1 | ///////////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : boot.c |
---|
3 | // Date : 01/11/2013 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The boot.c file is part of the GIET-VM nano-kernel. |
---|
8 | // |
---|
9 | // This nano-kernel has been written for the MIPS32 processor. |
---|
10 | // The virtual adresses are on 32 bits and use the (unsigned int) type. The |
---|
11 | // physicals addresses can have up to 40 bits, and use the (unsigned long long) type. |
---|
12 | // It natively supports clusterised shared memory multi-processors architectures, |
---|
13 | // where each processor is identified by a composite index (cluster_xy, local_id), |
---|
14 | // and where there is one physical memory bank per cluster. |
---|
15 | // |
---|
16 | // This code, executed in the boot phase by proc[0,0,0], performs the following tasks: |
---|
17 | // - load into memory various binary files, from a FAT32 file system, |
---|
18 | // - build the various page tables (one page table per vspace) |
---|
19 | // - initialize the shedulers (one scheduler per processor) |
---|
20 | // |
---|
21 | // 1) The binary files to be loaded are: |
---|
22 | // - the "map.bin" file contains the hardware architecture description and the |
---|
23 | // mapping directives. It must be stored in the the seg_boot_mapping segment |
---|
24 | // (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file). |
---|
25 | // - the "sys.elf" file contains the kernel binary code and data. |
---|
26 | // - the various "application.elf" files. |
---|
27 | // |
---|
28 | // 2) The map.bin file contains the binary representation of the map.xml file defining: |
---|
29 | // - the hardware architecture: number of clusters, number or processors, |
---|
30 | // size of the memory segments, and peripherals in each cluster. |
---|
31 | // - The structure of the various multi-threaded software applications: |
---|
32 | // number of tasks, communication channels. |
---|
33 | // - The mapping: grouping of virtual objects (vobj) in the virtual segments (vseg), |
---|
34 | // placement of virtual segments (vseg) in the physical segments (pseg), placement |
---|
35 | // of software tasks on the processors, |
---|
36 | // |
---|
37 | // 3) The GIET-VM uses the paged virtual memory to provides two services: |
---|
38 | // - classical memory protection, when several independant applications compiled |
---|
39 | // in different virtual spaces are executing on the same hardware platform. |
---|
40 | // - data placement in NUMA architectures, to control the placement |
---|
41 | // of the software objects (vsegs) on the physical memory banks (psegs). |
---|
42 | // |
---|
43 | // The max number of vspaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
44 | // The page table are statically build in the boot phase, and they do not |
---|
45 | // change during execution. |
---|
46 | // The GIET_VM uses both small pages (4 Kbytes), and big pages (2 Mbytes). |
---|
47 | // |
---|
48 | // Each page table (one page table per virtual space) is monolithic, and contains |
---|
49 | // one PT1 (8 Kbytes) and a variable number of PT2s (4 Kbytes each). For each vspace, |
---|
50 | // the numberof PT2s is defined by the size of the PTAB vobj in the mapping. |
---|
51 | // The PT1 is indexed by the ix1 field (11 bits) of the VPN. Each entry is 32 bits. |
---|
52 | // A PT2 is indexed the ix2 field (9 bits) of the VPN. Each entry is a double word. |
---|
53 | // The first word contains the flags, the second word contains the PPN. |
---|
54 | // |
---|
55 | // The page tables can be distributed in all clusters. |
---|
56 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
57 | // Implementation Notes: |
---|
58 | // |
---|
59 | // 1) The cluster_id variable is a linear index in the mapping_info array of clusters. |
---|
60 | // We use the cluster_xy variable for the tological index = x << Y_WIDTH + y |
---|
61 | // |
---|
62 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
63 | |
---|
64 | #include <giet_config.h> |
---|
65 | #include <mapping_info.h> |
---|
66 | #include <mwmr_channel.h> |
---|
67 | #include <barrier.h> |
---|
68 | #include <memspace.h> |
---|
69 | #include <tty_driver.h> |
---|
70 | #include <xcu_driver.h> |
---|
71 | #include <bdv_driver.h> |
---|
72 | #include <hba_driver.h> |
---|
73 | #include <dma_driver.h> |
---|
74 | #include <cma_driver.h> |
---|
75 | #include <nic_driver.h> |
---|
76 | #include <ioc_driver.h> |
---|
77 | #include <iob_driver.h> |
---|
78 | #include <pic_driver.h> |
---|
79 | #include <mwr_driver.h> |
---|
80 | #include <ctx_handler.h> |
---|
81 | #include <irq_handler.h> |
---|
82 | #include <vmem.h> |
---|
83 | #include <pmem.h> |
---|
84 | #include <utils.h> |
---|
85 | #include <tty0.h> |
---|
86 | #include <elf-types.h> |
---|
87 | |
---|
88 | // for boot FAT initialisation |
---|
89 | #include <fat32.h> |
---|
90 | |
---|
91 | #include <mips32_registers.h> |
---|
92 | #include <stdarg.h> |
---|
93 | |
---|
94 | #if !defined(X_SIZE) |
---|
95 | # error: The X_SIZE value must be defined in the 'hard_config.h' file ! |
---|
96 | #endif |
---|
97 | |
---|
98 | #if !defined(Y_SIZE) |
---|
99 | # error: The Y_SIZE value must be defined in the 'hard_config.h' file ! |
---|
100 | #endif |
---|
101 | |
---|
102 | #if !defined(X_WIDTH) |
---|
103 | # error: The X_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
104 | #endif |
---|
105 | |
---|
106 | #if !defined(Y_WIDTH) |
---|
107 | # error: The Y_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
108 | #endif |
---|
109 | |
---|
110 | #if !defined(SEG_BOOT_MAPPING_BASE) |
---|
111 | # error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file ! |
---|
112 | #endif |
---|
113 | |
---|
114 | #if !defined(NB_PROCS_MAX) |
---|
115 | # error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file ! |
---|
116 | #endif |
---|
117 | |
---|
118 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
119 | # error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
120 | #endif |
---|
121 | |
---|
122 | #if !defined(GIET_ELF_BUFFER_SIZE) |
---|
123 | # error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file ! |
---|
124 | #endif |
---|
125 | |
---|
126 | //////////////////////////////////////////////////////////////////////////// |
---|
127 | // Global variables for boot code |
---|
128 | //////////////////////////////////////////////////////////////////////////// |
---|
129 | |
---|
130 | extern void boot_entry(); |
---|
131 | |
---|
132 | // FAT internal representation for boot code |
---|
133 | __attribute__((section (".bootdata"))) |
---|
134 | fat32_fs_t fat __attribute__((aligned(512))); |
---|
135 | |
---|
136 | // Temporaty buffer used to load one complete .elf file |
---|
137 | __attribute__((section (".bootdata"))) |
---|
138 | char boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(512))); |
---|
139 | |
---|
140 | // Physical memory allocators array (one per cluster) |
---|
141 | __attribute__((section (".bootdata"))) |
---|
142 | pmem_alloc_t boot_pmem_alloc[X_SIZE][Y_SIZE]; |
---|
143 | |
---|
144 | // Schedulers virtual base addresses array (one per processor) |
---|
145 | __attribute__((section (".bootdata"))) |
---|
146 | static_scheduler_t* _schedulers[X_SIZE][Y_SIZE][NB_PROCS_MAX]; |
---|
147 | |
---|
148 | // Page tables virtual base addresses array (one per vspace) |
---|
149 | __attribute__((section (".bootdata"))) |
---|
150 | unsigned int _ptabs_vaddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
151 | |
---|
152 | // Page tables physical base addresses (one per vspace and per cluster) |
---|
153 | __attribute__((section (".bootdata"))) |
---|
154 | paddr_t _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
155 | |
---|
156 | // Page tables pt2 allocators (one per vspace and per cluster) |
---|
157 | __attribute__((section (".bootdata"))) |
---|
158 | unsigned int _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
159 | |
---|
160 | // Page tables max_pt2 (same value for all page tables) |
---|
161 | __attribute__((section (".bootdata"))) |
---|
162 | unsigned int _ptabs_max_pt2; |
---|
163 | |
---|
164 | ///////////////////////////////////////////////////////////////////// |
---|
165 | // This function checks consistence beween the mapping_info data |
---|
166 | // structure (soft), and the giet_config file (hard). |
---|
167 | ///////////////////////////////////////////////////////////////////// |
---|
168 | void boot_mapping_check() |
---|
169 | { |
---|
170 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
171 | |
---|
172 | // checking mapping availability |
---|
173 | if (header->signature != IN_MAPPING_SIGNATURE) |
---|
174 | { |
---|
175 | _puts("\n[BOOT ERROR] Illegal mapping signature: "); |
---|
176 | _putx(header->signature); |
---|
177 | _puts("\n"); |
---|
178 | _exit(); |
---|
179 | } |
---|
180 | |
---|
181 | // checking number of clusters |
---|
182 | if ( (header->x_size != X_SIZE) || |
---|
183 | (header->y_size != Y_SIZE) || |
---|
184 | (header->x_width != X_WIDTH) || |
---|
185 | (header->y_width != Y_WIDTH) ) |
---|
186 | { |
---|
187 | _puts("\n[BOOT ERROR] Incoherent X_SIZE or Y_SIZE "); |
---|
188 | _puts("\n - In hard_config: X_SIZE = "); |
---|
189 | _putd( X_SIZE ); |
---|
190 | _puts(" / Y_SIZE = "); |
---|
191 | _putd( Y_SIZE ); |
---|
192 | _puts(" / X_WIDTH = "); |
---|
193 | _putd( X_WIDTH ); |
---|
194 | _puts(" / Y_WIDTH = "); |
---|
195 | _putd( Y_WIDTH ); |
---|
196 | _puts("\n - In mapping_info: x_size = "); |
---|
197 | _putd( header->x_size ); |
---|
198 | _puts(" / y_size = "); |
---|
199 | _putd( header->y_size ); |
---|
200 | _puts(" / x_width = "); |
---|
201 | _putd( header->x_width ); |
---|
202 | _puts(" / y_width = "); |
---|
203 | _putd( header->y_width ); |
---|
204 | _puts("\n"); |
---|
205 | _exit(); |
---|
206 | } |
---|
207 | // checking number of virtual spaces |
---|
208 | if (header->vspaces > GIET_NB_VSPACE_MAX) |
---|
209 | { |
---|
210 | _puts("\n[BOOT ERROR] : number of vspaces > GIET_NB_VSPACE_MAX\n"); |
---|
211 | _puts("\n"); |
---|
212 | _exit(); |
---|
213 | } |
---|
214 | |
---|
215 | #if BOOT_DEBUG_MAPPING |
---|
216 | _puts("\n - x_size = "); |
---|
217 | _putd( header->x_size ); |
---|
218 | _puts("\n - y_size = "); |
---|
219 | _putd( header->y_size ); |
---|
220 | _puts("\n - procs = "); |
---|
221 | _putd( header->procs ); |
---|
222 | _puts("\n - periphs = "); |
---|
223 | _putd( header->periphs ); |
---|
224 | _puts("\n - vspaces = "); |
---|
225 | _putd( header->vspaces ); |
---|
226 | _puts("\n - tasks = "); |
---|
227 | _putd( header->tasks ); |
---|
228 | _puts("\n"); |
---|
229 | _puts("\n - size of header = "); |
---|
230 | _putd( MAPPING_HEADER_SIZE ); |
---|
231 | _puts("\n - size of cluster = "); |
---|
232 | _putd( MAPPING_CLUSTER_SIZE ); |
---|
233 | _puts("\n - size of pseg = "); |
---|
234 | _putd( MAPPING_PSEG_SIZE ); |
---|
235 | _puts("\n - size of proc = "); |
---|
236 | _putd( MAPPING_PROC_SIZE ); |
---|
237 | _puts("\n - size of vspace = "); |
---|
238 | _putd( MAPPING_VSPACE_SIZE ); |
---|
239 | _puts("\n - size of vseg = "); |
---|
240 | _putd( MAPPING_VSEG_SIZE ); |
---|
241 | _puts("\n - size of vobj = "); |
---|
242 | _putd( MAPPING_VOBJ_SIZE ); |
---|
243 | _puts("\n - size of task = "); |
---|
244 | _putd( MAPPING_TASK_SIZE ); |
---|
245 | _puts("\n"); |
---|
246 | |
---|
247 | unsigned int cluster_id; |
---|
248 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
249 | for( cluster_id = 0; cluster_id < X_SIZE*Y_SIZE ; cluster_id++) |
---|
250 | { |
---|
251 | _puts("\n - cluster["); |
---|
252 | _putd( cluster[cluster_id].x ); |
---|
253 | _puts(","); |
---|
254 | _putd( cluster[cluster_id].y ); |
---|
255 | _puts("]\n procs = "); |
---|
256 | _putd( cluster[cluster_id].procs ); |
---|
257 | _puts("\n psegs = "); |
---|
258 | _putd( cluster[cluster_id].psegs ); |
---|
259 | _puts("\n periphs = "); |
---|
260 | _putd( cluster[cluster_id].periphs ); |
---|
261 | _puts("\n"); |
---|
262 | } |
---|
263 | #endif |
---|
264 | |
---|
265 | } // end boot_mapping_check() |
---|
266 | |
---|
267 | ////////////////////////////////////////////////////////////////////////////// |
---|
268 | // This function registers a new PTE1 in the page table defined |
---|
269 | // by the vspace_id argument, and the (x,y) coordinates. |
---|
270 | // It updates only the first level PT1. |
---|
271 | ////////////////////////////////////////////////////////////////////////////// |
---|
272 | void boot_add_pte1( unsigned int vspace_id, |
---|
273 | unsigned int x, |
---|
274 | unsigned int y, |
---|
275 | unsigned int vpn, // 20 bits right-justified |
---|
276 | unsigned int flags, // 10 bits left-justified |
---|
277 | unsigned int ppn ) // 28 bits right-justified |
---|
278 | { |
---|
279 | |
---|
280 | #if (BOOT_DEBUG_PT > 1) |
---|
281 | _puts(" - PTE1 in PTAB["); |
---|
282 | _putd( vspace_id ); |
---|
283 | _puts(","); |
---|
284 | _putd( x ); |
---|
285 | _puts(","); |
---|
286 | _putd( y ); |
---|
287 | _puts("] : vpn = "); |
---|
288 | _putx( vpn ); |
---|
289 | #endif |
---|
290 | |
---|
291 | // compute index in PT1 |
---|
292 | unsigned int ix1 = vpn >> 9; // 11 bits for ix1 |
---|
293 | |
---|
294 | // get page table physical base address |
---|
295 | paddr_t pt1_pbase = _ptabs_paddr[vspace_id][x][y]; |
---|
296 | |
---|
297 | // check pt1_base |
---|
298 | if ( pt1_pbase == 0 ) |
---|
299 | { |
---|
300 | _puts("\n[BOOT ERROR] in boot_add_pte1() : illegal pbase address for PTAB["); |
---|
301 | _putd( vspace_id ); |
---|
302 | _puts(","); |
---|
303 | _putd( x ); |
---|
304 | _puts(","); |
---|
305 | _putd( y ); |
---|
306 | _puts("]\n"); |
---|
307 | _exit(); |
---|
308 | } |
---|
309 | |
---|
310 | // compute pte1 : 2 bits V T / 8 bits flags / 3 bits RSVD / 19 bits bppi |
---|
311 | unsigned int pte1 = PTE_V | |
---|
312 | (flags & 0x3FC00000) | |
---|
313 | ((ppn>>9) & 0x0007FFFF); |
---|
314 | |
---|
315 | // write pte1 in PT1 |
---|
316 | _physical_write( pt1_pbase + 4*ix1, pte1 ); |
---|
317 | |
---|
318 | #if (BOOT_DEBUG_PT > 1) |
---|
319 | _puts(" / ppn = "); |
---|
320 | _putx( ppn ); |
---|
321 | _puts(" / flags = "); |
---|
322 | _putx( flags ); |
---|
323 | _puts("\n"); |
---|
324 | #endif |
---|
325 | |
---|
326 | } // end boot_add_pte1() |
---|
327 | |
---|
328 | ////////////////////////////////////////////////////////////////////////////// |
---|
329 | // This function registers a new PTE2 in the page table defined |
---|
330 | // by the vspace_id argument, and the (x,y) coordinates. |
---|
331 | // It updates both the first level PT1 and the second level PT2. |
---|
332 | // As the set of PT2s is implemented as a fixed size array (no dynamic |
---|
333 | // allocation), this function checks a possible overflow of the PT2 array. |
---|
334 | ////////////////////////////////////////////////////////////////////////////// |
---|
335 | void boot_add_pte2( unsigned int vspace_id, |
---|
336 | unsigned int x, |
---|
337 | unsigned int y, |
---|
338 | unsigned int vpn, // 20 bits right-justified |
---|
339 | unsigned int flags, // 10 bits left-justified |
---|
340 | unsigned int ppn ) // 28 bits right-justified |
---|
341 | { |
---|
342 | |
---|
343 | #if (BOOT_DEBUG_PT > 1) |
---|
344 | _puts(" - PTE2 in PTAB["); |
---|
345 | _putd( vspace_id ); |
---|
346 | _puts(","); |
---|
347 | _putd( x ); |
---|
348 | _puts(","); |
---|
349 | _putd( y ); |
---|
350 | _puts("] : vpn = "); |
---|
351 | _putx( vpn ); |
---|
352 | #endif |
---|
353 | |
---|
354 | unsigned int ix1; |
---|
355 | unsigned int ix2; |
---|
356 | paddr_t pt2_pbase; // PT2 physical base address |
---|
357 | paddr_t pte2_paddr; // PTE2 physical address |
---|
358 | unsigned int pt2_id; // PT2 index |
---|
359 | unsigned int ptd; // PTD : entry in PT1 |
---|
360 | |
---|
361 | ix1 = vpn >> 9; // 11 bits for ix1 |
---|
362 | ix2 = vpn & 0x1FF; // 9 bits for ix2 |
---|
363 | |
---|
364 | // get page table physical base address and size |
---|
365 | paddr_t pt1_pbase = _ptabs_paddr[vspace_id][x][y]; |
---|
366 | |
---|
367 | // check pt1_base |
---|
368 | if ( pt1_pbase == 0 ) |
---|
369 | { |
---|
370 | _puts("\n[BOOT ERROR] in boot_add_pte2() : PTAB["); |
---|
371 | _putd( vspace_id ); |
---|
372 | _puts(","); |
---|
373 | _putd( x ); |
---|
374 | _puts(","); |
---|
375 | _putd( y ); |
---|
376 | _puts("] undefined\n"); |
---|
377 | _exit(); |
---|
378 | } |
---|
379 | |
---|
380 | // get ptd in PT1 |
---|
381 | ptd = _physical_read(pt1_pbase + 4 * ix1); |
---|
382 | |
---|
383 | if ((ptd & PTE_V) == 0) // undefined PTD: compute PT2 base address, |
---|
384 | // and set a new PTD in PT1 |
---|
385 | { |
---|
386 | pt2_id = _ptabs_next_pt2[vspace_id][x][y]; |
---|
387 | if (pt2_id == _ptabs_max_pt2) |
---|
388 | { |
---|
389 | _puts("\n[BOOT ERROR] in boot_add_pte2() : PTAB["); |
---|
390 | _putd( vspace_id ); |
---|
391 | _puts(","); |
---|
392 | _putd( x ); |
---|
393 | _puts(","); |
---|
394 | _putd( y ); |
---|
395 | _puts("] contains not enough PT2s\n"); |
---|
396 | _exit(); |
---|
397 | } |
---|
398 | |
---|
399 | pt2_pbase = pt1_pbase + PT1_SIZE + PT2_SIZE * pt2_id; |
---|
400 | ptd = PTE_V | PTE_T | (unsigned int) (pt2_pbase >> 12); |
---|
401 | _physical_write( pt1_pbase + 4*ix1, ptd); |
---|
402 | _ptabs_next_pt2[vspace_id][x][y] = pt2_id + 1; |
---|
403 | } |
---|
404 | else // valid PTD: compute PT2 base address |
---|
405 | { |
---|
406 | pt2_pbase = ((paddr_t)(ptd & 0x0FFFFFFF)) << 12; |
---|
407 | } |
---|
408 | |
---|
409 | // set PTE in PT2 : flags & PPN in two 32 bits words |
---|
410 | pte2_paddr = pt2_pbase + 8 * ix2; |
---|
411 | _physical_write(pte2_paddr , (PTE_V |flags) ); |
---|
412 | _physical_write(pte2_paddr + 4 , ppn); |
---|
413 | |
---|
414 | #if (BOOT_DEBUG_PT > 1) |
---|
415 | _puts(" / ppn = "); |
---|
416 | _putx( ppn ); |
---|
417 | _puts(" / flags = "); |
---|
418 | _putx( flags ); |
---|
419 | _puts("\n"); |
---|
420 | #endif |
---|
421 | |
---|
422 | } // end boot_add_pte2() |
---|
423 | |
---|
424 | //////////////////////////////////////////////////////////////////////////////////// |
---|
425 | // Align the value of paddr or vaddr to the required alignement, |
---|
426 | // defined by alignPow2 == L2(alignement). |
---|
427 | //////////////////////////////////////////////////////////////////////////////////// |
---|
428 | paddr_t paddr_align_to(paddr_t paddr, unsigned int alignPow2) |
---|
429 | { |
---|
430 | paddr_t mask = (1 << alignPow2) - 1; |
---|
431 | return ((paddr + mask) & ~mask); |
---|
432 | } |
---|
433 | |
---|
434 | unsigned int vaddr_align_to(unsigned int vaddr, unsigned int alignPow2) |
---|
435 | { |
---|
436 | unsigned int mask = (1 << alignPow2) - 1; |
---|
437 | return ((vaddr + mask) & ~mask); |
---|
438 | } |
---|
439 | |
---|
440 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
441 | // This function map a vseg identified by the vseg pointer. |
---|
442 | // |
---|
443 | // A given vseg can be mapped in Big Physical Pages (BPP: 2 Mbytes) or in a |
---|
444 | // Small Physical Pages (SPP: 4 Kbytes), depending on the "big" attribute of vseg, |
---|
445 | // with the following rules: |
---|
446 | // - SPP : There is only one vseg in a small physical page, but a single vseg |
---|
447 | // can cover several contiguous small physical pages. |
---|
448 | // - BPP : It can exist several vsegs in a single big physical page, and a single |
---|
449 | // vseg can cover several contiguous big physical pages. |
---|
450 | // |
---|
451 | // 1) First step: it computes the vseg length, and register it in vseg->length field. |
---|
452 | // It computes - for each vobj - the actual vbase address, taking into |
---|
453 | // account the alignment constraints and register it in vobj->vbase field. |
---|
454 | // |
---|
455 | // 2) Second step: it allocates the required number of physical pages, |
---|
456 | // computes the physical base address (if the vseg is not identity mapping), |
---|
457 | // and register it in the vseg pbase field. |
---|
458 | // Only the 4 vsegs used by the boot code and the peripheral vsegs |
---|
459 | // can be identity mapping: The first big physical page in cluster[0,0] |
---|
460 | // is reserved for the 4 boot vsegs. |
---|
461 | // |
---|
462 | // 3) Third step (only for vseg that have the VOBJ_TYPE_PTAB): all page tables |
---|
463 | // associated to the various vspaces must be packed in the same vseg. |
---|
464 | // We divide the vseg in M sub-segments, and compute the vbase and pbase |
---|
465 | // addresses for each page table, and register it in the _ptabs_paddr |
---|
466 | // and _ptabs_vaddr arrays. |
---|
467 | // |
---|
468 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
469 | void boot_vseg_map( mapping_vseg_t* vseg, |
---|
470 | unsigned int vspace_id ) |
---|
471 | { |
---|
472 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
473 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
474 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
475 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
476 | |
---|
477 | // compute destination cluster pointer & coordinates |
---|
478 | pseg = pseg + vseg->psegid; |
---|
479 | cluster = cluster + pseg->clusterid; |
---|
480 | unsigned int x_dest = cluster->x; |
---|
481 | unsigned int y_dest = cluster->y; |
---|
482 | |
---|
483 | // compute the first vobj global index |
---|
484 | unsigned int vobj_id = vseg->vobj_offset; |
---|
485 | |
---|
486 | // compute the "big" vseg attribute |
---|
487 | unsigned int big = vseg->big; |
---|
488 | |
---|
489 | // compute the "is_ram" vseg attribute |
---|
490 | unsigned int is_ram; |
---|
491 | if ( pseg->type == PSEG_TYPE_RAM ) is_ram = 1; |
---|
492 | else is_ram = 0; |
---|
493 | |
---|
494 | // compute the "is_ptab" attribute |
---|
495 | unsigned int is_ptab; |
---|
496 | if ( vobj[vobj_id].type == VOBJ_TYPE_PTAB ) is_ptab = 1; |
---|
497 | else is_ptab = 0; |
---|
498 | |
---|
499 | // compute actual vspace index |
---|
500 | unsigned int vsid; |
---|
501 | if ( vspace_id == 0xFFFFFFFF ) vsid = 0; |
---|
502 | else vsid = vspace_id; |
---|
503 | |
---|
504 | //////////// First step : compute vseg length and vobj(s) vbase |
---|
505 | |
---|
506 | unsigned int vobj_vbase = vseg->vbase; // min vbase for first vobj |
---|
507 | |
---|
508 | for ( vobj_id = vseg->vobj_offset ; |
---|
509 | vobj_id < (vseg->vobj_offset + vseg->vobjs) ; |
---|
510 | vobj_id++ ) |
---|
511 | { |
---|
512 | // compute and register vobj vbase |
---|
513 | vobj[vobj_id].vbase = vaddr_align_to( vobj_vbase, vobj[vobj_id].align ); |
---|
514 | |
---|
515 | // compute min vbase for next vobj |
---|
516 | vobj_vbase = vobj[vobj_id].vbase + vobj[vobj_id].length; |
---|
517 | } |
---|
518 | |
---|
519 | // compute and register vseg length (multiple of 4 Kbytes) |
---|
520 | vseg->length = vaddr_align_to( vobj_vbase - vseg->vbase, 12 ); |
---|
521 | |
---|
522 | //////////// Second step : compute ppn and npages |
---|
523 | //////////// - if identity mapping : ppn <= vpn |
---|
524 | //////////// - if vseg is periph : ppn <= pseg.base >> 12 |
---|
525 | //////////// - if vseg is ram : ppn <= physical memory allocator |
---|
526 | |
---|
527 | unsigned int ppn; // first physical page index ( 28 bits = |x|y|bppi|sppi| ) |
---|
528 | unsigned int vpn; // first virtual page index ( 20 bits = |ix1|ix2| ) |
---|
529 | unsigned int vpn_max; // last virtual page index ( 20 bits = |ix1|ix2| ) |
---|
530 | |
---|
531 | vpn = vseg->vbase >> 12; |
---|
532 | vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
533 | |
---|
534 | // compute npages |
---|
535 | unsigned int npages; // number of required (big or small) pages |
---|
536 | if ( big == 0 ) npages = vpn_max - vpn + 1; // number of small pages |
---|
537 | else npages = (vpn_max>>9) - (vpn>>9) + 1; // number of big pages |
---|
538 | |
---|
539 | // compute ppn |
---|
540 | if ( vseg->ident ) // identity mapping |
---|
541 | { |
---|
542 | ppn = vpn; |
---|
543 | } |
---|
544 | else // not identity mapping |
---|
545 | { |
---|
546 | if ( is_ram ) // RAM : physical memory allocation required |
---|
547 | { |
---|
548 | // compute pointer on physical memory allocator in dest cluster |
---|
549 | pmem_alloc_t* palloc = &boot_pmem_alloc[x_dest][y_dest]; |
---|
550 | |
---|
551 | if ( big == 0 ) // SPP : small physical pages |
---|
552 | { |
---|
553 | // allocate contiguous small physical pages |
---|
554 | ppn = _get_small_ppn( palloc, npages ); |
---|
555 | } |
---|
556 | else // BPP : big physical pages |
---|
557 | { |
---|
558 | |
---|
559 | // one big page can be shared by several vsegs |
---|
560 | // we must chek if BPP already allocated |
---|
561 | if ( is_ptab ) // It cannot be mapped |
---|
562 | { |
---|
563 | ppn = _get_big_ppn( palloc, npages ); |
---|
564 | } |
---|
565 | else // It can be mapped |
---|
566 | { |
---|
567 | unsigned int ix1 = vpn >> 9; // 11 bits |
---|
568 | paddr_t paddr = _ptabs_paddr[vsid][x_dest][y_dest] + (ix1<<2); |
---|
569 | unsigned int pte1 = _physical_read( paddr ); |
---|
570 | if ( (pte1 & PTE_V) == 0 ) // BPP not allocated yet |
---|
571 | { |
---|
572 | // allocate contiguous big physical pages |
---|
573 | ppn = _get_big_ppn( palloc, npages ); |
---|
574 | } |
---|
575 | else // BPP already allocated |
---|
576 | { |
---|
577 | // test if new vseg has the same mode bits than |
---|
578 | // the other vsegs in the same big page |
---|
579 | unsigned int pte1_mode = 0; |
---|
580 | if (pte1 & PTE_C) pte1_mode |= C_MODE_MASK; |
---|
581 | if (pte1 & PTE_X) pte1_mode |= X_MODE_MASK; |
---|
582 | if (pte1 & PTE_W) pte1_mode |= W_MODE_MASK; |
---|
583 | if (pte1 & PTE_U) pte1_mode |= U_MODE_MASK; |
---|
584 | if (vseg->mode != pte1_mode) { |
---|
585 | _puts("\n[BOOT ERROR] in boot_vseg_map() : vseg "); |
---|
586 | _puts( vseg->name ); |
---|
587 | _puts(" has different flags ("); |
---|
588 | _putx( vseg->mode ); |
---|
589 | _puts(") than other vsegs sharing the same big page ("); |
---|
590 | _putx( pte1_mode ); |
---|
591 | _puts(")"); |
---|
592 | _exit(); |
---|
593 | } |
---|
594 | |
---|
595 | ppn = ((pte1 << 9) & 0x0FFFFE00); |
---|
596 | } |
---|
597 | } |
---|
598 | ppn = ppn | (vpn & 0x1FF); |
---|
599 | } |
---|
600 | } |
---|
601 | else // PERI : no memory allocation required |
---|
602 | { |
---|
603 | ppn = pseg->base >> 12; |
---|
604 | } |
---|
605 | } |
---|
606 | |
---|
607 | // update vseg.pbase field and update vsegs chaining |
---|
608 | vseg->pbase = ((paddr_t)ppn) << 12; |
---|
609 | vseg->next_vseg = pseg->next_vseg; |
---|
610 | pseg->next_vseg = (unsigned int)vseg; |
---|
611 | |
---|
612 | |
---|
613 | //////////// Third step : (only if the vseg is a page table) |
---|
614 | //////////// - compute the physical & virtual base address for each vspace |
---|
615 | //////////// by dividing the vseg in several sub-segments. |
---|
616 | //////////// - register it in _ptabs_vaddr & _ptabs_paddr arrays, |
---|
617 | //////////// and initialize next_pt2 allocators. |
---|
618 | //////////// - reset all entries in first level page tables |
---|
619 | |
---|
620 | if ( is_ptab ) |
---|
621 | { |
---|
622 | unsigned int vs; // vspace index |
---|
623 | unsigned int nspaces; // number of vspaces |
---|
624 | unsigned int nsp; // number of small pages for one PTAB |
---|
625 | unsigned int offset; // address offset for current PTAB |
---|
626 | |
---|
627 | nspaces = header->vspaces; |
---|
628 | offset = 0; |
---|
629 | |
---|
630 | // each PTAB must be aligned on a 8 Kbytes boundary |
---|
631 | nsp = ( vseg->length >> 12 ) / nspaces; |
---|
632 | if ( (nsp & 0x1) == 0x1 ) nsp = nsp - 1; |
---|
633 | |
---|
634 | // compute max_pt2 |
---|
635 | _ptabs_max_pt2 = ((nsp<<12) - PT1_SIZE) / PT2_SIZE; |
---|
636 | |
---|
637 | for ( vs = 0 ; vs < nspaces ; vs++ ) |
---|
638 | { |
---|
639 | _ptabs_vaddr [vs][x_dest][y_dest] = (vpn + offset) << 12; |
---|
640 | _ptabs_paddr [vs][x_dest][y_dest] = ((paddr_t)(ppn + offset)) << 12; |
---|
641 | _ptabs_next_pt2[vs][x_dest][y_dest] = 0; |
---|
642 | offset += nsp; |
---|
643 | |
---|
644 | // reset all entries in PT1 (8 Kbytes) |
---|
645 | _physical_memset( _ptabs_paddr[vs][x_dest][y_dest], PT1_SIZE, 0 ); |
---|
646 | } |
---|
647 | } |
---|
648 | |
---|
649 | #if BOOT_DEBUG_PT |
---|
650 | _puts("[BOOT DEBUG] "); |
---|
651 | _puts( vseg->name ); |
---|
652 | _puts(" in cluster["); |
---|
653 | _putd( x_dest ); |
---|
654 | _puts(","); |
---|
655 | _putd( y_dest ); |
---|
656 | _puts("] : vbase = "); |
---|
657 | _putx( vseg->vbase ); |
---|
658 | _puts(" / length = "); |
---|
659 | _putx( vseg->length ); |
---|
660 | if ( big ) _puts(" / BIG / npages = "); |
---|
661 | else _puts(" / SMALL / npages = "); |
---|
662 | _putd( npages ); |
---|
663 | _puts(" / pbase = "); |
---|
664 | _putl( vseg->pbase ); |
---|
665 | _puts("\n"); |
---|
666 | #endif |
---|
667 | |
---|
668 | } // end boot_vseg_map() |
---|
669 | |
---|
670 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
671 | // For the vseg defined by the vseg pointer, this function register all PTEs |
---|
672 | // in one or several page tables. |
---|
673 | // It is a global vseg (kernel vseg) if (vspace_id == 0xFFFFFFFF). |
---|
674 | // The number of involved PTABs depends on the "local" and "global" attributes: |
---|
675 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
676 | // - PTEs are replicated in all clusters for a non local vseg. |
---|
677 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
678 | void boot_vseg_pte( mapping_vseg_t* vseg, |
---|
679 | unsigned int vspace_id ) |
---|
680 | { |
---|
681 | // compute the "global" vseg attribute and actual vspace index |
---|
682 | unsigned int global; |
---|
683 | unsigned int vsid; |
---|
684 | if ( vspace_id == 0xFFFFFFFF ) |
---|
685 | { |
---|
686 | global = 1; |
---|
687 | vsid = 0; |
---|
688 | } |
---|
689 | else |
---|
690 | { |
---|
691 | global = 0; |
---|
692 | vsid = vspace_id; |
---|
693 | } |
---|
694 | |
---|
695 | // compute the "local" and "big" attributes |
---|
696 | unsigned int local = vseg->local; |
---|
697 | unsigned int big = vseg->big; |
---|
698 | |
---|
699 | // compute vseg flags |
---|
700 | // The three flags (Local, Remote and Dirty) are set to 1 to reduce |
---|
701 | // latency of TLB miss (L/R) and write (D): Avoid hardware update |
---|
702 | // mechanism for these flags because GIET_VM does use these flags. |
---|
703 | unsigned int flags = 0; |
---|
704 | if (vseg->mode & C_MODE_MASK) flags |= PTE_C; |
---|
705 | if (vseg->mode & X_MODE_MASK) flags |= PTE_X; |
---|
706 | if (vseg->mode & W_MODE_MASK) flags |= PTE_W; |
---|
707 | if (vseg->mode & U_MODE_MASK) flags |= PTE_U; |
---|
708 | if ( global ) flags |= PTE_G; |
---|
709 | flags |= PTE_L; |
---|
710 | flags |= PTE_R; |
---|
711 | flags |= PTE_D; |
---|
712 | |
---|
713 | // compute VPN, PPN and number of pages (big or small) |
---|
714 | unsigned int vpn = vseg->vbase >> 12; |
---|
715 | unsigned int vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
716 | unsigned int ppn = (unsigned int)(vseg->pbase >> 12); |
---|
717 | unsigned int npages; |
---|
718 | if ( big == 0 ) npages = vpn_max - vpn + 1; |
---|
719 | else npages = (vpn_max>>9) - (vpn>>9) + 1; |
---|
720 | |
---|
721 | // compute destination cluster coordinates |
---|
722 | unsigned int x_dest; |
---|
723 | unsigned int y_dest; |
---|
724 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
725 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
726 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
727 | pseg = pseg + vseg->psegid; |
---|
728 | cluster = cluster + pseg->clusterid; |
---|
729 | x_dest = cluster->x; |
---|
730 | y_dest = cluster->y; |
---|
731 | |
---|
732 | unsigned int p; // iterator for physical page index |
---|
733 | unsigned int x; // iterator for cluster x coordinate |
---|
734 | unsigned int y; // iterator for cluster y coordinate |
---|
735 | unsigned int v; // iterator for vspace index |
---|
736 | |
---|
737 | // loop on PTEs |
---|
738 | for ( p = 0 ; p < npages ; p++ ) |
---|
739 | { |
---|
740 | if ( (local != 0) && (global == 0) ) // one cluster / one vspace |
---|
741 | { |
---|
742 | if ( big ) // big pages => PTE1s |
---|
743 | { |
---|
744 | boot_add_pte1( vsid, |
---|
745 | x_dest, |
---|
746 | y_dest, |
---|
747 | vpn + (p<<9), |
---|
748 | flags, |
---|
749 | ppn + (p<<9) ); |
---|
750 | } |
---|
751 | else // small pages => PTE2s |
---|
752 | { |
---|
753 | boot_add_pte2( vsid, |
---|
754 | x_dest, |
---|
755 | y_dest, |
---|
756 | vpn + p, |
---|
757 | flags, |
---|
758 | ppn + p ); |
---|
759 | } |
---|
760 | } |
---|
761 | else if ( (local == 0) && (global == 0) ) // all clusters / one vspace |
---|
762 | { |
---|
763 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
764 | { |
---|
765 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
766 | { |
---|
767 | if ( big ) // big pages => PTE1s |
---|
768 | { |
---|
769 | boot_add_pte1( vsid, |
---|
770 | x, |
---|
771 | y, |
---|
772 | vpn + (p<<9), |
---|
773 | flags, |
---|
774 | ppn + (p<<9) ); |
---|
775 | } |
---|
776 | else // small pages => PTE2s |
---|
777 | { |
---|
778 | boot_add_pte2( vsid, |
---|
779 | x, |
---|
780 | y, |
---|
781 | vpn + p, |
---|
782 | flags, |
---|
783 | ppn + p ); |
---|
784 | } |
---|
785 | } |
---|
786 | } |
---|
787 | } |
---|
788 | else if ( (local != 0) && (global != 0) ) // one cluster / all vspaces |
---|
789 | { |
---|
790 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
791 | { |
---|
792 | if ( big ) // big pages => PTE1s |
---|
793 | { |
---|
794 | boot_add_pte1( v, |
---|
795 | x_dest, |
---|
796 | y_dest, |
---|
797 | vpn + (p<<9), |
---|
798 | flags, |
---|
799 | ppn + (p<<9) ); |
---|
800 | } |
---|
801 | else // small pages = PTE2s |
---|
802 | { |
---|
803 | boot_add_pte2( v, |
---|
804 | x_dest, |
---|
805 | y_dest, |
---|
806 | vpn + p, |
---|
807 | flags, |
---|
808 | ppn + p ); |
---|
809 | } |
---|
810 | } |
---|
811 | } |
---|
812 | else if ( (local == 0) && (global != 0) ) // all clusters / all vspaces |
---|
813 | { |
---|
814 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
815 | { |
---|
816 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
817 | { |
---|
818 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
819 | { |
---|
820 | if ( big ) // big pages => PTE1s |
---|
821 | { |
---|
822 | boot_add_pte1( v, |
---|
823 | x, |
---|
824 | y, |
---|
825 | vpn + (p<<9), |
---|
826 | flags, |
---|
827 | ppn + (p<<9) ); |
---|
828 | } |
---|
829 | else // small pages -> PTE2s |
---|
830 | { |
---|
831 | boot_add_pte2( v, |
---|
832 | x, |
---|
833 | y, |
---|
834 | vpn + p, |
---|
835 | flags, |
---|
836 | ppn + p ); |
---|
837 | } |
---|
838 | } |
---|
839 | } |
---|
840 | } |
---|
841 | } |
---|
842 | } // end for pages |
---|
843 | } // end boot_vseg_pte() |
---|
844 | |
---|
845 | /////////////////////////////////////////////////////////////////////////////// |
---|
846 | // This function initialises the page tables for all vspaces defined |
---|
847 | // in the mapping_info data structure. |
---|
848 | // For each vspace, there is one page table per cluster. |
---|
849 | // In each cluster all page tables for the different vspaces must be |
---|
850 | // packed in one vseg occupying one single BPP (Big Physical Page). |
---|
851 | // |
---|
852 | // For each vseg, the mapping is done in two steps: |
---|
853 | // 1) mapping : the boot_vseg_map() function allocates contiguous BPPs |
---|
854 | // or SPPs (if the vseg is not associated to a peripheral), and register |
---|
855 | // the physical base address in the vseg pbase field. It initialises the |
---|
856 | // _ptabs_vaddr and _ptabs_paddr arrays if the vseg is a PTAB. |
---|
857 | // |
---|
858 | // 2) page table initialisation : the boot_vseg_pte() function initialise |
---|
859 | // the PTEs (both PTE1 and PTE2) in one or several page tables: |
---|
860 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
861 | // - PTEs are replicated in all clusters for a non local vseg. |
---|
862 | // |
---|
863 | // We must handle vsegs in the following order |
---|
864 | // 1) all global vsegs containing a page table, |
---|
865 | // 2) all global vsegs occupying more than one BPP, |
---|
866 | // 3) all others global vsegs |
---|
867 | // 4) all private vsegs in user space. |
---|
868 | /////////////////////////////////////////////////////////////////////////////// |
---|
869 | void boot_ptabs_init() |
---|
870 | { |
---|
871 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
872 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
873 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
874 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
875 | |
---|
876 | unsigned int vspace_id; |
---|
877 | unsigned int vseg_id; |
---|
878 | |
---|
879 | if (header->vspaces == 0 ) |
---|
880 | { |
---|
881 | _puts("\n[BOOT ERROR] in boot_ptabs_init() : mapping "); |
---|
882 | _puts( header->name ); |
---|
883 | _puts(" contains no vspace\n"); |
---|
884 | _exit(); |
---|
885 | } |
---|
886 | |
---|
887 | ///////// Phase 1 : global vsegs containing a PTAB (two loops required) |
---|
888 | |
---|
889 | #if BOOT_DEBUG_PT |
---|
890 | _puts("\n[BOOT DEBUG] map PTAB global vsegs\n"); |
---|
891 | #endif |
---|
892 | |
---|
893 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
894 | { |
---|
895 | unsigned int vobj_id = vseg[vseg_id].vobj_offset; |
---|
896 | if ( (vobj[vobj_id].type == VOBJ_TYPE_PTAB) ) |
---|
897 | { |
---|
898 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
899 | vseg[vseg_id].mapped = 1; |
---|
900 | } |
---|
901 | } |
---|
902 | |
---|
903 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
904 | { |
---|
905 | unsigned int vobj_id = vseg[vseg_id].vobj_offset; |
---|
906 | if ( (vobj[vobj_id].type == VOBJ_TYPE_PTAB) ) |
---|
907 | { |
---|
908 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
909 | vseg[vseg_id].mapped = 1; |
---|
910 | } |
---|
911 | } |
---|
912 | |
---|
913 | ///////// Phase 2 : global vsegs occupying more than one BPP (one loop) |
---|
914 | |
---|
915 | #if BOOT_DEBUG_PT |
---|
916 | _puts("\n[BOOT DEBUG] map all multi-BPP global vsegs\n"); |
---|
917 | #endif |
---|
918 | |
---|
919 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
920 | { |
---|
921 | unsigned int vobj_id = vseg[vseg_id].vobj_offset; |
---|
922 | if ( (vobj[vobj_id].length > 0x200000) && |
---|
923 | (vseg[vseg_id].mapped == 0) ) |
---|
924 | { |
---|
925 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
926 | vseg[vseg_id].mapped = 1; |
---|
927 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
928 | } |
---|
929 | } |
---|
930 | |
---|
931 | ///////// Phase 3 : all others global vsegs (one loop) |
---|
932 | |
---|
933 | #if BOOT_DEBUG_PT |
---|
934 | _puts("\n[BOOT DEBUG] map all others global vsegs\n"); |
---|
935 | #endif |
---|
936 | |
---|
937 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
938 | { |
---|
939 | if ( vseg[vseg_id].mapped == 0 ) |
---|
940 | { |
---|
941 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
942 | vseg[vseg_id].mapped = 1; |
---|
943 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
944 | } |
---|
945 | } |
---|
946 | |
---|
947 | ///////// Phase 4 : all private vsegs (two nested loops) |
---|
948 | |
---|
949 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
950 | { |
---|
951 | |
---|
952 | #if BOOT_DEBUG_PT |
---|
953 | _puts("\n[BOOT DEBUG] map private vsegs for vspace "); |
---|
954 | _puts( vspace[vspace_id].name ); |
---|
955 | _puts("\n"); |
---|
956 | #endif |
---|
957 | |
---|
958 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
959 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
960 | vseg_id++) |
---|
961 | { |
---|
962 | boot_vseg_map( &vseg[vseg_id], vspace_id ); |
---|
963 | vseg[vseg_id].mapped = 1; |
---|
964 | boot_vseg_pte( &vseg[vseg_id], vspace_id ); |
---|
965 | } |
---|
966 | } |
---|
967 | |
---|
968 | #if (BOOT_DEBUG_PT > 1) |
---|
969 | mapping_vseg_t* curr; |
---|
970 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
971 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
972 | unsigned int pseg_id; |
---|
973 | for( pseg_id = 0 ; pseg_id < header->psegs ; pseg_id++ ) |
---|
974 | { |
---|
975 | unsigned int cluster_id = pseg[pseg_id].clusterid; |
---|
976 | _puts("\n[BOOT DEBUG] vsegs mapped on pseg "); |
---|
977 | _puts( pseg[pseg_id].name ); |
---|
978 | _puts(" in cluster["); |
---|
979 | _putd( cluster[cluster_id].x ); |
---|
980 | _puts(","); |
---|
981 | _putd( cluster[cluster_id].y ); |
---|
982 | _puts("]\n"); |
---|
983 | for( curr = (mapping_vseg_t*)pseg[pseg_id].next_vseg ; |
---|
984 | curr != 0 ; |
---|
985 | curr = (mapping_vseg_t*)curr->next_vseg ) |
---|
986 | { |
---|
987 | _puts(" - vseg "); |
---|
988 | _puts( curr->name ); |
---|
989 | _puts(" : len = "); |
---|
990 | _putx( curr->length ); |
---|
991 | _puts(" / vbase "); |
---|
992 | _putx( curr->vbase ); |
---|
993 | _puts(" / pbase "); |
---|
994 | _putl( curr->pbase ); |
---|
995 | _puts("\n"); |
---|
996 | } |
---|
997 | } |
---|
998 | #endif |
---|
999 | |
---|
1000 | } // end boot_ptabs_init() |
---|
1001 | |
---|
1002 | /////////////////////////////////////////////////////////////////////////////// |
---|
1003 | // This function initializes the private vobjs that have the CONST type. |
---|
1004 | // The MMU is supposed to be activated... |
---|
1005 | /////////////////////////////////////////////////////////////////////////////// |
---|
1006 | void boot_vobjs_init() |
---|
1007 | { |
---|
1008 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1009 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
1010 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1011 | |
---|
1012 | unsigned int vspace_id; |
---|
1013 | unsigned int vobj_id; |
---|
1014 | |
---|
1015 | // loop on the vspaces |
---|
1016 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1017 | { |
---|
1018 | |
---|
1019 | #if BOOT_DEBUG_VOBJS |
---|
1020 | _puts("\n[BOOT DEBUG] ****** vobjs initialisation in vspace "); |
---|
1021 | _puts(vspace[vspace_id].name); |
---|
1022 | _puts(" ******\n"); |
---|
1023 | #endif |
---|
1024 | |
---|
1025 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][0][0] >> 13) ); |
---|
1026 | |
---|
1027 | // loop on the vobjs |
---|
1028 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
1029 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
1030 | vobj_id++) |
---|
1031 | { |
---|
1032 | if ( (vobj[vobj_id].type) == VOBJ_TYPE_CONST ) |
---|
1033 | { |
---|
1034 | #if BOOT_DEBUG_VOBJS |
---|
1035 | _puts("CONST : "); |
---|
1036 | _puts(vobj[vobj_id].name); |
---|
1037 | _puts(" / vaddr = "); |
---|
1038 | _putx(vobj[vobj_id].vaddr); |
---|
1039 | _puts(" / paddr = "); |
---|
1040 | _putl(vobj[vobj_id].paddr); |
---|
1041 | _puts(" / value = "); |
---|
1042 | _putx(vobj[vobj_id].init); |
---|
1043 | _puts("\n"); |
---|
1044 | #endif |
---|
1045 | unsigned int* addr = (unsigned int *) vobj[vobj_id].vbase; |
---|
1046 | *addr = vobj[vobj_id].init; |
---|
1047 | } |
---|
1048 | } |
---|
1049 | } |
---|
1050 | } // end boot_vobjs_init() |
---|
1051 | |
---|
1052 | /////////////////////////////////////////////////////////////////////////////// |
---|
1053 | // This function returns in the vbase and length buffers the virtual base |
---|
1054 | // address and the length of the segment allocated to the schedulers array |
---|
1055 | // in the cluster defined by the clusterid argument. |
---|
1056 | /////////////////////////////////////////////////////////////////////////////// |
---|
1057 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
1058 | unsigned int* vbase, |
---|
1059 | unsigned int* length ) |
---|
1060 | { |
---|
1061 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1062 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1063 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
1064 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
1065 | |
---|
1066 | unsigned int vseg_id; |
---|
1067 | unsigned int found = 0; |
---|
1068 | |
---|
1069 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
1070 | { |
---|
1071 | if ( (vobj[vseg[vseg_id].vobj_offset].type == VOBJ_TYPE_SCHED) && |
---|
1072 | (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) ) |
---|
1073 | { |
---|
1074 | *vbase = vseg[vseg_id].vbase; |
---|
1075 | *length = vobj[vseg[vseg_id].vobj_offset].length; |
---|
1076 | found = 1; |
---|
1077 | } |
---|
1078 | } |
---|
1079 | if ( found == 0 ) |
---|
1080 | { |
---|
1081 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1082 | _puts("\n[BOOT ERROR] No vobj of type SCHED in cluster ["); |
---|
1083 | _putd( cluster[cluster_id].x ); |
---|
1084 | _puts(","); |
---|
1085 | _putd( cluster[cluster_id].y ); |
---|
1086 | _puts("]\n"); |
---|
1087 | _exit(); |
---|
1088 | } |
---|
1089 | } // end boot_get_sched_vaddr() |
---|
1090 | |
---|
1091 | //////////////////////////////////////////////////////////////////////////////////// |
---|
1092 | // This function initialises all processors schedulers. |
---|
1093 | // This is done by processor 0, and the MMU must be activated. |
---|
1094 | // - In Step 1, it initialises the _schedulers[x][y][l] pointers array, and scan |
---|
1095 | // the processors for a first initialisation of the schedulers: |
---|
1096 | // idle_task context, and HWI / SWI / PTI vectors. |
---|
1097 | // - In Step 2, it scan all tasks in all vspaces to complete the tasks contexts, |
---|
1098 | // initialisation as specified in the mapping_info data structure. |
---|
1099 | //////////////////////////////////////////////////////////////////////////////////// |
---|
1100 | void boot_schedulers_init() |
---|
1101 | { |
---|
1102 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1103 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1104 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
1105 | mapping_task_t* task = _get_task_base(header); |
---|
1106 | mapping_vobj_t* vobj = _get_vobj_base(header); |
---|
1107 | mapping_periph_t* periph = _get_periph_base(header); |
---|
1108 | mapping_irq_t* irq = _get_irq_base(header); |
---|
1109 | |
---|
1110 | unsigned int cluster_id; // cluster index in mapping_info |
---|
1111 | unsigned int periph_id; // peripheral index in mapping_info |
---|
1112 | unsigned int irq_id; // irq index in mapping_info |
---|
1113 | unsigned int vspace_id; // vspace index in mapping_info |
---|
1114 | unsigned int task_id; // task index in mapping_info |
---|
1115 | unsigned int vobj_id; // vobj index in mapping_info |
---|
1116 | |
---|
1117 | unsigned int lpid; // local processor index (for several loops) |
---|
1118 | |
---|
1119 | // WTI allocators to processors (for HWIs translated to WTIs) |
---|
1120 | // In all clusters the first NB_PROCS_MAX WTIs are reserved for WAKUP |
---|
1121 | unsigned int alloc_wti_channel[X_SIZE*Y_SIZE]; // one per cluster |
---|
1122 | |
---|
1123 | // pointers on the XCU and PIC peripherals |
---|
1124 | mapping_periph_t* xcu = NULL; |
---|
1125 | mapping_periph_t* pic = NULL; |
---|
1126 | |
---|
1127 | unsigned int sched_vbase; // schedulers array vbase address in a cluster |
---|
1128 | unsigned int sched_length; // schedulers array length |
---|
1129 | static_scheduler_t* psched; // pointer on processor scheduler |
---|
1130 | |
---|
1131 | ///////////////////////////////////////////////////////////////////////// |
---|
1132 | // Step 1 : loop on the clusters and on the processors |
---|
1133 | // to initialize the schedulers[] array of pointers, |
---|
1134 | // idle task context and interrupt vectors. |
---|
1135 | // Implementation note: |
---|
1136 | // We need to use both (proc_id) to scan the mapping info structure, |
---|
1137 | // and (x,y,lpid) to access the schedulers array. |
---|
1138 | |
---|
1139 | for (cluster_id = 0 ; cluster_id < X_SIZE*Y_SIZE ; cluster_id++) |
---|
1140 | { |
---|
1141 | unsigned int x = cluster[cluster_id].x; |
---|
1142 | unsigned int y = cluster[cluster_id].y; |
---|
1143 | |
---|
1144 | #if BOOT_DEBUG_SCHED |
---|
1145 | _puts("\n[BOOT DEBUG] Initialise schedulers in cluster["); |
---|
1146 | _putd( x ); |
---|
1147 | _puts(","); |
---|
1148 | _putd( y ); |
---|
1149 | _puts("]\n"); |
---|
1150 | #endif |
---|
1151 | alloc_wti_channel[cluster_id] = NB_PROCS_MAX; |
---|
1152 | |
---|
1153 | // checking processors number |
---|
1154 | if ( cluster[cluster_id].procs > NB_PROCS_MAX ) |
---|
1155 | { |
---|
1156 | _puts("\n[BOOT ERROR] Too much processors in cluster["); |
---|
1157 | _putd( x ); |
---|
1158 | _puts(","); |
---|
1159 | _putd( y ); |
---|
1160 | _puts("]\n"); |
---|
1161 | _exit(); |
---|
1162 | } |
---|
1163 | |
---|
1164 | // no schedulers initialisation if nprocs == 0 |
---|
1165 | if ( cluster[cluster_id].procs > 0 ) |
---|
1166 | { |
---|
1167 | // get scheduler array virtual base address in cluster[cluster_id] |
---|
1168 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
1169 | |
---|
1170 | if ( sched_length < (cluster[cluster_id].procs<<13) ) // 8 Kbytes per scheduler |
---|
1171 | { |
---|
1172 | _puts("\n[BOOT ERROR] Schedulers segment too small in cluster["); |
---|
1173 | _putd( x ); |
---|
1174 | _puts(","); |
---|
1175 | _putd( y ); |
---|
1176 | _puts("]\n"); |
---|
1177 | _exit(); |
---|
1178 | } |
---|
1179 | |
---|
1180 | // scan peripherals to find the XCU and the PIC component |
---|
1181 | |
---|
1182 | xcu = NULL; |
---|
1183 | for ( periph_id = cluster[cluster_id].periph_offset ; |
---|
1184 | periph_id < cluster[cluster_id].periph_offset + cluster[cluster_id].periphs; |
---|
1185 | periph_id++ ) |
---|
1186 | { |
---|
1187 | if( periph[periph_id].type == PERIPH_TYPE_XCU ) |
---|
1188 | { |
---|
1189 | xcu = &periph[periph_id]; |
---|
1190 | |
---|
1191 | if ( xcu->arg < cluster[cluster_id].procs ) |
---|
1192 | { |
---|
1193 | _puts("\n[BOOT ERROR] Not enough inputs for XCU["); |
---|
1194 | _putd( x ); |
---|
1195 | _puts(","); |
---|
1196 | _putd( y ); |
---|
1197 | _puts("]\n"); |
---|
1198 | _exit(); |
---|
1199 | } |
---|
1200 | } |
---|
1201 | if( periph[periph_id].type == PERIPH_TYPE_PIC ) |
---|
1202 | { |
---|
1203 | pic = &periph[periph_id]; |
---|
1204 | } |
---|
1205 | } |
---|
1206 | if ( xcu == NULL ) |
---|
1207 | { |
---|
1208 | _puts("\n[BOOT ERROR] No XCU component in cluster["); |
---|
1209 | _putd( x ); |
---|
1210 | _puts(","); |
---|
1211 | _putd( y ); |
---|
1212 | _puts("]\n"); |
---|
1213 | _exit(); |
---|
1214 | } |
---|
1215 | |
---|
1216 | // loop on processors for schedulers default values |
---|
1217 | // initialisation, including WTI and PTI vectors |
---|
1218 | for ( lpid = 0 ; lpid < cluster[cluster_id].procs ; lpid++ ) |
---|
1219 | { |
---|
1220 | // pointer on processor scheduler |
---|
1221 | psched = (static_scheduler_t*)(sched_vbase + (lpid<<13)); |
---|
1222 | |
---|
1223 | // initialise the schedulers pointers array |
---|
1224 | _schedulers[x][y][lpid] = psched; |
---|
1225 | |
---|
1226 | #if BOOT_DEBUG_SCHED |
---|
1227 | unsigned int sched_vbase = (unsigned int)_schedulers[x][y][lpid]; |
---|
1228 | unsigned int sched_ppn; |
---|
1229 | unsigned int sched_flags; |
---|
1230 | paddr_t sched_pbase; |
---|
1231 | |
---|
1232 | page_table_t* ptab = (page_table_t*)(_ptabs_vaddr[0][x][y]); |
---|
1233 | _v2p_translate( ptab, sched_vbase>>12, &sched_ppn, &sched_flags ); |
---|
1234 | sched_pbase = ((paddr_t)sched_ppn)<<12; |
---|
1235 | |
---|
1236 | _puts("\nProc["); |
---|
1237 | _putd( x ); |
---|
1238 | _puts(","); |
---|
1239 | _putd( y ); |
---|
1240 | _puts(","); |
---|
1241 | _putd( lpid ); |
---|
1242 | _puts("] : scheduler vbase = "); |
---|
1243 | _putx( sched_vbase ); |
---|
1244 | _puts(" : scheduler pbase = "); |
---|
1245 | _putl( sched_pbase ); |
---|
1246 | _puts("\n"); |
---|
1247 | #endif |
---|
1248 | // initialise the "tasks" and "current" variables default values |
---|
1249 | psched->tasks = 0; |
---|
1250 | psched->current = IDLE_TASK_INDEX; |
---|
1251 | |
---|
1252 | // default values for HWI / PTI / SWI vectors (valid bit = 0) |
---|
1253 | unsigned int slot; |
---|
1254 | for (slot = 0; slot < 32; slot++) |
---|
1255 | { |
---|
1256 | psched->hwi_vector[slot] = 0; |
---|
1257 | psched->pti_vector[slot] = 0; |
---|
1258 | psched->wti_vector[slot] = 0; |
---|
1259 | } |
---|
1260 | |
---|
1261 | // WTI[lpid] <= ISR_WAKUP / PTI[lpid] <= ISR_TICK |
---|
1262 | psched->wti_vector[lpid] = ISR_WAKUP | 0x80000000; |
---|
1263 | psched->pti_vector[lpid] = ISR_TICK | 0x80000000; |
---|
1264 | |
---|
1265 | // initializes the idle_task context in scheduler: |
---|
1266 | // - the SR slot is 0xFF03 because this task run in kernel mode. |
---|
1267 | // - it uses the page table of vspace[0] |
---|
1268 | // - it uses the kernel TTY terminal |
---|
1269 | // - slots containing addresses (SP, RA, EPC) |
---|
1270 | // must be initialised by kernel_init() |
---|
1271 | |
---|
1272 | psched->context[IDLE_TASK_INDEX][CTX_CR_ID] = 0; |
---|
1273 | psched->context[IDLE_TASK_INDEX][CTX_SR_ID] = 0xFF03; |
---|
1274 | psched->context[IDLE_TASK_INDEX][CTX_PTPR_ID] = _ptabs_paddr[0][x][y]>>13; |
---|
1275 | psched->context[IDLE_TASK_INDEX][CTX_PTAB_ID] = _ptabs_vaddr[0][x][y]; |
---|
1276 | psched->context[IDLE_TASK_INDEX][CTX_TTY_ID] = 0; |
---|
1277 | psched->context[IDLE_TASK_INDEX][CTX_LTID_ID] = IDLE_TASK_INDEX; |
---|
1278 | psched->context[IDLE_TASK_INDEX][CTX_VSID_ID] = 0; |
---|
1279 | psched->context[IDLE_TASK_INDEX][CTX_RUN_ID] = 1; |
---|
1280 | |
---|
1281 | } // end for processors |
---|
1282 | |
---|
1283 | // scan HWIs connected to local XCU |
---|
1284 | // for round-robin allocation to processors |
---|
1285 | lpid = 0; |
---|
1286 | for ( irq_id = xcu->irq_offset ; |
---|
1287 | irq_id < xcu->irq_offset + xcu->irqs ; |
---|
1288 | irq_id++ ) |
---|
1289 | { |
---|
1290 | unsigned int type = irq[irq_id].srctype; |
---|
1291 | unsigned int srcid = irq[irq_id].srcid; |
---|
1292 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
1293 | unsigned int channel = irq[irq_id].channel << 16; |
---|
1294 | |
---|
1295 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
1296 | { |
---|
1297 | _puts("\n[BOOT ERROR] Bad IRQ in XCU of cluster["); |
---|
1298 | _putd( x ); |
---|
1299 | _puts(","); |
---|
1300 | _putd( y ); |
---|
1301 | _puts("]\n"); |
---|
1302 | _exit(); |
---|
1303 | } |
---|
1304 | |
---|
1305 | _schedulers[x][y][lpid]->hwi_vector[srcid] = isr | channel | 0x80000000; |
---|
1306 | lpid = (lpid + 1) % cluster[cluster_id].procs; |
---|
1307 | |
---|
1308 | } // end for irqs |
---|
1309 | } // end if nprocs > 0 |
---|
1310 | } // end for clusters |
---|
1311 | |
---|
1312 | // If there is an external PIC component, we scan HWIs connected to PIC |
---|
1313 | // for Round Robin allocation (as WTI) to processors. |
---|
1314 | // We allocate one WTI per processor, starting from proc[0,0,0], |
---|
1315 | // and we increment (cluster_id, lpid) as required. |
---|
1316 | if ( pic != NULL ) |
---|
1317 | { |
---|
1318 | unsigned int cluster_id = 0; // index in clusters array |
---|
1319 | unsigned int lpid = 0; // processor local index |
---|
1320 | |
---|
1321 | // scan IRQS defined in PIC |
---|
1322 | for ( irq_id = pic->irq_offset ; |
---|
1323 | irq_id < pic->irq_offset + pic->irqs ; |
---|
1324 | irq_id++ ) |
---|
1325 | { |
---|
1326 | // compute next values for (cluster_id,lpid) |
---|
1327 | // if no more procesor available in current cluster |
---|
1328 | unsigned int overflow = 0; |
---|
1329 | while ( (lpid >= cluster[cluster_id].procs) || |
---|
1330 | (alloc_wti_channel[cluster_id] >= xcu->arg) ) |
---|
1331 | { |
---|
1332 | overflow++; |
---|
1333 | cluster_id = (cluster_id + 1) % (X_SIZE*Y_SIZE); |
---|
1334 | lpid = 0; |
---|
1335 | |
---|
1336 | // overflow detection |
---|
1337 | if ( overflow > (X_SIZE*Y_SIZE*NB_PROCS_MAX*32) ) |
---|
1338 | { |
---|
1339 | _puts("\n[BOOT ERROR] Not enough processors for external IRQs\n"); |
---|
1340 | _exit(); |
---|
1341 | } |
---|
1342 | } // end while |
---|
1343 | |
---|
1344 | unsigned int type = irq[irq_id].srctype; |
---|
1345 | unsigned int srcid = irq[irq_id].srcid; |
---|
1346 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
1347 | unsigned int channel = irq[irq_id].channel << 16; |
---|
1348 | |
---|
1349 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
1350 | { |
---|
1351 | _puts("\n[BOOT ERROR] Bad IRQ in PIC component\n"); |
---|
1352 | _exit(); |
---|
1353 | } |
---|
1354 | |
---|
1355 | // get scheduler[cluster_id] address |
---|
1356 | unsigned int x = cluster[cluster_id].x; |
---|
1357 | unsigned int y = cluster[cluster_id].y; |
---|
1358 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1359 | psched = _schedulers[x][y][lpid]; |
---|
1360 | |
---|
1361 | // update WTI vector for scheduler[cluster_id][lpid] |
---|
1362 | unsigned int index = alloc_wti_channel[cluster_id]; |
---|
1363 | psched->wti_vector[index] = isr | channel | 0x80000000; |
---|
1364 | |
---|
1365 | // increment pointers |
---|
1366 | alloc_wti_channel[cluster_id] = index + 1; |
---|
1367 | lpid = lpid + 1; |
---|
1368 | |
---|
1369 | // update IRQ fields in mapping for PIC initialisation |
---|
1370 | irq[irq_id].dest_id = index; |
---|
1371 | irq[irq_id].dest_xy = cluster_xy; |
---|
1372 | |
---|
1373 | } // end for IRQs |
---|
1374 | } // end if PIC |
---|
1375 | |
---|
1376 | #if BOOT_DEBUG_SCHED |
---|
1377 | for ( cluster_id = 0 ; cluster_id < (X_SIZE*Y_SIZE) ; cluster_id++ ) |
---|
1378 | { |
---|
1379 | unsigned int x = cluster[cluster_id].x; |
---|
1380 | unsigned int y = cluster[cluster_id].y; |
---|
1381 | unsigned int slot; |
---|
1382 | unsigned int entry; |
---|
1383 | for ( lpid = 0 ; lpid < cluster[cluster_id].procs ; lpid++ ) |
---|
1384 | { |
---|
1385 | psched = _schedulers[x][y][lpid]; |
---|
1386 | |
---|
1387 | _puts("\n*** IRQS for proc["); |
---|
1388 | _putd( x ); |
---|
1389 | _puts(","); |
---|
1390 | _putd( y ); |
---|
1391 | _puts(","); |
---|
1392 | _putd( lpid ); |
---|
1393 | _puts("]\n"); |
---|
1394 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1395 | { |
---|
1396 | entry = psched->hwi_vector[slot]; |
---|
1397 | if ( entry & 0x80000000 ) |
---|
1398 | { |
---|
1399 | _puts(" - HWI "); |
---|
1400 | _putd( slot ); |
---|
1401 | _puts(" / isrtype = "); |
---|
1402 | _putd( entry & 0xFFFF ); |
---|
1403 | _puts(" / channel = "); |
---|
1404 | _putd( (entry >> 16) & 0x7FFF ); |
---|
1405 | _puts("\n"); |
---|
1406 | } |
---|
1407 | } |
---|
1408 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1409 | { |
---|
1410 | entry = psched->wti_vector[slot]; |
---|
1411 | if ( entry & 0x80000000 ) |
---|
1412 | { |
---|
1413 | _puts(" - WTI "); |
---|
1414 | _putd( slot ); |
---|
1415 | _puts(" / isrtype = "); |
---|
1416 | _putd( entry & 0xFFFF ); |
---|
1417 | _puts(" / channel = "); |
---|
1418 | _putd( (entry >> 16) & 0x7FFF ); |
---|
1419 | _puts("\n"); |
---|
1420 | } |
---|
1421 | } |
---|
1422 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1423 | { |
---|
1424 | entry = psched->pti_vector[slot]; |
---|
1425 | if ( entry & 0x80000000 ) |
---|
1426 | { |
---|
1427 | _puts(" - PTI "); |
---|
1428 | _putd( slot ); |
---|
1429 | _puts(" / isrtype = "); |
---|
1430 | _putd( entry & 0xFFFF ); |
---|
1431 | _puts(" / channel = "); |
---|
1432 | _putd( (entry >> 16) & 0x7FFF ); |
---|
1433 | _puts("\n"); |
---|
1434 | } |
---|
1435 | } |
---|
1436 | } |
---|
1437 | } |
---|
1438 | #endif |
---|
1439 | |
---|
1440 | /////////////////////////////////////////////////////////////////// |
---|
1441 | // Step 2 : loop on the vspaces and the tasks to complete |
---|
1442 | // the schedulers and task contexts initialisation. |
---|
1443 | |
---|
1444 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1445 | { |
---|
1446 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
1447 | // and the stack address are defined in virtual space. |
---|
1448 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][0][0] >> 13) ); |
---|
1449 | |
---|
1450 | // loop on the tasks in vspace (task_id is the global index in mapping) |
---|
1451 | for (task_id = vspace[vspace_id].task_offset; |
---|
1452 | task_id < (vspace[vspace_id].task_offset + vspace[vspace_id].tasks); |
---|
1453 | task_id++) |
---|
1454 | { |
---|
1455 | // compute the cluster coordinates & local processor index |
---|
1456 | unsigned int x = cluster[task[task_id].clusterid].x; |
---|
1457 | unsigned int y = cluster[task[task_id].clusterid].y; |
---|
1458 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1459 | unsigned int lpid = task[task_id].proclocid; |
---|
1460 | |
---|
1461 | #if BOOT_DEBUG_SCHED |
---|
1462 | _puts("\n[BOOT DEBUG] Initialise context for task "); |
---|
1463 | _puts( task[task_id].name ); |
---|
1464 | _puts(" in vspace "); |
---|
1465 | _puts( vspace[vspace_id].name ); |
---|
1466 | _puts("\n"); |
---|
1467 | #endif |
---|
1468 | // compute gpid (global processor index) and scheduler base address |
---|
1469 | unsigned int gpid = (cluster_xy << P_WIDTH) + lpid; |
---|
1470 | psched = _schedulers[x][y][lpid]; |
---|
1471 | |
---|
1472 | // ctx_sr : value required before an eret instruction |
---|
1473 | unsigned int ctx_sr = 0x0000FF13; |
---|
1474 | |
---|
1475 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
1476 | unsigned int ctx_ptpr = (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13); |
---|
1477 | |
---|
1478 | // ctx_ptab : page_table virtual base address |
---|
1479 | unsigned int ctx_ptab = _ptabs_vaddr[vspace_id][x][y]; |
---|
1480 | |
---|
1481 | // ctx_epc : Get the virtual address of the memory location containing |
---|
1482 | // the task entry point : the start_vector is stored by GCC in the seg_data |
---|
1483 | // segment and we must wait the .elf loading to get the entry point value... |
---|
1484 | vobj_id = vspace[vspace_id].start_vobj_id; |
---|
1485 | unsigned int ctx_epc = vobj[vobj_id].vbase + (task[task_id].startid)*4; |
---|
1486 | |
---|
1487 | // ctx_sp : Get the vobj containing the stack |
---|
1488 | vobj_id = task[task_id].stack_vobj_id; |
---|
1489 | unsigned int ctx_sp = vobj[vobj_id].vbase + vobj[vobj_id].length; |
---|
1490 | |
---|
1491 | // get local task index in scheduler |
---|
1492 | unsigned int ltid = psched->tasks; |
---|
1493 | |
---|
1494 | // get vspace thread index |
---|
1495 | unsigned int thread_id = task[task_id].trdid; |
---|
1496 | |
---|
1497 | if (ltid >= IDLE_TASK_INDEX) |
---|
1498 | { |
---|
1499 | _puts("\n[BOOT ERROR] in boot_schedulers_init() : "); |
---|
1500 | _putd( ltid ); |
---|
1501 | _puts(" tasks allocated to processor "); |
---|
1502 | _putd( gpid ); |
---|
1503 | _puts(" / max is "); |
---|
1504 | _putd( IDLE_TASK_INDEX ); |
---|
1505 | _puts("\n"); |
---|
1506 | _exit(); |
---|
1507 | } |
---|
1508 | |
---|
1509 | // update the "tasks" and "current" fields in scheduler: |
---|
1510 | // the first task to execute is task 0 as soon as there is at least |
---|
1511 | // one task allocated to processor. |
---|
1512 | psched->tasks = ltid + 1; |
---|
1513 | psched->current = 0; |
---|
1514 | |
---|
1515 | // initializes the task context |
---|
1516 | psched->context[ltid][CTX_CR_ID] = 0; |
---|
1517 | psched->context[ltid][CTX_SR_ID] = ctx_sr; |
---|
1518 | psched->context[ltid][CTX_SP_ID] = ctx_sp; |
---|
1519 | psched->context[ltid][CTX_EPC_ID] = ctx_epc; |
---|
1520 | psched->context[ltid][CTX_PTPR_ID] = ctx_ptpr; |
---|
1521 | psched->context[ltid][CTX_PTAB_ID] = ctx_ptab; |
---|
1522 | psched->context[ltid][CTX_LTID_ID] = ltid; |
---|
1523 | psched->context[ltid][CTX_GTID_ID] = task_id; |
---|
1524 | psched->context[ltid][CTX_TRDID_ID] = thread_id; |
---|
1525 | psched->context[ltid][CTX_VSID_ID] = vspace_id; |
---|
1526 | psched->context[ltid][CTX_RUN_ID] = 1; |
---|
1527 | |
---|
1528 | psched->context[ltid][CTX_TTY_ID] = 0xFFFFFFFF; |
---|
1529 | psched->context[ltid][CTX_CMA_FB_ID] = 0xFFFFFFFF; |
---|
1530 | psched->context[ltid][CTX_CMA_RX_ID] = 0xFFFFFFFF; |
---|
1531 | psched->context[ltid][CTX_CMA_TX_ID] = 0xFFFFFFFF; |
---|
1532 | psched->context[ltid][CTX_NIC_RX_ID] = 0xFFFFFFFF; |
---|
1533 | psched->context[ltid][CTX_NIC_TX_ID] = 0xFFFFFFFF; |
---|
1534 | psched->context[ltid][CTX_TIM_ID] = 0xFFFFFFFF; |
---|
1535 | psched->context[ltid][CTX_HBA_ID] = 0xFFFFFFFF; |
---|
1536 | |
---|
1537 | #if BOOT_DEBUG_SCHED |
---|
1538 | _puts("\nTask "); |
---|
1539 | _putd( task_id ); |
---|
1540 | _puts(" allocated to processor["); |
---|
1541 | _putd( x ); |
---|
1542 | _puts(","); |
---|
1543 | _putd( y ); |
---|
1544 | _puts(","); |
---|
1545 | _putd( lpid ); |
---|
1546 | _puts("]\n - ctx[LTID] = "); |
---|
1547 | _putd( psched->context[ltid][CTX_LTID_ID] ); |
---|
1548 | _puts("\n - ctx[SR] = "); |
---|
1549 | _putx( psched->context[ltid][CTX_SR_ID] ); |
---|
1550 | _puts("\n - ctx[SP] = "); |
---|
1551 | _putx( psched->context[ltid][CTX_SP_ID] ); |
---|
1552 | _puts("\n - ctx[EPC] = "); |
---|
1553 | _putx( psched->context[ltid][CTX_EPC_ID] ); |
---|
1554 | _puts("\n - ctx[PTPR] = "); |
---|
1555 | _putx( psched->context[ltid][CTX_PTPR_ID] ); |
---|
1556 | _puts("\n - ctx[PTAB] = "); |
---|
1557 | _putx( psched->context[ltid][CTX_PTAB_ID] ); |
---|
1558 | _puts("\n - ctx[GTID] = "); |
---|
1559 | _putx( psched->context[ltid][CTX_GTID_ID] ); |
---|
1560 | _puts("\n - ctx[VSID] = "); |
---|
1561 | _putx( psched->context[ltid][CTX_VSID_ID] ); |
---|
1562 | _puts("\n - ctx[TRDID] = "); |
---|
1563 | _putx( psched->context[ltid][CTX_TRDID_ID] ); |
---|
1564 | _puts("\n"); |
---|
1565 | #endif |
---|
1566 | |
---|
1567 | } // end loop on tasks |
---|
1568 | } // end loop on vspaces |
---|
1569 | } // end boot_schedulers_init() |
---|
1570 | |
---|
1571 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1572 | // This function loads the map.bin file from block device. |
---|
1573 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1574 | void boot_mapping_init() |
---|
1575 | { |
---|
1576 | // desactivates IOC interrupt |
---|
1577 | _ioc_init( 0 ); |
---|
1578 | |
---|
1579 | // open file "map.bin" |
---|
1580 | int fd_id = _fat_open( IOC_BOOT_MODE, |
---|
1581 | "map.bin", |
---|
1582 | 0 ); // no creation |
---|
1583 | if ( fd_id == -1 ) |
---|
1584 | { |
---|
1585 | _puts("\n[BOOT ERROR] : map.bin file not found \n"); |
---|
1586 | _exit(); |
---|
1587 | } |
---|
1588 | |
---|
1589 | #if BOOT_DEBUG_MAPPING |
---|
1590 | _puts("\n[BOOT] map.bin file successfully open at cycle "); |
---|
1591 | _putd(_get_proctime()); |
---|
1592 | _puts("\n"); |
---|
1593 | #endif |
---|
1594 | |
---|
1595 | // get "map.bin" file size (from fat) and check it |
---|
1596 | unsigned int size = fat.fd[fd_id].file_size; |
---|
1597 | |
---|
1598 | if ( size > SEG_BOOT_MAPPING_SIZE ) |
---|
1599 | { |
---|
1600 | _puts("\n[BOOT ERROR] : allocated segment too small for map.bin file\n"); |
---|
1601 | _exit(); |
---|
1602 | } |
---|
1603 | |
---|
1604 | // load "map.bin" file into buffer |
---|
1605 | unsigned int nblocks = size >> 9; |
---|
1606 | unsigned int offset = size & 0x1FF; |
---|
1607 | if ( offset ) nblocks++; |
---|
1608 | |
---|
1609 | unsigned int ok = _fat_read( IOC_BOOT_MODE, |
---|
1610 | fd_id, |
---|
1611 | (unsigned int*)SEG_BOOT_MAPPING_BASE, |
---|
1612 | nblocks, |
---|
1613 | 0 ); // offset |
---|
1614 | if ( ok == -1 ) |
---|
1615 | { |
---|
1616 | _puts("\n[BOOT ERROR] : unable to load map.bin file \n"); |
---|
1617 | _exit(); |
---|
1618 | } |
---|
1619 | _fat_close( fd_id ); |
---|
1620 | |
---|
1621 | // close file "map.bin" |
---|
1622 | boot_mapping_check(); |
---|
1623 | |
---|
1624 | } // end boot_mapping_init() |
---|
1625 | |
---|
1626 | |
---|
1627 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
1628 | // This function load all loadable segments for one .elf file, identified |
---|
1629 | // by the "pathname" argument. Some loadable segments can be copied in several |
---|
1630 | // clusters: same virtual address but different physical addresses. |
---|
1631 | // - It open the file. |
---|
1632 | // - It loads the complete file in the dedicated boot_elf_buffer. |
---|
1633 | // - It copies each loadable segments at the virtual address defined in |
---|
1634 | // the .elf file, making several copies if the target vseg is not local. |
---|
1635 | // - It closes the file. |
---|
1636 | // This function is supposed to be executed by processor[0,0,0]. |
---|
1637 | // Note: |
---|
1638 | // We must use physical addresses to reach the destination buffers that |
---|
1639 | // can be located in remote clusters. We use either a _physical_memcpy(), |
---|
1640 | // or a _dma_physical_copy() if DMA is available. |
---|
1641 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
1642 | void load_one_elf_file( unsigned int is_kernel, // kernel file if non zero |
---|
1643 | char* pathname, |
---|
1644 | unsigned int vspace_id ) // to scan the proper vspace |
---|
1645 | { |
---|
1646 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1647 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
1648 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
1649 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
1650 | |
---|
1651 | unsigned int seg_id; |
---|
1652 | |
---|
1653 | #if BOOT_DEBUG_ELF |
---|
1654 | _puts("\n[BOOT DEBUG] Start searching file "); |
---|
1655 | _puts( pathname ); |
---|
1656 | _puts(" at cycle "); |
---|
1657 | _putd( _get_proctime() ); |
---|
1658 | _puts("\n"); |
---|
1659 | #endif |
---|
1660 | |
---|
1661 | // open .elf file |
---|
1662 | int fd_id = _fat_open( IOC_BOOT_MODE, |
---|
1663 | pathname, |
---|
1664 | 0 ); // no creation |
---|
1665 | if ( fd_id < 0 ) |
---|
1666 | { |
---|
1667 | _puts("\n[BOOT ERROR] load_one_elf_file() : "); |
---|
1668 | _puts( pathname ); |
---|
1669 | _puts(" not found\n"); |
---|
1670 | _exit(); |
---|
1671 | } |
---|
1672 | |
---|
1673 | // check buffer size versus file size |
---|
1674 | if ( fat.fd[fd_id].file_size > GIET_ELF_BUFFER_SIZE ) |
---|
1675 | { |
---|
1676 | _puts("\n[BOOT ERROR] in load_one_elf_file() : "); |
---|
1677 | _puts( pathname ); |
---|
1678 | _puts(" size = "); |
---|
1679 | _putx( fat.fd[fd_id].file_size ); |
---|
1680 | _puts("\n exceeds the GIET_ELF_BUFFERSIZE = "); |
---|
1681 | _putx( GIET_ELF_BUFFER_SIZE ); |
---|
1682 | _puts("\n"); |
---|
1683 | _exit(); |
---|
1684 | } |
---|
1685 | |
---|
1686 | // compute number of sectors |
---|
1687 | unsigned int nbytes = fat.fd[fd_id].file_size; |
---|
1688 | unsigned int nsectors = nbytes>>9; |
---|
1689 | if( nbytes & 0x1FF) nsectors++; |
---|
1690 | |
---|
1691 | // load file in elf buffer |
---|
1692 | if( _fat_read( IOC_BOOT_MODE, |
---|
1693 | fd_id, |
---|
1694 | boot_elf_buffer, |
---|
1695 | nsectors, |
---|
1696 | 0 ) != nsectors ) |
---|
1697 | { |
---|
1698 | _puts("\n[BOOT ERROR] load_one_elf_file() : unexpected EOF for file "); |
---|
1699 | _puts( pathname ); |
---|
1700 | _puts("\n"); |
---|
1701 | _exit(); |
---|
1702 | } |
---|
1703 | |
---|
1704 | // Check ELF Magic Number in ELF header |
---|
1705 | Elf32_Ehdr* elf_header_ptr = (Elf32_Ehdr*)boot_elf_buffer; |
---|
1706 | |
---|
1707 | if ( (elf_header_ptr->e_ident[EI_MAG0] != ELFMAG0) || |
---|
1708 | (elf_header_ptr->e_ident[EI_MAG1] != ELFMAG1) || |
---|
1709 | (elf_header_ptr->e_ident[EI_MAG2] != ELFMAG2) || |
---|
1710 | (elf_header_ptr->e_ident[EI_MAG3] != ELFMAG3) ) |
---|
1711 | { |
---|
1712 | _puts("\n[BOOT ERROR] load_elf() : file "); |
---|
1713 | _puts( pathname ); |
---|
1714 | _puts(" does not use ELF format\n"); |
---|
1715 | _exit(); |
---|
1716 | } |
---|
1717 | |
---|
1718 | // get program header table pointer |
---|
1719 | unsigned int pht_index = elf_header_ptr->e_phoff; |
---|
1720 | if( pht_index == 0 ) |
---|
1721 | { |
---|
1722 | _puts("\n[BOOT ERROR] load_one_elf_file() : file "); |
---|
1723 | _puts( pathname ); |
---|
1724 | _puts(" does not contain loadable segment\n"); |
---|
1725 | _exit(); |
---|
1726 | } |
---|
1727 | Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(boot_elf_buffer + pht_index); |
---|
1728 | |
---|
1729 | // get number of segments |
---|
1730 | unsigned int nsegments = elf_header_ptr->e_phnum; |
---|
1731 | |
---|
1732 | _puts("\n[BOOT] File "); |
---|
1733 | _puts( pathname ); |
---|
1734 | _puts(" loaded at cycle "); |
---|
1735 | _putd( _get_proctime() ); |
---|
1736 | _puts("\n"); |
---|
1737 | |
---|
1738 | // Loop on loadable segments in the .elf file |
---|
1739 | for (seg_id = 0 ; seg_id < nsegments ; seg_id++) |
---|
1740 | { |
---|
1741 | if(elf_pht_ptr[seg_id].p_type == PT_LOAD) |
---|
1742 | { |
---|
1743 | // Get segment attributes |
---|
1744 | unsigned int seg_vaddr = elf_pht_ptr[seg_id].p_vaddr; |
---|
1745 | unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset; |
---|
1746 | unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz; |
---|
1747 | unsigned int seg_memsz = elf_pht_ptr[seg_id].p_memsz; |
---|
1748 | |
---|
1749 | #if BOOT_DEBUG_ELF |
---|
1750 | _puts(" - segment "); |
---|
1751 | _putd( seg_id ); |
---|
1752 | _puts(" / vaddr = "); |
---|
1753 | _putx( seg_vaddr ); |
---|
1754 | _puts(" / file_size = "); |
---|
1755 | _putx( seg_filesz ); |
---|
1756 | _puts("\n"); |
---|
1757 | #endif |
---|
1758 | |
---|
1759 | if( seg_memsz < seg_filesz ) |
---|
1760 | { |
---|
1761 | _puts("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = "); |
---|
1762 | _putx( seg_vaddr ); |
---|
1763 | _puts(" in file "); |
---|
1764 | _puts( pathname ); |
---|
1765 | _puts(" has memsz < filesz \n"); |
---|
1766 | _exit(); |
---|
1767 | } |
---|
1768 | |
---|
1769 | // fill empty space with 0 as required |
---|
1770 | if( seg_memsz > seg_filesz ) |
---|
1771 | { |
---|
1772 | unsigned int i; |
---|
1773 | for( i = seg_filesz ; i < seg_memsz ; i++ ) boot_elf_buffer[i+seg_offset] = 0; |
---|
1774 | } |
---|
1775 | |
---|
1776 | unsigned int src_vaddr = (unsigned int)boot_elf_buffer + seg_offset; |
---|
1777 | |
---|
1778 | // search all vsegs matching the virtual address |
---|
1779 | unsigned int vseg_first; |
---|
1780 | unsigned int vseg_last; |
---|
1781 | unsigned int vseg_id; |
---|
1782 | unsigned int found = 0; |
---|
1783 | if ( is_kernel ) |
---|
1784 | { |
---|
1785 | vseg_first = 0; |
---|
1786 | vseg_last = header->globals; |
---|
1787 | } |
---|
1788 | else |
---|
1789 | { |
---|
1790 | vseg_first = vspace[vspace_id].vseg_offset; |
---|
1791 | vseg_last = vseg_first + vspace[vspace_id].vsegs; |
---|
1792 | } |
---|
1793 | |
---|
1794 | for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ ) |
---|
1795 | { |
---|
1796 | if ( seg_vaddr == vseg[vseg_id].vbase ) // matching |
---|
1797 | { |
---|
1798 | found = 1; |
---|
1799 | |
---|
1800 | // get destination buffer physical address and size |
---|
1801 | paddr_t seg_paddr = vseg[vseg_id].pbase; |
---|
1802 | unsigned int vobj_id = vseg[vseg_id].vobj_offset; |
---|
1803 | unsigned int seg_size = vobj[vobj_id].length; |
---|
1804 | |
---|
1805 | #if BOOT_DEBUG_ELF |
---|
1806 | _puts(" loaded into vseg "); |
---|
1807 | _puts( vseg[vseg_id].name ); |
---|
1808 | _puts(" at paddr = "); |
---|
1809 | _putl( seg_paddr ); |
---|
1810 | _puts(" (buffer size = "); |
---|
1811 | _putx( seg_size ); |
---|
1812 | _puts(")\n"); |
---|
1813 | #endif |
---|
1814 | // check vseg size |
---|
1815 | if ( seg_size < seg_filesz ) |
---|
1816 | { |
---|
1817 | _puts("\n[BOOT ERROR] in load_one_elf_file()\n"); |
---|
1818 | _puts("vseg "); |
---|
1819 | _puts( vseg[vseg_id].name ); |
---|
1820 | _puts(" is to small for loadable segment "); |
---|
1821 | _putx( seg_vaddr ); |
---|
1822 | _puts(" in file "); |
---|
1823 | _puts( pathname ); |
---|
1824 | _puts(" \n"); |
---|
1825 | _exit(); |
---|
1826 | } |
---|
1827 | |
---|
1828 | // copy the segment from boot buffer to destination buffer |
---|
1829 | // using DMA channel[0,0,0] if it is available. |
---|
1830 | if( NB_DMA_CHANNELS > 0 ) |
---|
1831 | { |
---|
1832 | _dma_physical_copy( 0, // DMA in cluster[0,0] |
---|
1833 | 0, // DMA channel 0 |
---|
1834 | (paddr_t)seg_paddr, // destination paddr |
---|
1835 | (paddr_t)src_vaddr, // source paddr |
---|
1836 | seg_filesz ); // size |
---|
1837 | } |
---|
1838 | else |
---|
1839 | { |
---|
1840 | _physical_memcpy( (paddr_t)seg_paddr, // destination paddr |
---|
1841 | (paddr_t)src_vaddr, // source paddr |
---|
1842 | seg_filesz ); // size |
---|
1843 | } |
---|
1844 | } |
---|
1845 | } // end for vsegs in vspace |
---|
1846 | |
---|
1847 | // check at least one matching vseg |
---|
1848 | if ( found == 0 ) |
---|
1849 | { |
---|
1850 | _puts("\n[BOOT ERROR] in load_one_elf_file()\n"); |
---|
1851 | _puts("vseg for loadable segment "); |
---|
1852 | _putx( seg_vaddr ); |
---|
1853 | _puts(" in file "); |
---|
1854 | _puts( pathname ); |
---|
1855 | _puts(" not found: \n"); |
---|
1856 | _puts(" check consistency between the .py and .ld files...\n"); |
---|
1857 | _exit(); |
---|
1858 | } |
---|
1859 | } |
---|
1860 | } // end for loadable segments |
---|
1861 | |
---|
1862 | // close .elf file |
---|
1863 | _fat_close( fd_id ); |
---|
1864 | |
---|
1865 | } // end load_one_elf_file() |
---|
1866 | |
---|
1867 | |
---|
1868 | /////i//////////////////////////////////////////////////////////////////////////////// |
---|
1869 | // This function uses the map.bin data structure to load the "kernel.elf" file |
---|
1870 | // as well as the various "application.elf" files into memory. |
---|
1871 | // - The "preloader.elf" file is not loaded, because it has been burned in the ROM. |
---|
1872 | // - The "boot.elf" file is not loaded, because it has been loaded by the preloader. |
---|
1873 | // This function scans all vobjs defined in the map.bin data structure to collect |
---|
1874 | // all .elf files pathnames, and calls the load_one_elf_file() for each .elf file. |
---|
1875 | // As the code can be replicated in several vsegs, the same code can be copied |
---|
1876 | // in one or several clusters by the load_one_elf_file() function. |
---|
1877 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
1878 | void boot_elf_load() |
---|
1879 | { |
---|
1880 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1881 | mapping_vspace_t* vspace = _get_vspace_base( header ); |
---|
1882 | mapping_vobj_t* vobj = _get_vobj_base( header ); |
---|
1883 | unsigned int vspace_id; |
---|
1884 | unsigned int vobj_id; |
---|
1885 | unsigned int found; |
---|
1886 | |
---|
1887 | // Scan all vobjs corresponding to global vsegs, |
---|
1888 | // to find the pathname to the kernel.elf file |
---|
1889 | found = 0; |
---|
1890 | for( vobj_id = 0 ; vobj_id < header->globals ; vobj_id++ ) |
---|
1891 | { |
---|
1892 | if(vobj[vobj_id].type == VOBJ_TYPE_ELF) |
---|
1893 | { |
---|
1894 | found = 1; |
---|
1895 | break; |
---|
1896 | } |
---|
1897 | } |
---|
1898 | |
---|
1899 | // We need one kernel.elf file |
---|
1900 | if (found == 0) |
---|
1901 | { |
---|
1902 | _puts("[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n"); |
---|
1903 | _exit(); |
---|
1904 | } |
---|
1905 | |
---|
1906 | // Load the kernel |
---|
1907 | load_one_elf_file( 1, // kernel file |
---|
1908 | vobj[vobj_id].binpath, // file pathname |
---|
1909 | 0 ); // vspace 0 |
---|
1910 | |
---|
1911 | // loop on the vspaces, scanning all vobjs in the vspace, |
---|
1912 | // to find the pathname of the .elf file associated to the vspace. |
---|
1913 | for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ ) |
---|
1914 | { |
---|
1915 | // loop on the vobjs in vspace (vobj_id is the global index) |
---|
1916 | unsigned int found = 0; |
---|
1917 | for (vobj_id = vspace[vspace_id].vobj_offset; |
---|
1918 | vobj_id < (vspace[vspace_id].vobj_offset + vspace[vspace_id].vobjs); |
---|
1919 | vobj_id++) |
---|
1920 | { |
---|
1921 | if(vobj[vobj_id].type == VOBJ_TYPE_ELF) |
---|
1922 | { |
---|
1923 | found = 1; |
---|
1924 | break; |
---|
1925 | } |
---|
1926 | } |
---|
1927 | |
---|
1928 | // We want one .elf file per vspace |
---|
1929 | if (found == 0) |
---|
1930 | { |
---|
1931 | _puts("[BOOT ERROR] boot_elf_load() : .elf file not found for vspace "); |
---|
1932 | _puts( vspace[vspace_id].name ); |
---|
1933 | _puts("\n"); |
---|
1934 | _exit(); |
---|
1935 | } |
---|
1936 | |
---|
1937 | load_one_elf_file( 0, // not a kernel file |
---|
1938 | vobj[vobj_id].binpath, // file pathname |
---|
1939 | vspace_id ); // vspace index |
---|
1940 | |
---|
1941 | } // end for vspaces |
---|
1942 | |
---|
1943 | } // end boot_elf_load() |
---|
1944 | |
---|
1945 | //////////////////////////////////////////////////////////////////////////////// |
---|
1946 | // This function intializes the periherals and coprocessors, as specified |
---|
1947 | // in the mapping_info file. |
---|
1948 | //////////////////////////////////////////////////////////////////////////////// |
---|
1949 | void boot_peripherals_init() |
---|
1950 | { |
---|
1951 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1952 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
1953 | mapping_periph_t * periph = _get_periph_base(header); |
---|
1954 | mapping_vobj_t * vobj = _get_vobj_base(header); |
---|
1955 | mapping_coproc_t * coproc = _get_coproc_base(header); |
---|
1956 | mapping_cp_port_t * cp_port = _get_cp_port_base(header); |
---|
1957 | mapping_irq_t * irq = _get_irq_base(header); |
---|
1958 | |
---|
1959 | unsigned int cluster_id; |
---|
1960 | unsigned int periph_id; |
---|
1961 | unsigned int coproc_id; |
---|
1962 | unsigned int cp_port_id; |
---|
1963 | unsigned int channel_id; |
---|
1964 | |
---|
1965 | // loop on all physical clusters |
---|
1966 | for (cluster_id = 0; cluster_id < X_SIZE*Y_SIZE; cluster_id++) |
---|
1967 | { |
---|
1968 | // computes cluster coordinates |
---|
1969 | unsigned int x = cluster[cluster_id].x; |
---|
1970 | unsigned int y = cluster[cluster_id].y; |
---|
1971 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1972 | |
---|
1973 | #if BOOT_DEBUG_PERI |
---|
1974 | _puts("\n[BOOT DEBUG] Peripherals initialisation in cluster["); |
---|
1975 | _putd( x ); |
---|
1976 | _puts(","); |
---|
1977 | _putd( y ); |
---|
1978 | _puts("]\n"); |
---|
1979 | #endif |
---|
1980 | |
---|
1981 | // loop on peripherals |
---|
1982 | for (periph_id = cluster[cluster_id].periph_offset; |
---|
1983 | periph_id < cluster[cluster_id].periph_offset + |
---|
1984 | cluster[cluster_id].periphs; periph_id++) |
---|
1985 | { |
---|
1986 | unsigned int type = periph[periph_id].type; |
---|
1987 | unsigned int subtype = periph[periph_id].subtype; |
---|
1988 | unsigned int channels = periph[periph_id].channels; |
---|
1989 | |
---|
1990 | switch (type) |
---|
1991 | { |
---|
1992 | case PERIPH_TYPE_IOC: // vci_block_device component |
---|
1993 | { |
---|
1994 | if ( subtype == PERIPH_SUBTYPE_BDV ) |
---|
1995 | { |
---|
1996 | _bdv_init(); |
---|
1997 | } |
---|
1998 | else if ( subtype == PERIPH_SUBTYPE_HBA ) |
---|
1999 | { |
---|
2000 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
2001 | _hba_init( channel_id ); |
---|
2002 | } |
---|
2003 | else if ( subtype == PERIPH_SUBTYPE_SPI ) |
---|
2004 | { |
---|
2005 | //TODO |
---|
2006 | } |
---|
2007 | break; |
---|
2008 | } |
---|
2009 | case PERIPH_TYPE_TTY: // vci_multi_tty component |
---|
2010 | { |
---|
2011 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
2012 | { |
---|
2013 | _tty_init( channel_id ); |
---|
2014 | } |
---|
2015 | break; |
---|
2016 | } |
---|
2017 | case PERIPH_TYPE_NIC: // vci_multi_nic component |
---|
2018 | { |
---|
2019 | _nic_global_init( 1, // broadcast accepted |
---|
2020 | 1, // bypass activated |
---|
2021 | 0, // tdm non activated |
---|
2022 | 0 ); // tdm period |
---|
2023 | break; |
---|
2024 | } |
---|
2025 | case PERIPH_TYPE_IOB: // vci_io_bridge component |
---|
2026 | { |
---|
2027 | if (GIET_USE_IOMMU) |
---|
2028 | { |
---|
2029 | // TODO |
---|
2030 | // get the iommu page table physical address |
---|
2031 | // set IOMMU page table address |
---|
2032 | // pseg_base[IOB_IOMMU_PTPR] = ptab_pbase; |
---|
2033 | // activate IOMMU |
---|
2034 | // pseg_base[IOB_IOMMU_ACTIVE] = 1; |
---|
2035 | } |
---|
2036 | break; |
---|
2037 | } |
---|
2038 | case PERIPH_TYPE_PIC: // vci_iopic component |
---|
2039 | { |
---|
2040 | // scan all IRQs defined in mapping for PIC component, |
---|
2041 | // and initialises addresses for WTI IRQs |
---|
2042 | for ( channel_id = periph[periph_id].irq_offset ; |
---|
2043 | channel_id < periph[periph_id].irq_offset + periph[periph_id].irqs ; |
---|
2044 | channel_id++ ) |
---|
2045 | { |
---|
2046 | unsigned int hwi_id = irq[channel_id].srcid; // HWI index in PIC |
---|
2047 | unsigned int wti_id = irq[channel_id].dest_id; // WTI index in XCU |
---|
2048 | unsigned int cluster_xy = irq[channel_id].dest_xy; // XCU coordinates |
---|
2049 | unsigned int vaddr; |
---|
2050 | |
---|
2051 | _xcu_get_wti_address( wti_id, &vaddr ); |
---|
2052 | _pic_init( hwi_id, vaddr, cluster_xy ); |
---|
2053 | |
---|
2054 | #if BOOT_DEBUG_PERI |
---|
2055 | unsigned int address = _pic_get_register( channel_id, IOPIC_ADDRESS ); |
---|
2056 | unsigned int extend = _pic_get_register( channel_id, IOPIC_EXTEND ); |
---|
2057 | _puts(" hwi_index = "); |
---|
2058 | _putd( hwi_id ); |
---|
2059 | _puts(" / wti_index = "); |
---|
2060 | _putd( wti_id ); |
---|
2061 | _puts(" / vaddr = "); |
---|
2062 | _putx( vaddr ); |
---|
2063 | _puts(" in cluster["); |
---|
2064 | _putd( cluster_xy >> Y_WIDTH ); |
---|
2065 | _puts(","); |
---|
2066 | _putd( cluster_xy & ((1<<Y_WIDTH)-1) ); |
---|
2067 | _puts("] / checked_xcu_paddr = "); |
---|
2068 | _putl( (paddr_t)address + (((paddr_t)extend)<<32) ); |
---|
2069 | _puts("\n"); |
---|
2070 | #endif |
---|
2071 | } |
---|
2072 | break; |
---|
2073 | } |
---|
2074 | } // end switch periph type |
---|
2075 | } // end for periphs |
---|
2076 | |
---|
2077 | #if BOOT_DEBUG_PERI |
---|
2078 | _puts("\n[BOOT DEBUG] Coprocessors initialisation in cluster["); |
---|
2079 | _putd( x ); |
---|
2080 | _puts(","); |
---|
2081 | _putd( y ); |
---|
2082 | _puts("]\n"); |
---|
2083 | #endif |
---|
2084 | |
---|
2085 | // loop on coprocessors |
---|
2086 | for ( coproc_id = cluster[cluster_id].coproc_offset; |
---|
2087 | coproc_id < cluster[cluster_id].coproc_offset + |
---|
2088 | cluster[cluster_id].coprocs; coproc_id++ ) |
---|
2089 | { |
---|
2090 | |
---|
2091 | #if BOOT_DEBUG_PERI |
---|
2092 | _puts("- coprocessor name : "); |
---|
2093 | _puts(coproc[coproc_id].name); |
---|
2094 | _puts(" / nb ports = "); |
---|
2095 | _putd((unsigned int) coproc[coproc_id].ports); |
---|
2096 | _puts("\n"); |
---|
2097 | #endif |
---|
2098 | // loop on the coprocessor ports |
---|
2099 | for ( cp_port_id = coproc[coproc_id].port_offset; |
---|
2100 | cp_port_id < coproc[coproc_id].port_offset + coproc[coproc_id].ports; |
---|
2101 | cp_port_id++ ) |
---|
2102 | { |
---|
2103 | // get global index of associted vobj |
---|
2104 | unsigned int vobj_id = cp_port[cp_port_id].mwmr_vobj_id; |
---|
2105 | |
---|
2106 | // get MWMR channel base address |
---|
2107 | page_table_t* ptab = (page_table_t*)_ptabs_vaddr[0][x][y]; |
---|
2108 | unsigned int vbase = vobj[vobj_id].vbase; |
---|
2109 | unsigned int ppn; |
---|
2110 | unsigned int flags; |
---|
2111 | paddr_t pbase; |
---|
2112 | |
---|
2113 | _v2p_translate( ptab, |
---|
2114 | vbase>>12 , |
---|
2115 | &ppn, |
---|
2116 | &flags ); |
---|
2117 | |
---|
2118 | pbase = ((paddr_t)ppn)<<12; |
---|
2119 | |
---|
2120 | // initialise cp_port |
---|
2121 | _mwr_hw_init( cluster_xy, |
---|
2122 | cp_port_id, |
---|
2123 | cp_port[cp_port_id].direction, |
---|
2124 | pbase ); |
---|
2125 | #if BOOT_DEBUG_PERI |
---|
2126 | _puts(" port direction: "); |
---|
2127 | _putd( (unsigned int)cp_port[cp_port_id].direction ); |
---|
2128 | _puts(" / mwmr_channel_pbase = "); |
---|
2129 | _putl( pbase ); |
---|
2130 | _puts(" / name = "); |
---|
2131 | _puts(vobj[vobj_id].name); |
---|
2132 | _puts("\n"); |
---|
2133 | #endif |
---|
2134 | } // end for cp_ports |
---|
2135 | } // end for coprocs |
---|
2136 | } // end for clusters |
---|
2137 | } // end boot_peripherals_init() |
---|
2138 | |
---|
2139 | ///////////////////////////////////////////////////////////////////////// |
---|
2140 | // This function initialises the physical memory allocators in each |
---|
2141 | // cluster containing a RAM pseg. |
---|
2142 | ///////////////////////////////////////////////////////////////////////// |
---|
2143 | void boot_pmem_init() |
---|
2144 | { |
---|
2145 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
2146 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
2147 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
2148 | |
---|
2149 | unsigned int cluster_id; |
---|
2150 | unsigned int pseg_id; |
---|
2151 | |
---|
2152 | // scan all clusters |
---|
2153 | for ( cluster_id = 0 ; cluster_id < X_SIZE*Y_SIZE ; cluster_id++ ) |
---|
2154 | { |
---|
2155 | // scan the psegs in cluster to find first pseg of type RAM |
---|
2156 | unsigned int pseg_min = cluster[cluster_id].pseg_offset; |
---|
2157 | unsigned int pseg_max = pseg_min + cluster[cluster_id].psegs; |
---|
2158 | for ( pseg_id = pseg_min ; pseg_id < pseg_max ; pseg_id++ ) |
---|
2159 | { |
---|
2160 | if ( pseg[pseg_id].type == PSEG_TYPE_RAM ) |
---|
2161 | { |
---|
2162 | unsigned int x = cluster[cluster_id].x; |
---|
2163 | unsigned int y = cluster[cluster_id].y; |
---|
2164 | unsigned int base = (unsigned int)pseg[pseg_id].base; |
---|
2165 | unsigned int size = (unsigned int)pseg[pseg_id].length; |
---|
2166 | _pmem_alloc_init( x, y, base, size ); |
---|
2167 | |
---|
2168 | #if BOOT_DEBUG_PT |
---|
2169 | _puts("\n[BOOT DEBUG] pmem allocator initialised in cluster["); |
---|
2170 | _putd( x ); |
---|
2171 | _puts(","); |
---|
2172 | _putd( y ); |
---|
2173 | _puts("] base = "); |
---|
2174 | _putx( base ); |
---|
2175 | _puts(" / size = "); |
---|
2176 | _putx( size ); |
---|
2177 | _puts("\n"); |
---|
2178 | #endif |
---|
2179 | break; |
---|
2180 | } |
---|
2181 | } |
---|
2182 | } |
---|
2183 | } // end boot_pmem_init() |
---|
2184 | |
---|
2185 | ///////////////////////////////////////////////////////////////////////// |
---|
2186 | // This function is the entry point of the boot code for all processors. |
---|
2187 | // Most of this code is executed by Processor 0 only. |
---|
2188 | ///////////////////////////////////////////////////////////////////////// |
---|
2189 | void boot_init() |
---|
2190 | { |
---|
2191 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
2192 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
2193 | unsigned int gpid = _get_procid(); |
---|
2194 | |
---|
2195 | if ( gpid == 0 ) // only Processor 0 does it |
---|
2196 | { |
---|
2197 | _puts("\n[BOOT] boot_init start at cycle "); |
---|
2198 | _putd(_get_proctime()); |
---|
2199 | _puts("\n"); |
---|
2200 | |
---|
2201 | // initialises the FAT |
---|
2202 | _fat_init( IOC_BOOT_MODE ); |
---|
2203 | |
---|
2204 | _puts("\n[BOOT] Fat initialised at cycle "); |
---|
2205 | _putd(_get_proctime()); |
---|
2206 | _puts("\n"); |
---|
2207 | |
---|
2208 | // Load the map.bin file into memory and check it |
---|
2209 | boot_mapping_init(); |
---|
2210 | |
---|
2211 | _puts("\n[BOOT] Mapping \""); |
---|
2212 | _puts( header->name ); |
---|
2213 | _puts("\" loaded at cycle "); |
---|
2214 | _putd(_get_proctime()); |
---|
2215 | _puts("\n"); |
---|
2216 | |
---|
2217 | // Initializes the physical memory allocators |
---|
2218 | boot_pmem_init(); |
---|
2219 | |
---|
2220 | _puts("\n[BOOT] Physical memory allocators initialised at cycle "); |
---|
2221 | _putd(_get_proctime()); |
---|
2222 | _puts("\n"); |
---|
2223 | |
---|
2224 | // Build page tables |
---|
2225 | boot_ptabs_init(); |
---|
2226 | |
---|
2227 | _puts("\n[BOOT] Page tables initialised at cycle "); |
---|
2228 | _putd(_get_proctime()); |
---|
2229 | _puts("\n"); |
---|
2230 | |
---|
2231 | // Activate MMU for proc [0,0,0] |
---|
2232 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][0][0]>>13) ); |
---|
2233 | _set_mmu_mode( 0xF ); |
---|
2234 | |
---|
2235 | _puts("\n[BOOT] Processor[0,0,0] : MMU activation at cycle "); |
---|
2236 | _putd(_get_proctime()); |
---|
2237 | _puts("\n"); |
---|
2238 | |
---|
2239 | // Initialise private vobjs in vspaces |
---|
2240 | boot_vobjs_init(); |
---|
2241 | |
---|
2242 | _puts("\n[BOOT] Private vobjs initialised at cycle "); |
---|
2243 | _putd(_get_proctime()); |
---|
2244 | _puts("\n"); |
---|
2245 | |
---|
2246 | // Initialise schedulers |
---|
2247 | boot_schedulers_init(); |
---|
2248 | |
---|
2249 | _puts("\n[BOOT] Schedulers initialised at cycle "); |
---|
2250 | _putd(_get_proctime()); |
---|
2251 | _puts("\n"); |
---|
2252 | |
---|
2253 | // Set CP0_SCHED register for proc [0,0,0] |
---|
2254 | _set_sched( (unsigned int)_schedulers[0][0][0] ); |
---|
2255 | |
---|
2256 | // Initialise non replicated peripherals |
---|
2257 | boot_peripherals_init(); |
---|
2258 | |
---|
2259 | _puts("\n[BOOT] Non replicated peripherals initialised at cycle "); |
---|
2260 | _putd(_get_proctime()); |
---|
2261 | _puts("\n"); |
---|
2262 | |
---|
2263 | // Loading all .elf files |
---|
2264 | boot_elf_load(); |
---|
2265 | |
---|
2266 | // P0 starts all other processors |
---|
2267 | unsigned int clusterid, p; |
---|
2268 | |
---|
2269 | for ( clusterid = 0 ; clusterid < X_SIZE*Y_SIZE ; clusterid++ ) |
---|
2270 | { |
---|
2271 | unsigned int nprocs = cluster[clusterid].procs; |
---|
2272 | unsigned int x = cluster[clusterid].x; |
---|
2273 | unsigned int y = cluster[clusterid].y; |
---|
2274 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
2275 | |
---|
2276 | for ( p = 0 ; p < nprocs; p++ ) |
---|
2277 | { |
---|
2278 | if ( (nprocs > 0) && ((clusterid != 0) || (p != 0)) ) |
---|
2279 | { |
---|
2280 | _xcu_send_wti( cluster_xy, p, (unsigned int)boot_entry ); |
---|
2281 | } |
---|
2282 | } |
---|
2283 | } |
---|
2284 | |
---|
2285 | } // end monoprocessor boot |
---|
2286 | |
---|
2287 | /////////////////////////////////////////////////////////////////////////////// |
---|
2288 | // Parallel execution starts actually here |
---|
2289 | /////////////////////////////////////////////////////////////////////////////// |
---|
2290 | |
---|
2291 | // all processor initialise the SCHED register |
---|
2292 | // from the _schedulers[x][y][lpid array] |
---|
2293 | unsigned int cluster_xy = gpid >> P_WIDTH; |
---|
2294 | unsigned int lpid = gpid & ((1<<P_WIDTH)-1); |
---|
2295 | unsigned int x = cluster_xy >> Y_WIDTH; |
---|
2296 | unsigned int y = cluster_xy & ((1<<Y_WIDTH)-1); |
---|
2297 | _set_sched( (unsigned int)_schedulers[x][y][lpid] ); |
---|
2298 | |
---|
2299 | // all processors (but Proc[0,0,0]) activate MMU |
---|
2300 | if ( gpid != 0 ) |
---|
2301 | { |
---|
2302 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][x][y]>>13) ); |
---|
2303 | _set_mmu_mode( 0xF ); |
---|
2304 | } |
---|
2305 | |
---|
2306 | // all processors reset BEV bit in the status register to use |
---|
2307 | // the GIET_VM exception handler instead of the PRELOADER exception handler |
---|
2308 | _set_sr( 0 ); |
---|
2309 | |
---|
2310 | // all processors jump to kernel_init |
---|
2311 | // using the address defined in the giet_vsegs.ld file |
---|
2312 | unsigned int kernel_entry = (unsigned int)&kernel_init_vbase; |
---|
2313 | asm volatile( "jr %0" ::"r"(kernel_entry) ); |
---|
2314 | |
---|
2315 | } // end boot_init() |
---|
2316 | |
---|
2317 | |
---|
2318 | // Local Variables: |
---|
2319 | // tab-width: 4 |
---|
2320 | // c-basic-offset: 4 |
---|
2321 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
2322 | // indent-tabs-mode: nil |
---|
2323 | // End: |
---|
2324 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
2325 | |
---|