////////////////////////////////////// |
---|
2231 | void boot_peripherals_init() |
---|
2232 | { |
---|
2233 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
2234 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
2235 | mapping_periph_t * periph = _get_periph_base(header); |
---|
2236 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
2237 | mapping_coproc_t * coproc = _get_coproc_base(header); |
---|
2238 | mapping_cp_port_t * cp_port = _get_cp_port_base(header); |
---|
2239 | mapping_irq_t * irq = _get_irq_base(header); |
---|
2240 | |
---|
2241 | unsigned int cluster_id; |
---|
2242 | unsigned int periph_id; |
---|
2243 | unsigned int coproc_id; |
---|
2244 | unsigned int cp_port_id; |
---|
2245 | unsigned int channel_id; |
---|
2246 | |
---|
2247 | // loop on all physical clusters |
---|
2248 | for (cluster_id = 0; cluster_id < X_SIZE*Y_SIZE; cluster_id++) |
---|
2249 | { |
---|
2250 | // computes cluster coordinates |
---|
2251 | unsigned int x = cluster[cluster_id].x; |
---|
2252 | unsigned int y = cluster[cluster_id].y; |
---|
2253 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
2254 | |
---|
2255 | #if BOOT_DEBUG_PERI |
---|
2256 | _puts("\n[BOOT DEBUG] Peripherals initialisation in cluster["); |
---|
2257 | _putd( x ); |
---|
2258 | _puts(","); |
---|
2259 | _putd( y ); |
---|
2260 | _puts("]\n"); |
---|
2261 | #endif |
---|
2262 | |
---|
2263 | // loop on peripherals |
---|
2264 | for (periph_id = cluster[cluster_id].periph_offset; |
---|
2265 | periph_id < cluster[cluster_id].periph_offset + |
---|
2266 | cluster[cluster_id].periphs; periph_id++) |
---|
2267 | { |
---|
2268 | unsigned int type = periph[periph_id].type; |
---|
2269 | unsigned int subtype = periph[periph_id].subtype; |
---|
2270 | unsigned int channels = periph[periph_id].channels; |
---|
2271 | |
---|
2272 | switch (type) |
---|
2273 | { |
---|
2274 | case PERIPH_TYPE_IOC: // vci_block_device component |
---|
2275 | { |
---|
2276 | if ( subtype == PERIPH_SUBTYPE_BDV ) |
---|
2277 | { |
---|
2278 | _bdv_lock.value = 0; |
---|
2279 | #if BOOT_DEBUG_PERI |
---|
2280 | _puts("- BDV : channels = "); |
---|
2281 | _putd(channels); |
---|
2282 | _puts("\n"); |
---|
2283 | #endif |
---|
2284 | } |
---|
2285 | else if ( subtype == PERIPH_SUBTYPE_HBA ) |
---|
2286 | { |
---|
2287 | // TODO |
---|
2288 | } |
---|
2289 | else if ( subtype == PERIPH_SUBTYPE_SPI ) |
---|
2290 | { |
---|
2291 | // TODO |
---|
2292 | } |
---|
2293 | break; |
---|
2294 | } |
---|
2295 | case PERIPH_TYPE_CMA: // vci_chbuf_dma component |
---|
2296 | { |
---|
2297 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
2298 | { |
---|
2299 | // TODO |
---|
2300 | } |
---|
2301 | #if BOOT_DEBUG_PERI |
---|
2302 | _puts("- CMA : channels = "); |
---|
2303 | _putd(channels); |
---|
2304 | _puts("\n"); |
---|
2305 | #endif |
---|
2306 | break; |
---|
2307 | } |
---|
2308 | case PERIPH_TYPE_NIC: // vci_multi_nic component |
---|
2309 | { |
---|
2310 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
2311 | { |
---|
2312 | // TODO |
---|
2313 | } |
---|
2314 | #if BOOT_DEBUG_PERI |
---|
2315 | _puts("- NIC : channels = "); |
---|
2316 | _putd(channels); |
---|
2317 | _puts("\n"); |
---|
2318 | #endif |
---|
2319 | break; |
---|
2320 | } |
---|
2321 | case PERIPH_TYPE_TTY: // vci_multi_tty component |
---|
2322 | { |
---|
2323 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
2324 | { |
---|
2325 | _tty_lock[channel_id].value = 0; |
---|
2326 | _tty_rx_full[channel_id] = 0; |
---|
2327 | } |
---|
2328 | #if BOOT_DEBUG_PERI |
---|
2329 | _puts("- TTY : channels = "); |
---|
2330 | _putd(channels); |
---|
2331 | _puts("\n"); |
---|
2332 | #endif |
---|
2333 | break; |
---|
2334 | } |
---|
2335 | case PERIPH_TYPE_IOB: // vci_io_bridge component |
---|
2336 | { |
---|
2337 | if (GIET_USE_IOMMU) |
---|
2338 | { |
---|
2339 | // TODO |
---|
2340 | // get the iommu page table physical address |
---|
2341 | // set IOMMU page table address |
---|
2342 | // pseg_base[IOB_IOMMU_PTPR] = ptab_pbase; |
---|
2343 | // activate IOMMU |
---|
2344 | // pseg_base[IOB_IOMMU_ACTIVE] = 1; |
---|
2345 | } |
---|
2346 | break; |
---|
2347 | } |
---|
2348 | case PERIPH_TYPE_PIC: // vci_iopic component |
---|
2349 | { |
---|
2350 | #if BOOT_DEBUG_PERI |
---|
2351 | _puts("- PIC : channels = "); |
---|
2352 | _putd(channels); |
---|
2353 | _puts("\n"); |
---|
2354 | #endif |
---|
2355 | // scan all IRQs defined in mapping for PIC component, |
---|
2356 | // and initialises addresses for WTI IRQs |
---|
2357 | for ( channel_id = periph[periph_id].irq_offset ; |
---|
2358 | channel_id < periph[periph_id].irq_offset + periph[periph_id].irqs ; |
---|
2359 | channel_id++ ) |
---|
2360 | { |
---|
2361 | unsigned int hwi_id = irq[channel_id].srcid; // HWI index in PIC |
---|
2362 | unsigned int wti_id = irq[channel_id].dest_id; // WTI index in XCU |
---|
2363 | unsigned int cluster_xy = irq[channel_id].dest_xy; // XCU coordinates |
---|
2364 | unsigned int vaddr; |
---|
2365 | |
---|
2366 | _xcu_get_wti_address( wti_id, &vaddr ); |
---|
2367 | |
---|
2368 | _pic_init( hwi_id, vaddr, cluster_xy ); |
---|
2369 | #if BOOT_DEBUG_PERI |
---|
2370 | _puts(" hwi_index = "); |
---|
2371 | _putd( hwi_id ); |
---|
2372 | _puts(" / wti_index = "); |
---|
2373 | _putd( wti_id ); |
---|
2374 | _puts(" / vaddr = "); |
---|
2375 | _putx( vaddr ); |
---|
2376 | _puts(" in cluster["); |
---|
2377 | _putd( cluster_xy >> Y_WIDTH ); |
---|
2378 | _puts(","); |
---|
2379 | _putd( cluster_xy & ((1<<Y_WIDTH)-1) ); |
---|
2380 | _puts("]\n"); |
---|
2381 | #endif |
---|
2382 | } |
---|
2383 | break; |
---|
2384 | } |
---|
2385 | } // end switch periph type |
---|
2386 | } // end for periphs |
---|
2387 | |
---|
2388 | #if BOOT_DEBUG_PERI |
---|
2389 | _puts("\n[BOOT DEBUG] Coprocessors initialisation in cluster["); |
---|
2390 | _putd( x ); |
---|
2391 | _puts(","); |
---|
2392 | _putd( y ); |
---|
2393 | _puts("]\n"); |
---|
2394 | #endif |
---|
2395 | |
---|
2396 | // loop on coprocessors |
---|
2397 | for ( coproc_id = cluster[cluster_id].coproc_offset; |
---|
2398 | coproc_id < cluster[cluster_id].coproc_offset + |
---|
2399 | cluster[cluster_id].coprocs; coproc_id++ ) |
---|
2400 | { |
---|
2401 | |
---|
2402 | #if BOOT_DEBUG_PERI |
---|
2403 | _puts("- coprocessor name : "); |
---|
2404 | _puts(coproc[coproc_id].name); |
---|
2405 | _puts(" / nb ports = "); |
---|
2406 | _putd((unsigned int) coproc[coproc_id].ports); |
---|
2407 | _puts("\n"); |
---|
2408 | #endif |
---|
2409 | // loop on the coprocessor ports |
---|
2410 | for ( cp_port_id = coproc[coproc_id].port_offset; |
---|
2411 | cp_port_id < coproc[coproc_id].port_offset + coproc[coproc_id].ports; |
---|
2412 | cp_port_id++ ) |
---|
2413 | { |
---|
2414 | // Get global index of associted vobj |
---|
2415 | unsigned int vobj_id = cp_port[cp_port_id].mwmr_vobj_id; |
---|
2416 | |
---|
2417 | // Get MWMR channel base address |
---|
2418 | paddr_t mwmr_channel_pbase = vobj[vobj_id].paddr; |
---|
2419 | |
---|
2420 | _mwr_hw_init( cluster_xy, |
---|
2421 | cp_port_id, |
---|
2422 | cp_port[cp_port_id].direction, |
---|
2423 | mwmr_channel_pbase ); |
---|
2424 | #if BOOT_DEBUG_PERI |
---|
2425 | _puts(" port direction: "); |
---|
2426 | _putd( (unsigned int)cp_port[cp_port_id].direction ); |
---|
2427 | _puts(" / mwmr_channel_pbase = "); |
---|
2428 | _putl( mwmr_channel_pbase ); |
---|
2429 | _puts(" / name = "); |
---|
2430 | _puts(vobj[vobj_id].name); |
---|
2431 | _puts("\n"); |
---|
2432 | #endif |
---|
2433 | } // end for cp_ports |
---|
2434 | } // end for coprocs |
---|
2435 | } // end for clusters |
---|
2436 | } // end boot_peripherals_init() |
---|
2437 | |
---|
2438 | ///////////////////////////////////////////////////////////////////////// |
---|
2439 | // This function is the entry point of the boot code for all processors. |
---|
2440 | // Most of this code is executed by Processor 0 only. |
---|
2441 | ///////////////////////////////////////////////////////////////////////// |
---|
2442 | void boot_init() |
---|
2443 | { |
---|
2444 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
2445 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
2446 | unsigned int gpid = _get_procid(); |
---|
2447 | |
---|
2448 | if ( gpid == 0 ) // only Processor 0 does it |
---|
2449 | { |
---|
2450 | _puts("\n[BOOT] boot_init start at cycle "); |
---|
2451 | _putd(_get_proctime()); |
---|
2452 | _puts("\n"); |
---|
2453 | |
---|
2454 | // Load the map.bin file into memory and check it |
---|
2455 | boot_mapping_init(); |
---|
2456 | |
---|
2457 | _puts("\n[BOOT] Mapping \""); |
---|
2458 | _puts( header->name ); |
---|
2459 | _puts("\" loaded at cycle "); |
---|
2460 | _putd(_get_proctime()); |
---|
2461 | _puts("\n"); |
---|
2462 | |
---|
2463 | // Build page tables |
---|
2464 | boot_pt_init(); |
---|
2465 | |
---|
2466 | // Activate MMU for proc [0,0,0] |
---|
2467 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][0][0]>>13) ); |
---|
2468 | _set_mmu_mode( 0xF ); |
---|
2469 | |
---|
2470 | _puts("\n[BOOT] Processor[0,0,0] : MMU activation at cycle "); |
---|
2471 | _putd(_get_proctime()); |
---|
2472 | _puts("\n"); |
---|
2473 | |
---|
2474 | // Initialise private vobjs in vspaces |
---|
2475 | boot_vobjs_init(); |
---|
2476 | |
---|
2477 | _puts("\n[BOOT] Private vobjs initialised at cycle "); |
---|
2478 | _putd(_get_proctime()); |
---|
2479 | _puts("\n"); |
---|
2480 | |
---|
2481 | // Initialise schedulers |
---|
2482 | boot_schedulers_init(); |
---|
2483 | |
---|
2484 | _puts("\n[BOOT] Schedulers initialised at cycle "); |
---|
2485 | _putd(_get_proctime()); |
---|
2486 | _puts("\n"); |
---|
2487 | |
---|
2488 | // Set CP0_SCHED register for proc [0,0,0] |
---|
2489 | _set_sched( (unsigned int)_schedulers[0][0][0] ); |
---|
2490 | |
---|
2491 | // Initialise non replicated peripherals |
---|
2492 | boot_peripherals_init(); |
---|
2493 | |
---|
2494 | _puts("\n[BOOT] Non replicated peripherals initialised at cycle "); |
---|
2495 | _putd(_get_proctime()); |
---|
2496 | _puts("\n"); |
---|
2497 | |
---|
2498 | // Loading all .elf files |
---|
2499 | boot_elf_load(); |
---|
2500 | |
---|
2501 | // P0 starts all other processors |
---|
2502 | unsigned int clusterid, p; |
---|
2503 | |
---|
2504 | for ( clusterid = 0 ; clusterid < X_SIZE*Y_SIZE ; clusterid++ ) |
---|
2505 | { |
---|
2506 | unsigned int nprocs = cluster[clusterid].procs; |
---|
2507 | unsigned int x = cluster[clusterid].x; |
---|
2508 | unsigned int y = cluster[clusterid].y; |
---|
2509 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
2510 | |
---|
2511 | for ( p = 0 ; p < nprocs; p++ ) |
---|
2512 | { |
---|
2513 | if ( (nprocs > 0) && ((clusterid != 0) || (p != 0)) ) |
---|
2514 | { |
---|
2515 | _xcu_send_wti( cluster_xy, p, (unsigned int)boot_entry ); |
---|
2516 | } |
---|
2517 | } |
---|
2518 | } |
---|
2519 | |
---|
2520 | } // end monoprocessor boot |
---|
2521 | |
---|
2522 | /////////////////////////////////////////////////////////////////////////////// |
---|
2523 | // Parallel execution starts actually here |
---|
2524 | /////////////////////////////////////////////////////////////////////////////// |
---|
2525 | |
---|
2526 | // all processors reset BEV bit in the status register to use |
---|
2527 | // the GIET_VM exception handler instead of the PRELOADER exception handler |
---|
2528 | _set_sr( 0 ); |
---|
2529 | |
---|
2530 | // all processor initialise the SCHED register |
---|
2531 | // from the _schedulers[x][y][lpid array] |
---|
2532 | unsigned int cluster_xy = gpid / NB_PROCS_MAX; |
---|
2533 | unsigned int lpid = gpid % NB_PROCS_MAX; |
---|
2534 | unsigned int x = cluster_xy >> Y_WIDTH; |
---|
2535 | unsigned int y = cluster_xy & ((1<<Y_WIDTH)-1); |
---|
2536 | _set_sched( (unsigned int)_schedulers[x][y][lpid] ); |
---|
2537 | |
---|
2538 | // all processors (but Proc[0,0,0]) activate MMU |
---|
2539 | if ( gpid != 0 ) |
---|
2540 | { |
---|
2541 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][x][y]>>13) ); |
---|
2542 | _set_mmu_mode( 0xF ); |
---|
2543 | } |
---|
2544 | |
---|
2545 | // all processors jump to kernel_init |
---|
2546 | // using the address defined in the giet_vsegs.ld file |
---|
2547 | unsigned int kernel_entry = (unsigned int)&kernel_init_vbase; |
---|
2548 | asm volatile( "jr %0" ::"r"(kernel_entry) ); |
---|
2549 | |
---|
2550 | } // end boot_init() |
---|
2551 | |
---|
2552 | |
---|
2553 | // Local Variables: |
---|
2554 | // tab-width: 4 |
---|
2555 | // c-basic-offset: 4 |
---|
2556 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
2557 | // indent-tabs-mode: nil |
---|
2558 | // End: |
---|
2559 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
2560 | |
---|