1 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : boot.c |
---|
3 | // Date : 01/11/2013 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The boot.c file contains the bootloader for the GIET-VM static OS. |
---|
8 | // |
---|
9 | // This code has been written for the MIPS32 processor. |
---|
10 | // The virtual adresses are on 32 bits and use the (unsigned int) type. The |
---|
11 | // physicals addresses can have up to 40 bits, and use the (unsigned long long) type. |
---|
12 | // It natively supports clusterised shared memory multi-processors architectures, |
---|
13 | // where each processor is identified by a composite index [x,y,p], |
---|
14 | // and where there is one physical memory bank per cluster. |
---|
15 | // |
---|
16 | // The boot.elf file is stored on disk and is loaded into memory by proc[0,0,0], |
---|
17 | // executing the generic preloader (stored in ROM). The boot-loader code itself |
---|
18 | // is executed in parallel by all proc[x,y,0], and performs the following tasks: |
---|
19 | // - load into memory various binary files, from a FAT32 file system. |
---|
20 | // - build the various page tables (one page table per vspace). |
---|
21 | // - initialize the shedulers (one scheduler per processor). |
---|
22 | // - initialize the external peripherals. |
---|
23 | // |
---|
24 | // 1) The binary files to be loaded are: |
---|
25 | // - the "map.bin" file contains the hardware architecture description and the |
---|
26 | // mapping directives. It must be stored in the the seg_boot_mapping segment |
---|
27 | // (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file). |
---|
28 | // - the "kernel.elf" file contains the kernel binary code and data. |
---|
29 | // - the various "application.elf" files. |
---|
30 | // |
---|
31 | // 2) The "map.bin" file contains the C binary structure defining: |
---|
32 | // - the hardware architecture: number of clusters, number or processors, |
---|
33 | // size of the memory segments, and peripherals in each cluster. |
---|
34 | // - The structure of the various multi-threaded software applications: |
---|
35 | // number of tasks, communication channels. |
---|
36 | // - The mapping: placement of virtual segments (vseg) in the physical |
---|
37 | // segments (pseg), placement of software tasks on the processors, |
---|
38 | // |
---|
39 | // 3) The GIET-VM uses the paged virtual memory to provides two services: |
---|
40 | // - classical memory protection, when several independant applications compiled |
---|
41 | // in different virtual spaces are executing on the same hardware platform. |
---|
42 | // - data placement in NUMA architectures, to control the placement |
---|
43 | // of the software objects (vsegs) on the physical memory banks (psegs). |
---|
44 | // |
---|
45 | // The max number of vspaces (GIET_NB_VSPACE_MAX) is a configuration parameter, |
---|
46 | // and - for each application - the tasks are statically allocateded on procesors. |
---|
47 | // The page table are statically build in the boot phase, and they do not |
---|
48 | // change during execution. |
---|
49 | // The GIET_VM uses both small pages (4 Kbytes), and big pages (2 Mbytes). |
---|
50 | // |
---|
51 | // Each page table (one page table per virtual space) is monolithic, and contains |
---|
52 | // one PT1 (8 Kbytes) and a variable number of PT2s (4 Kbytes each). For each vspace, |
---|
53 | // the number of PT2s is defined by the size of the PTAB vseg in the mapping. |
---|
54 | // The PT1 is indexed by the ix1 field (11 bits) of the VPN. Each entry is 32 bits. |
---|
55 | // A PT2 is indexed the ix2 field (9 bits) of the VPN. Each entry is a double word. |
---|
56 | // The first word contains the flags, the second word contains the PPN. |
---|
57 | // The page tables are distributed/replicated in all clusters. |
---|
58 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
59 | // Implementation Notes: |
---|
60 | // |
---|
61 | // 1) The cluster_id variable is a linear index in the mapping_info array of clusters. |
---|
62 | // The cluster_xy variable is the tological index = x << Y_WIDTH + y |
---|
63 | // |
---|
64 | // 2) We set the _tty0_boot_mode variable to force the _printf() function to use |
---|
65 | // the tty0_spin_lock for exclusive access to TTY0. |
---|
66 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
67 | |
---|
68 | #include <giet_config.h> |
---|
69 | #include <hard_config.h> |
---|
70 | #include <mapping_info.h> |
---|
71 | #include <kernel_malloc.h> |
---|
72 | #include <memspace.h> |
---|
73 | #include <tty_driver.h> |
---|
74 | #include <xcu_driver.h> |
---|
75 | #include <bdv_driver.h> |
---|
76 | #include <hba_driver.h> |
---|
77 | #include <dma_driver.h> |
---|
78 | #include <cma_driver.h> |
---|
79 | #include <nic_driver.h> |
---|
80 | #include <ioc_driver.h> |
---|
81 | #include <iob_driver.h> |
---|
82 | #include <pic_driver.h> |
---|
83 | #include <mwr_driver.h> |
---|
84 | #include <ctx_handler.h> |
---|
85 | #include <irq_handler.h> |
---|
86 | #include <vmem.h> |
---|
87 | #include <pmem.h> |
---|
88 | #include <utils.h> |
---|
89 | #include <tty0.h> |
---|
90 | #include <kernel_locks.h> |
---|
91 | #include <kernel_barriers.h> |
---|
92 | #include <elf-types.h> |
---|
93 | #include <fat32.h> |
---|
94 | #include <mips32_registers.h> |
---|
95 | #include <stdarg.h> |
---|
96 | |
---|
97 | #if !defined(X_SIZE) |
---|
98 | # error: The X_SIZE value must be defined in the 'hard_config.h' file ! |
---|
99 | #endif |
---|
100 | |
---|
101 | #if !defined(Y_SIZE) |
---|
102 | # error: The Y_SIZE value must be defined in the 'hard_config.h' file ! |
---|
103 | #endif |
---|
104 | |
---|
105 | #if !defined(X_WIDTH) |
---|
106 | # error: The X_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
107 | #endif |
---|
108 | |
---|
109 | #if !defined(Y_WIDTH) |
---|
110 | # error: The Y_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
111 | #endif |
---|
112 | |
---|
113 | #if !defined(SEG_BOOT_MAPPING_BASE) |
---|
114 | # error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file ! |
---|
115 | #endif |
---|
116 | |
---|
117 | #if !defined(NB_PROCS_MAX) |
---|
118 | # error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file ! |
---|
119 | #endif |
---|
120 | |
---|
121 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
122 | # error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
123 | #endif |
---|
124 | |
---|
125 | #if !defined(GIET_ELF_BUFFER_SIZE) |
---|
126 | # error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file ! |
---|
127 | #endif |
---|
128 | |
---|
129 | //////////////////////////////////////////////////////////////////////////// |
---|
130 | // Global variables for boot code |
---|
131 | //////////////////////////////////////////////////////////////////////////// |
---|
132 | |
---|
133 | extern void boot_entry(); |
---|
134 | |
---|
135 | // FAT internal representation for boot code |
---|
136 | __attribute__((section(".kdata"))) |
---|
137 | fat32_fs_t fat __attribute__((aligned(512))); |
---|
138 | |
---|
139 | // Temporaty buffer used to load one complete .elf file |
---|
140 | __attribute__((section(".kdata"))) |
---|
141 | char boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(512))); |
---|
142 | |
---|
143 | // Physical memory allocators array (one per cluster) |
---|
144 | __attribute__((section(".kdata"))) |
---|
145 | pmem_alloc_t boot_pmem_alloc[X_SIZE][Y_SIZE]; |
---|
146 | |
---|
147 | // Distributed kernel heap (one per cluster) |
---|
148 | // __attribute__((section(".kdata"))) |
---|
149 | // kernel_heap_t kernel_heap[X_SIZE][Y_SIZE]; |
---|
150 | |
---|
151 | // Schedulers virtual base addresses array (one per processor) |
---|
152 | __attribute__((section(".kdata"))) |
---|
153 | static_scheduler_t* _schedulers[X_SIZE][Y_SIZE][NB_PROCS_MAX]; |
---|
154 | |
---|
155 | // Page tables virtual base addresses array (one per vspace) |
---|
156 | __attribute__((section(".kdata"))) |
---|
157 | unsigned int _ptabs_vaddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
158 | |
---|
159 | // Page tables physical base addresses (one per vspace and per cluster) |
---|
160 | __attribute__((section(".kdata"))) |
---|
161 | paddr_t _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
162 | |
---|
163 | // Page tables pt2 allocators (one per vspace and per cluster) |
---|
164 | __attribute__((section(".kdata"))) |
---|
165 | unsigned int _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
166 | |
---|
167 | // Page tables max_pt2 (same value for all page tables) |
---|
168 | __attribute__((section(".kdata"))) |
---|
169 | unsigned int _ptabs_max_pt2; |
---|
170 | |
---|
171 | // WTI channel allocator (one per cluster) |
---|
172 | __attribute__((section(".kdata"))) |
---|
173 | unsigned int _wti_channel_alloc[X_SIZE][Y_SIZE]; |
---|
174 | |
---|
175 | // boot code uses a spin lock to protect TTY0 |
---|
176 | __attribute__((section(".kdata"))) |
---|
177 | unsigned int _tty0_boot_mode = 1; |
---|
178 | |
---|
179 | __attribute__((section(".kdata"))) |
---|
180 | spin_lock_t _ptabs_spin_lock[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
181 | |
---|
182 | // barrier used by boot code for parallel execution |
---|
183 | __attribute__((section(".kdata"))) |
---|
184 | simple_barrier_t _barrier_all_clusters; |
---|
185 | |
---|
186 | // this variable is defined in the tty0.c file |
---|
187 | extern spin_lock_t _tty0_spin_lock; |
---|
188 | |
---|
189 | ////////////////////////////////////////////////////////////////////////////// |
---|
190 | // This function registers a new PTE1 in the page table defined |
---|
191 | // by the vspace_id argument, and the (x,y) coordinates. |
---|
192 | // It updates only the first level PT1. |
---|
193 | // As each vseg is mapped by a different processor, the PT1 entry cannot |
---|
194 | // be concurrently accessed, and we don't need to take any lock. |
---|
195 | ////////////////////////////////////////////////////////////////////////////// |
---|
196 | void boot_add_pte1( unsigned int vspace_id, |
---|
197 | unsigned int x, |
---|
198 | unsigned int y, |
---|
199 | unsigned int vpn, // 20 bits right-justified |
---|
200 | unsigned int flags, // 10 bits left-justified |
---|
201 | unsigned int ppn ) // 28 bits right-justified |
---|
202 | { |
---|
203 | // compute index in PT1 |
---|
204 | unsigned int ix1 = vpn >> 9; // 11 bits for ix1 |
---|
205 | |
---|
206 | // get page table physical base address |
---|
207 | paddr_t pt1_pbase = _ptabs_paddr[vspace_id][x][y]; |
---|
208 | |
---|
209 | if ( pt1_pbase == 0 ) |
---|
210 | { |
---|
211 | _printf("\n[BOOT ERROR] in boot_add_pte1() : no PTAB in cluster[%d,%d]" |
---|
212 | " containing processors\n", x , y ); |
---|
213 | _exit(); |
---|
214 | } |
---|
215 | |
---|
216 | // compute pte1 : 2 bits V T / 8 bits flags / 3 bits RSVD / 19 bits bppi |
---|
217 | unsigned int pte1 = PTE_V | |
---|
218 | (flags & 0x3FC00000) | |
---|
219 | ((ppn>>9) & 0x0007FFFF); |
---|
220 | |
---|
221 | // write pte1 in PT1 |
---|
222 | _physical_write( pt1_pbase + 4*ix1, pte1 ); |
---|
223 | |
---|
224 | asm volatile ("sync"); |
---|
225 | |
---|
226 | } // end boot_add_pte1() |
---|
227 | |
---|
228 | ////////////////////////////////////////////////////////////////////////////// |
---|
229 | // This function registers a new PTE2 in the page table defined |
---|
230 | // by the vspace_id argument, and the (x,y) coordinates. |
---|
231 | // It updates both the first level PT1 and the second level PT2. |
---|
232 | // As the set of PT2s is implemented as a fixed size array (no dynamic |
---|
233 | // allocation), this function checks a possible overflow of the PT2 array. |
---|
234 | // As a given entry in PT1 can be shared by several vsegs, mapped by |
---|
235 | // different processors, we need to take the lock protecting PTAB[v][x]y]. |
---|
236 | ////////////////////////////////////////////////////////////////////////////// |
---|
237 | void boot_add_pte2( unsigned int vspace_id, |
---|
238 | unsigned int x, |
---|
239 | unsigned int y, |
---|
240 | unsigned int vpn, // 20 bits right-justified |
---|
241 | unsigned int flags, // 10 bits left-justified |
---|
242 | unsigned int ppn ) // 28 bits right-justified |
---|
243 | { |
---|
244 | unsigned int ix1; |
---|
245 | unsigned int ix2; |
---|
246 | paddr_t pt2_pbase; // PT2 physical base address |
---|
247 | paddr_t pte2_paddr; // PTE2 physical address |
---|
248 | unsigned int pt2_id; // PT2 index |
---|
249 | unsigned int ptd; // PTD : entry in PT1 |
---|
250 | |
---|
251 | ix1 = vpn >> 9; // 11 bits for ix1 |
---|
252 | ix2 = vpn & 0x1FF; // 9 bits for ix2 |
---|
253 | |
---|
254 | // get page table physical base address |
---|
255 | paddr_t pt1_pbase = _ptabs_paddr[vspace_id][x][y]; |
---|
256 | |
---|
257 | if ( pt1_pbase == 0 ) |
---|
258 | { |
---|
259 | _printf("\n[BOOT ERROR] in boot_add_pte2() : no PTAB for vspace %d " |
---|
260 | "in cluster[%d,%d]\n", vspace_id , x , y ); |
---|
261 | _exit(); |
---|
262 | } |
---|
263 | |
---|
264 | // get lock protecting PTAB[vspace_id][x][y] |
---|
265 | _spin_lock_acquire( &_ptabs_spin_lock[vspace_id][x][y] ); |
---|
266 | |
---|
267 | // get ptd in PT1 |
---|
268 | ptd = _physical_read( pt1_pbase + 4 * ix1 ); |
---|
269 | |
---|
270 | if ((ptd & PTE_V) == 0) // undefined PTD: compute PT2 base address, |
---|
271 | // and set a new PTD in PT1 |
---|
272 | { |
---|
273 | // get a new pt2_id |
---|
274 | pt2_id = _ptabs_next_pt2[vspace_id][x][y]; |
---|
275 | _ptabs_next_pt2[vspace_id][x][y] = pt2_id + 1; |
---|
276 | |
---|
277 | // check overflow |
---|
278 | if (pt2_id == _ptabs_max_pt2) |
---|
279 | { |
---|
280 | _printf("\n[BOOT ERROR] in boot_add_pte2() : PTAB[%d,%d,%d]" |
---|
281 | " contains not enough PT2s\n", vspace_id, x, y ); |
---|
282 | _exit(); |
---|
283 | } |
---|
284 | |
---|
285 | pt2_pbase = pt1_pbase + PT1_SIZE + PT2_SIZE * pt2_id; |
---|
286 | ptd = PTE_V | PTE_T | (unsigned int) (pt2_pbase >> 12); |
---|
287 | |
---|
288 | // set PTD into PT1 |
---|
289 | _physical_write( pt1_pbase + 4*ix1, ptd); |
---|
290 | } |
---|
291 | else // valid PTD: compute PT2 base address |
---|
292 | { |
---|
293 | pt2_pbase = ((paddr_t)(ptd & 0x0FFFFFFF)) << 12; |
---|
294 | } |
---|
295 | |
---|
296 | // set PTE in PT2 : flags & PPN in two 32 bits words |
---|
297 | pte2_paddr = pt2_pbase + 8 * ix2; |
---|
298 | _physical_write(pte2_paddr , (PTE_V | flags) ); |
---|
299 | _physical_write(pte2_paddr + 4 , ppn ); |
---|
300 | |
---|
301 | // release lock protecting PTAB[vspace_id][x][y] |
---|
302 | _spin_lock_release( &_ptabs_spin_lock[vspace_id][x][y] ); |
---|
303 | |
---|
304 | asm volatile ("sync"); |
---|
305 | |
---|
306 | } // end boot_add_pte2() |
---|
307 | |
---|
308 | //////////////////////////////////////////////////////////////////////////////////// |
---|
309 | // Align the value of paddr or vaddr to the required alignement, |
---|
310 | // defined by alignPow2 == L2(alignement). |
---|
311 | //////////////////////////////////////////////////////////////////////////////////// |
---|
312 | paddr_t paddr_align_to( paddr_t paddr, unsigned int alignPow2 ) |
---|
313 | { |
---|
314 | paddr_t mask = (1 << alignPow2) - 1; |
---|
315 | return ((paddr + mask) & ~mask); |
---|
316 | } |
---|
317 | |
---|
318 | unsigned int vaddr_align_to( unsigned int vaddr, unsigned int alignPow2 ) |
---|
319 | { |
---|
320 | unsigned int mask = (1 << alignPow2) - 1; |
---|
321 | return ((vaddr + mask) & ~mask); |
---|
322 | } |
---|
323 | |
---|
324 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
325 | // This function map a vseg identified by the vseg pointer. |
---|
326 | // |
---|
327 | // A given vseg can be mapped in a Big Physical Pages (BPP: 2 Mbytes) or in a |
---|
328 | // Small Physical Pages (SPP: 4 Kbytes), depending on the "big" attribute of vseg, |
---|
329 | // with the following rules: |
---|
330 | // - SPP : There is only one vseg in a small physical page, but a single vseg |
---|
331 | // can cover several contiguous small physical pages. |
---|
332 | // - BPP : It can exist several vsegs in a single big physical page, and a single |
---|
333 | // vseg can cover several contiguous big physical pages. |
---|
334 | // |
---|
335 | // 1) First step: it computes various vseg attributes and checks |
---|
336 | // alignment constraints. |
---|
337 | // |
---|
338 | // 2) Second step: it allocates the required number of contiguous physical pages, |
---|
339 | // computes the physical base address (if the vseg is not identity mapping), |
---|
340 | // and register it in the vseg pbase field. |
---|
341 | // Only the vsegs used by the boot code and the peripheral vsegs |
---|
342 | // can be identity mapping. The first big physical page in cluster[0,0] |
---|
343 | // is reserved for the boot vsegs. |
---|
344 | // |
---|
345 | // 3) Third step (only for vseg that have the VSEG_TYPE_PTAB): the M page tables |
---|
346 | // associated to the M vspaces must be packed in the same vseg. |
---|
347 | // We divide this vseg in M sub-segments, and compute the vbase and pbase |
---|
348 | // addresses for M page tables, and register these addresses in the _ptabs_paddr |
---|
349 | // and _ptabs_vaddr arrays. |
---|
350 | // |
---|
351 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
352 | void boot_vseg_map( mapping_vseg_t* vseg, |
---|
353 | unsigned int vspace_id ) |
---|
354 | { |
---|
355 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
356 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
357 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
358 | |
---|
359 | //////////// First step : compute vseg attributes |
---|
360 | |
---|
361 | // compute destination cluster pointer & coordinates |
---|
362 | pseg = pseg + vseg->psegid; |
---|
363 | cluster = cluster + pseg->clusterid; |
---|
364 | unsigned int x_dest = cluster->x; |
---|
365 | unsigned int y_dest = cluster->y; |
---|
366 | |
---|
367 | // compute the "big" vseg attribute |
---|
368 | unsigned int big = vseg->big; |
---|
369 | |
---|
370 | // all vsegs must be aligned on 4Kbytes |
---|
371 | if ( vseg->vbase & 0x00000FFF ) |
---|
372 | { |
---|
373 | _printf("\n[BOOT ERROR] vseg %s not aligned : vbase = %x\n", |
---|
374 | vseg->name, vseg->vbase ); |
---|
375 | _exit(); |
---|
376 | } |
---|
377 | |
---|
378 | // compute the "is_ram" vseg attribute |
---|
379 | unsigned int is_ram; |
---|
380 | if ( pseg->type == PSEG_TYPE_RAM ) is_ram = 1; |
---|
381 | else is_ram = 0; |
---|
382 | |
---|
383 | // compute the "is_ptab" attribute |
---|
384 | unsigned int is_ptab; |
---|
385 | if ( vseg->type == VSEG_TYPE_PTAB ) is_ptab = 1; |
---|
386 | else is_ptab = 0; |
---|
387 | |
---|
388 | // compute actual vspace index |
---|
389 | unsigned int vsid; |
---|
390 | if ( vspace_id == 0xFFFFFFFF ) vsid = 0; |
---|
391 | else vsid = vspace_id; |
---|
392 | |
---|
393 | //////////// Second step : compute ppn and npages |
---|
394 | //////////// - if identity mapping : ppn <= vpn |
---|
395 | //////////// - if vseg is periph : ppn <= pseg.base >> 12 |
---|
396 | //////////// - if vseg is ram : ppn <= physical memory allocator |
---|
397 | |
---|
398 | unsigned int ppn; // first physical page index (28 bits = |x|y|bppi|sppi|) |
---|
399 | unsigned int vpn; // first virtual page index (20 bits = |ix1|ix2|) |
---|
400 | unsigned int vpn_max; // last virtual page index (20 bits = |ix1|ix2|) |
---|
401 | |
---|
402 | vpn = vseg->vbase >> 12; |
---|
403 | vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
404 | |
---|
405 | // compute npages |
---|
406 | unsigned int npages; // number of required (big or small) pages |
---|
407 | if ( big == 0 ) npages = vpn_max - vpn + 1; // number of small pages |
---|
408 | else npages = (vpn_max>>9) - (vpn>>9) + 1; // number of big pages |
---|
409 | |
---|
410 | // compute ppn |
---|
411 | if ( vseg->ident ) // identity mapping |
---|
412 | { |
---|
413 | ppn = vpn; |
---|
414 | } |
---|
415 | else // not identity mapping |
---|
416 | { |
---|
417 | if ( is_ram ) // RAM : physical memory allocation required |
---|
418 | { |
---|
419 | // compute pointer on physical memory allocator in dest cluster |
---|
420 | pmem_alloc_t* palloc = &boot_pmem_alloc[x_dest][y_dest]; |
---|
421 | |
---|
422 | if ( big == 0 ) // SPP : small physical pages |
---|
423 | { |
---|
424 | // allocate contiguous small physical pages |
---|
425 | ppn = _get_small_ppn( palloc, npages ); |
---|
426 | } |
---|
427 | else // BPP : big physical pages |
---|
428 | { |
---|
429 | |
---|
430 | // one big page can be shared by several vsegs |
---|
431 | // we must chek if BPP already allocated |
---|
432 | if ( is_ptab ) // It cannot be mapped |
---|
433 | { |
---|
434 | ppn = _get_big_ppn( palloc, npages ); |
---|
435 | } |
---|
436 | else // It can be mapped |
---|
437 | { |
---|
438 | unsigned int ix1 = vpn >> 9; // 11 bits |
---|
439 | paddr_t paddr = _ptabs_paddr[vsid][x_dest][y_dest] + (ix1<<2); |
---|
440 | unsigned int pte1 = _physical_read( paddr ); |
---|
441 | |
---|
442 | if ( (pte1 & PTE_V) == 0 ) // BPP not allocated yet |
---|
443 | { |
---|
444 | // allocate contiguous big physical pages |
---|
445 | ppn = _get_big_ppn( palloc, npages ); |
---|
446 | } |
---|
447 | else // BPP already allocated |
---|
448 | { |
---|
449 | // test if new vseg has the same mode bits than |
---|
450 | // the other vsegs in the same big page |
---|
451 | unsigned int pte1_mode = 0; |
---|
452 | if (pte1 & PTE_C) pte1_mode |= C_MODE_MASK; |
---|
453 | if (pte1 & PTE_X) pte1_mode |= X_MODE_MASK; |
---|
454 | if (pte1 & PTE_W) pte1_mode |= W_MODE_MASK; |
---|
455 | if (pte1 & PTE_U) pte1_mode |= U_MODE_MASK; |
---|
456 | if (vseg->mode != pte1_mode) |
---|
457 | { |
---|
458 | _printf("\n[BOOT ERROR] in boot_vseg_map() : " |
---|
459 | "vseg %s has different flags than another vseg " |
---|
460 | "in the same BPP\n", vseg->name ); |
---|
461 | _exit(); |
---|
462 | } |
---|
463 | ppn = ((pte1 << 9) & 0x0FFFFE00); |
---|
464 | } |
---|
465 | } |
---|
466 | ppn = ppn | (vpn & 0x1FF); |
---|
467 | } |
---|
468 | } |
---|
469 | else // PERI : no memory allocation required |
---|
470 | { |
---|
471 | ppn = pseg->base >> 12; |
---|
472 | } |
---|
473 | } |
---|
474 | |
---|
475 | // update vseg.pbase field and update vsegs chaining |
---|
476 | vseg->pbase = ((paddr_t)ppn) << 12; |
---|
477 | vseg->mapped = 1; |
---|
478 | |
---|
479 | |
---|
480 | //////////// Third step : (only if the vseg is a page table) |
---|
481 | //////////// - compute the physical & virtual base address for each vspace |
---|
482 | //////////// by dividing the vseg in several sub-segments. |
---|
483 | //////////// - register it in _ptabs_vaddr & _ptabs_paddr arrays, |
---|
484 | //////////// and initialize next_pt2 allocators. |
---|
485 | //////////// - reset all entries in first level page tables |
---|
486 | |
---|
487 | if ( is_ptab ) |
---|
488 | { |
---|
489 | unsigned int vs; // vspace index |
---|
490 | unsigned int nspaces; // number of vspaces |
---|
491 | unsigned int nsp; // number of small pages for one PTAB |
---|
492 | unsigned int offset; // address offset for current PTAB |
---|
493 | |
---|
494 | nspaces = header->vspaces; |
---|
495 | offset = 0; |
---|
496 | |
---|
497 | // each PTAB must be aligned on a 8 Kbytes boundary |
---|
498 | nsp = ( vseg->length >> 12 ) / nspaces; |
---|
499 | if ( (nsp & 0x1) == 0x1 ) nsp = nsp - 1; |
---|
500 | |
---|
501 | // compute max_pt2 |
---|
502 | _ptabs_max_pt2 = ((nsp<<12) - PT1_SIZE) / PT2_SIZE; |
---|
503 | |
---|
504 | for ( vs = 0 ; vs < nspaces ; vs++ ) |
---|
505 | { |
---|
506 | _ptabs_vaddr [vs][x_dest][y_dest] = (vpn + offset) << 12; |
---|
507 | _ptabs_paddr [vs][x_dest][y_dest] = ((paddr_t)(ppn + offset)) << 12; |
---|
508 | _ptabs_next_pt2[vs][x_dest][y_dest] = 0; |
---|
509 | offset += nsp; |
---|
510 | |
---|
511 | // reset all entries in PT1 (8 Kbytes) |
---|
512 | _physical_memset( _ptabs_paddr[vs][x_dest][y_dest], PT1_SIZE, 0 ); |
---|
513 | } |
---|
514 | } |
---|
515 | |
---|
516 | asm volatile ("sync"); |
---|
517 | |
---|
518 | #if BOOT_DEBUG_PT |
---|
519 | if ( big ) |
---|
520 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
521 | "vbase = %x / length = %x / BIG / npages = %d / pbase = %l\n", |
---|
522 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
523 | else |
---|
524 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
525 | "vbase = %x / length = %x / SMALL / npages = %d / pbase = %l\n", |
---|
526 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
527 | #endif |
---|
528 | |
---|
529 | } // end boot_vseg_map() |
---|
530 | |
---|
531 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
532 | // For the vseg defined by the vseg pointer, this function register PTEs |
---|
533 | // in one or several page tables. |
---|
534 | // It is a global vseg (kernel vseg) if (vspace_id == 0xFFFFFFFF). |
---|
535 | // The number of involved PTABs depends on the "local" and "global" attributes: |
---|
536 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
537 | // - PTEs are replicated in all clusters containing procs for a non local vseg. |
---|
538 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
539 | void boot_vseg_pte( mapping_vseg_t* vseg, |
---|
540 | unsigned int vspace_id ) |
---|
541 | { |
---|
542 | // compute the "global" vseg attribute and actual vspace index |
---|
543 | unsigned int global; |
---|
544 | unsigned int vsid; |
---|
545 | if ( vspace_id == 0xFFFFFFFF ) |
---|
546 | { |
---|
547 | global = 1; |
---|
548 | vsid = 0; |
---|
549 | } |
---|
550 | else |
---|
551 | { |
---|
552 | global = 0; |
---|
553 | vsid = vspace_id; |
---|
554 | } |
---|
555 | |
---|
556 | // compute the "local" and "big" attributes |
---|
557 | unsigned int local = vseg->local; |
---|
558 | unsigned int big = vseg->big; |
---|
559 | |
---|
560 | // compute vseg flags |
---|
561 | // The three flags (Local, Remote and Dirty) are set to 1 |
---|
562 | // to avoid hardware update for these flags, because GIET_VM |
---|
563 | // does use these flags. |
---|
564 | unsigned int flags = 0; |
---|
565 | if (vseg->mode & C_MODE_MASK) flags |= PTE_C; |
---|
566 | if (vseg->mode & X_MODE_MASK) flags |= PTE_X; |
---|
567 | if (vseg->mode & W_MODE_MASK) flags |= PTE_W; |
---|
568 | if (vseg->mode & U_MODE_MASK) flags |= PTE_U; |
---|
569 | if ( global ) flags |= PTE_G; |
---|
570 | flags |= PTE_L; |
---|
571 | flags |= PTE_R; |
---|
572 | flags |= PTE_D; |
---|
573 | |
---|
574 | // compute VPN, PPN and number of pages (big or small) |
---|
575 | unsigned int vpn = vseg->vbase >> 12; |
---|
576 | unsigned int vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
577 | unsigned int ppn = (unsigned int)(vseg->pbase >> 12); |
---|
578 | unsigned int npages; |
---|
579 | if ( big == 0 ) npages = vpn_max - vpn + 1; |
---|
580 | else npages = (vpn_max>>9) - (vpn>>9) + 1; |
---|
581 | |
---|
582 | // compute destination cluster coordinates, for local vsegs |
---|
583 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
584 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
585 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
586 | mapping_pseg_t* pseg_dest = &pseg[vseg->psegid]; |
---|
587 | mapping_cluster_t* cluster_dest = &cluster[pseg_dest->clusterid]; |
---|
588 | unsigned int x_dest = cluster_dest->x; |
---|
589 | unsigned int y_dest = cluster_dest->y; |
---|
590 | |
---|
591 | unsigned int p; // iterator for physical page index |
---|
592 | unsigned int x; // iterator for cluster x coordinate |
---|
593 | unsigned int y; // iterator for cluster y coordinate |
---|
594 | unsigned int v; // iterator for vspace index |
---|
595 | |
---|
596 | // loop on PTEs |
---|
597 | for ( p = 0 ; p < npages ; p++ ) |
---|
598 | { |
---|
599 | if ( (local != 0) && (global == 0) ) // one cluster / one vspace |
---|
600 | { |
---|
601 | if ( big ) // big pages => PTE1s |
---|
602 | { |
---|
603 | boot_add_pte1( vsid, |
---|
604 | x_dest, |
---|
605 | y_dest, |
---|
606 | vpn + (p<<9), |
---|
607 | flags, |
---|
608 | ppn + (p<<9) ); |
---|
609 | } |
---|
610 | else // small pages => PTE2s |
---|
611 | { |
---|
612 | boot_add_pte2( vsid, |
---|
613 | x_dest, |
---|
614 | y_dest, |
---|
615 | vpn + p, |
---|
616 | flags, |
---|
617 | ppn + p ); |
---|
618 | } |
---|
619 | } |
---|
620 | else if ( (local == 0) && (global == 0) ) // all clusters / one vspace |
---|
621 | { |
---|
622 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
623 | { |
---|
624 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
625 | { |
---|
626 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
627 | { |
---|
628 | if ( big ) // big pages => PTE1s |
---|
629 | { |
---|
630 | boot_add_pte1( vsid, |
---|
631 | x, |
---|
632 | y, |
---|
633 | vpn + (p<<9), |
---|
634 | flags, |
---|
635 | ppn + (p<<9) ); |
---|
636 | } |
---|
637 | else // small pages => PTE2s |
---|
638 | { |
---|
639 | boot_add_pte2( vsid, |
---|
640 | x, |
---|
641 | y, |
---|
642 | vpn + p, |
---|
643 | flags, |
---|
644 | ppn + p ); |
---|
645 | } |
---|
646 | } |
---|
647 | } |
---|
648 | } |
---|
649 | } |
---|
650 | else if ( (local != 0) && (global != 0) ) // one cluster / all vspaces |
---|
651 | { |
---|
652 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
653 | { |
---|
654 | if ( big ) // big pages => PTE1s |
---|
655 | { |
---|
656 | boot_add_pte1( v, |
---|
657 | x_dest, |
---|
658 | y_dest, |
---|
659 | vpn + (p<<9), |
---|
660 | flags, |
---|
661 | ppn + (p<<9) ); |
---|
662 | } |
---|
663 | else // small pages = PTE2s |
---|
664 | { |
---|
665 | boot_add_pte2( v, |
---|
666 | x_dest, |
---|
667 | y_dest, |
---|
668 | vpn + p, |
---|
669 | flags, |
---|
670 | ppn + p ); |
---|
671 | } |
---|
672 | } |
---|
673 | } |
---|
674 | else if ( (local == 0) && (global != 0) ) // all clusters / all vspaces |
---|
675 | { |
---|
676 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
677 | { |
---|
678 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
679 | { |
---|
680 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
681 | { |
---|
682 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
683 | { |
---|
684 | if ( big ) // big pages => PTE1s |
---|
685 | { |
---|
686 | boot_add_pte1( v, |
---|
687 | x, |
---|
688 | y, |
---|
689 | vpn + (p<<9), |
---|
690 | flags, |
---|
691 | ppn + (p<<9) ); |
---|
692 | } |
---|
693 | else // small pages -> PTE2s |
---|
694 | { |
---|
695 | boot_add_pte2( v, |
---|
696 | x, |
---|
697 | y, |
---|
698 | vpn + p, |
---|
699 | flags, |
---|
700 | ppn + p ); |
---|
701 | } |
---|
702 | } |
---|
703 | } |
---|
704 | } |
---|
705 | } |
---|
706 | } |
---|
707 | } // end for pages |
---|
708 | |
---|
709 | asm volatile ("sync"); |
---|
710 | |
---|
711 | } // end boot_vseg_pte() |
---|
712 | |
---|
713 | |
---|
714 | /////////////////////////////////////////////////////////////////////////////// |
---|
715 | // Processor P[x][y][0] computes physical base address for all globals vsegs, |
---|
716 | // using the local Page Table, to check page tables initialisation. |
---|
717 | /////////////////////////////////////////////////////////////////////////////// |
---|
718 | void boot_ptab_check( unsigned int x, |
---|
719 | unsigned int y ) |
---|
720 | { |
---|
721 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
722 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
723 | page_table_t* ptab = (page_table_t*)_ptabs_vaddr[0][x][y]; |
---|
724 | |
---|
725 | unsigned int vseg_id; |
---|
726 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
727 | { |
---|
728 | unsigned int vpn = vseg[vseg_id].vbase >> 12; |
---|
729 | unsigned int ppn = 0; |
---|
730 | unsigned int flags = 0; |
---|
731 | _v2p_translate( ptab , vpn , &ppn , &flags ); |
---|
732 | _printf("@@@ P[%d,%d,0] access vseg %s : vpn = %x / ppn = %x\n", |
---|
733 | x , y , vseg[vseg_id].name , vpn , ppn ); |
---|
734 | } |
---|
735 | } |
---|
736 | |
---|
737 | /////////////////////////////////////////////////////////////////////////////// |
---|
738 | // This function is executed by processor[x][y][0] in each cluster |
---|
739 | // containing at least one processor. |
---|
740 | // It initialises all page table for all global or private vsegs |
---|
741 | // mapped in cluster[x][y], as specified in the mapping. |
---|
742 | // In each cluster all page tables for the different vspaces must be |
---|
743 | // packed in one vseg occupying one single BPP (Big Physical Page). |
---|
744 | // |
---|
745 | // For each vseg, the mapping is done in two steps: |
---|
746 | // 1) mapping : the boot_vseg_map() function allocates contiguous BPPs |
---|
747 | // or SPPs (if the vseg is not associated to a peripheral), and register |
---|
748 | // the physical base address in the vseg pbase field. It initialises the |
---|
749 | // _ptabs_vaddr[] and _ptabs_paddr[] arrays if the vseg is a PTAB. |
---|
750 | // |
---|
751 | // 2) page table initialisation : the boot_vseg_pte() function initialise |
---|
752 | // the PTEs (both PTE1 and PTE2) in one or several page tables: |
---|
753 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
754 | // - PTEs are replicated in all clusters for a non local vseg. |
---|
755 | // |
---|
756 | // We must handle vsegs in the following order |
---|
757 | // 1) global vseg containing PTAB mapped in cluster[x][y], |
---|
758 | // 2) global vsegs occupying more than one BPP mapped in cluster[x][y], |
---|
759 | // 3) others global vsegs mapped in cluster[x][y], |
---|
760 | // 4) all private vsegs in all user spaces mapped in cluster[x][y]. |
---|
761 | /////////////////////////////////////////////////////////////////////////////// |
---|
762 | void boot_ptab_init( unsigned int cx, |
---|
763 | unsigned int cy ) |
---|
764 | { |
---|
765 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
766 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
767 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
768 | mapping_cluster_t* cluster ; |
---|
769 | mapping_pseg_t* pseg ; |
---|
770 | |
---|
771 | unsigned int vspace_id; |
---|
772 | unsigned int vseg_id; |
---|
773 | |
---|
774 | unsigned int procid = _get_procid(); |
---|
775 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
776 | |
---|
777 | if( lpid ) |
---|
778 | { |
---|
779 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
780 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
781 | _exit(); |
---|
782 | } |
---|
783 | |
---|
784 | if ( header->vspaces == 0 ) |
---|
785 | { |
---|
786 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
787 | "mapping %s contains no vspace\n", header->name ); |
---|
788 | _exit(); |
---|
789 | } |
---|
790 | |
---|
791 | ///////// Phase 1 : global vseg containing the PTAB (two barriers required) |
---|
792 | |
---|
793 | // get PTAB global vseg in cluster(cx,cy) |
---|
794 | unsigned int found = 0; |
---|
795 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
796 | { |
---|
797 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
798 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
799 | if ( (vseg[vseg_id].type == VSEG_TYPE_PTAB) && |
---|
800 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
801 | { |
---|
802 | found = 1; |
---|
803 | break; |
---|
804 | } |
---|
805 | } |
---|
806 | if ( found == 0 ) |
---|
807 | { |
---|
808 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
809 | "cluster[%d][%d] contains no PTAB vseg\n", cx , cy ); |
---|
810 | _exit(); |
---|
811 | } |
---|
812 | |
---|
813 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
814 | |
---|
815 | ////////////////////////////////////////////// |
---|
816 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
817 | ////////////////////////////////////////////// |
---|
818 | |
---|
819 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
820 | |
---|
821 | ////////////////////////////////////////////// |
---|
822 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
823 | ////////////////////////////////////////////// |
---|
824 | |
---|
825 | ///////// Phase 2 : global vsegs occupying more than one BPP |
---|
826 | |
---|
827 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
828 | { |
---|
829 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
830 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
831 | if ( (vseg[vseg_id].length > 0x200000) && |
---|
832 | (vseg[vseg_id].mapped == 0) && |
---|
833 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
834 | { |
---|
835 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
836 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
837 | } |
---|
838 | } |
---|
839 | |
---|
840 | ///////// Phase 3 : all others global vsegs |
---|
841 | |
---|
842 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
843 | { |
---|
844 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
845 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
846 | if ( (vseg[vseg_id].mapped == 0) && |
---|
847 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
848 | { |
---|
849 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
850 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
851 | } |
---|
852 | } |
---|
853 | |
---|
854 | ///////// Phase 4 : all private vsegs |
---|
855 | |
---|
856 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
857 | { |
---|
858 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
859 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
860 | vseg_id++) |
---|
861 | { |
---|
862 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
863 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
864 | if ( (cluster->x == cx) && (cluster->y == cy) ) |
---|
865 | { |
---|
866 | boot_vseg_map( &vseg[vseg_id], vspace_id ); |
---|
867 | boot_vseg_pte( &vseg[vseg_id], vspace_id ); |
---|
868 | } |
---|
869 | } |
---|
870 | } |
---|
871 | |
---|
872 | ////////////////////////////////////////////// |
---|
873 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
874 | ////////////////////////////////////////////// |
---|
875 | |
---|
876 | } // end boot_ptab_init() |
---|
877 | |
---|
878 | //////////////////////////////////////////////////////////////////////////////// |
---|
879 | // This function should be executed by P[0][0][0] only. It complete the |
---|
880 | // page table initialisation, taking care of all global vsegs that are |
---|
881 | // not mapped in a cluster containing a processor, and have not been |
---|
882 | // handled by the boot_ptab_init(x,y) function. |
---|
883 | // An example of such vsegs are the external peripherals in TSAR_LETI platform. |
---|
884 | //////////////////////////////////////////////////////////////////////////////// |
---|
885 | void boot_ptab_extend() |
---|
886 | { |
---|
887 | |
---|
888 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
889 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
890 | |
---|
891 | unsigned int vseg_id; |
---|
892 | |
---|
893 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
894 | { |
---|
895 | if ( vseg[vseg_id].mapped == 0 ) |
---|
896 | { |
---|
897 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
898 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
899 | } |
---|
900 | } |
---|
901 | } // end boot_ptab_extend() |
---|
902 | |
---|
903 | /////////////////////////////////////////////////////////////////////////////// |
---|
904 | // This function returns in the vbase and length buffers the virtual base |
---|
905 | // address and the length of the segment allocated to the schedulers array |
---|
906 | // in the cluster defined by the clusterid argument. |
---|
907 | /////////////////////////////////////////////////////////////////////////////// |
---|
908 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
909 | unsigned int* vbase, |
---|
910 | unsigned int* length ) |
---|
911 | { |
---|
912 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
913 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
914 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
915 | |
---|
916 | unsigned int vseg_id; |
---|
917 | unsigned int found = 0; |
---|
918 | |
---|
919 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
920 | { |
---|
921 | if ( (vseg[vseg_id].type == VSEG_TYPE_SCHED) && |
---|
922 | (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) ) |
---|
923 | { |
---|
924 | *vbase = vseg[vseg_id].vbase; |
---|
925 | *length = vseg[vseg_id].length; |
---|
926 | found = 1; |
---|
927 | } |
---|
928 | } |
---|
929 | if ( found == 0 ) |
---|
930 | { |
---|
931 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
932 | _printf("\n[BOOT ERROR] No vseg of type SCHED in cluster [%d,%d]\n", |
---|
933 | cluster[cluster_id].x, cluster[cluster_id].y ); |
---|
934 | _exit(); |
---|
935 | } |
---|
936 | } // end boot_get_sched_vaddr() |
---|
937 | |
---|
938 | //////////////////////////////////////////////////////////////////////////////////// |
---|
939 | // This function is executed in parallel by all processors P[x][y][0]. |
---|
940 | // It initialises all schedulers in cluster [x][y]. The MMU must be activated. |
---|
941 | // It is split in two phases separated by a synchronisation barrier. |
---|
942 | // - In Step 1, it initialises the _schedulers[x][y][l] pointers array, |
---|
943 | // the idle_task context and the HWI / PTI vectors. |
---|
944 | // - In Step 2, it scan all tasks in all vspaces to complete the tasks contexts, |
---|
945 | // initialisation as specified in the mapping_info data structure, |
---|
946 | // and set the CP0_SCHED register. |
---|
947 | //////////////////////////////////////////////////////////////////////////////////// |
---|
948 | void boot_scheduler_init( unsigned int x, |
---|
949 | unsigned int y ) |
---|
950 | { |
---|
951 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
952 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
953 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
954 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
955 | mapping_task_t* task = _get_task_base(header); |
---|
956 | mapping_periph_t* periph = _get_periph_base(header); |
---|
957 | mapping_irq_t* irq = _get_irq_base(header); |
---|
958 | |
---|
959 | unsigned int periph_id; |
---|
960 | unsigned int irq_id; |
---|
961 | unsigned int vspace_id; |
---|
962 | unsigned int vseg_id; |
---|
963 | unsigned int task_id; |
---|
964 | |
---|
965 | unsigned int sched_vbase; // schedulers array vbase address |
---|
966 | unsigned int sched_length; // schedulers array length |
---|
967 | static_scheduler_t* psched; // pointer on processor scheduler |
---|
968 | |
---|
969 | unsigned int cluster_id = x * Y_SIZE + y; |
---|
970 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
971 | unsigned int lpid; |
---|
972 | |
---|
973 | ///////////////////////////////////////////////////////////////////////// |
---|
974 | // Step 1 : initialize the schedulers[] array of pointers, |
---|
975 | // the idle task context and the HWI and PTI interrupt vectors. |
---|
976 | // The WTI interrupt vector entries corresponding to interrupts |
---|
977 | // generated by the PIC component are handled later. |
---|
978 | |
---|
979 | // get scheduler array virtual base address in cluster[x,y] |
---|
980 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
981 | |
---|
982 | if ( sched_length < (nprocs<<13) ) // 8 Kbytes per scheduler |
---|
983 | { |
---|
984 | _printf("\n[BOOT ERROR] Sched segment too small in cluster[%d,%d]\n", x, y ); |
---|
985 | _exit(); |
---|
986 | } |
---|
987 | |
---|
988 | // loop on local processors |
---|
989 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
990 | { |
---|
991 | // get scheduler pointer and initialise the schedulers pointers array |
---|
992 | psched = (static_scheduler_t*)(sched_vbase + (lpid<<13)); |
---|
993 | _schedulers[x][y][lpid] = psched; |
---|
994 | |
---|
995 | // initialise the "tasks" and "current" variables default values |
---|
996 | psched->tasks = 0; |
---|
997 | psched->current = IDLE_TASK_INDEX; |
---|
998 | |
---|
999 | // default values for HWI / PTI / SWI vectors (valid bit = 0) |
---|
1000 | unsigned int slot; |
---|
1001 | for (slot = 0; slot < 32; slot++) |
---|
1002 | { |
---|
1003 | psched->hwi_vector[slot] = 0; |
---|
1004 | psched->pti_vector[slot] = 0; |
---|
1005 | psched->wti_vector[slot] = 0; |
---|
1006 | } |
---|
1007 | |
---|
1008 | // WTI[lpid] <= ISR_WAKUP / PTI[lpid] <= ISR_TICK |
---|
1009 | psched->wti_vector[lpid] = ISR_WAKUP | 0x80000000; |
---|
1010 | psched->pti_vector[lpid] = ISR_TICK | 0x80000000; |
---|
1011 | |
---|
1012 | // initializes the idle_task context: |
---|
1013 | // - the SR slot is 0xFF03 because this task run in kernel mode. |
---|
1014 | // - it uses the page table of vspace[0] |
---|
1015 | // - it uses the kernel TTY terminal |
---|
1016 | // - slots containing addresses (SP,RA,EPC) are initialised by kernel_init() |
---|
1017 | |
---|
1018 | psched->context[IDLE_TASK_INDEX][CTX_CR_ID] = 0; |
---|
1019 | psched->context[IDLE_TASK_INDEX][CTX_SR_ID] = 0xFF03; |
---|
1020 | psched->context[IDLE_TASK_INDEX][CTX_PTPR_ID] = _ptabs_paddr[0][x][y]>>13; |
---|
1021 | psched->context[IDLE_TASK_INDEX][CTX_PTAB_ID] = _ptabs_vaddr[0][x][y]; |
---|
1022 | psched->context[IDLE_TASK_INDEX][CTX_TTY_ID] = 0; |
---|
1023 | psched->context[IDLE_TASK_INDEX][CTX_LTID_ID] = IDLE_TASK_INDEX; |
---|
1024 | psched->context[IDLE_TASK_INDEX][CTX_VSID_ID] = 0; |
---|
1025 | psched->context[IDLE_TASK_INDEX][CTX_RUN_ID] = 1; |
---|
1026 | } |
---|
1027 | |
---|
1028 | // scan local peripherals to get local XCU |
---|
1029 | mapping_periph_t* xcu = NULL; |
---|
1030 | |
---|
1031 | for ( periph_id = cluster[cluster_id].periph_offset ; |
---|
1032 | periph_id < cluster[cluster_id].periph_offset + cluster[cluster_id].periphs; |
---|
1033 | periph_id++ ) |
---|
1034 | { |
---|
1035 | if( periph[periph_id].type == PERIPH_TYPE_XCU ) |
---|
1036 | { |
---|
1037 | xcu = &periph[periph_id]; |
---|
1038 | |
---|
1039 | if ( xcu->arg < (nprocs * header->irq_per_proc) ) |
---|
1040 | { |
---|
1041 | _printf("\n[BOOT ERROR] Not enough inputs for XCU[%d,%d]\n", x, y ); |
---|
1042 | _exit(); |
---|
1043 | } |
---|
1044 | } |
---|
1045 | } |
---|
1046 | |
---|
1047 | if ( xcu == NULL ) |
---|
1048 | { |
---|
1049 | _printf("\n[BOOT ERROR] missing XCU in cluster[%d,%d]\n", x , y ); |
---|
1050 | _exit(); |
---|
1051 | } |
---|
1052 | |
---|
1053 | // scan HWIs connected to local XCU |
---|
1054 | // for round-robin allocation to local processors |
---|
1055 | lpid = 0; |
---|
1056 | for ( irq_id = xcu->irq_offset ; |
---|
1057 | irq_id < xcu->irq_offset + xcu->irqs ; |
---|
1058 | irq_id++ ) |
---|
1059 | { |
---|
1060 | unsigned int type = irq[irq_id].srctype; |
---|
1061 | unsigned int srcid = irq[irq_id].srcid; |
---|
1062 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
1063 | unsigned int channel = irq[irq_id].channel << 16; |
---|
1064 | |
---|
1065 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
1066 | { |
---|
1067 | _printf("\n[BOOT ERROR] Bad IRQ in cluster[%d,%d]\n", x, y ); |
---|
1068 | _exit(); |
---|
1069 | } |
---|
1070 | |
---|
1071 | _schedulers[x][y][lpid]->hwi_vector[srcid] = isr | channel | 0x80000000; |
---|
1072 | |
---|
1073 | lpid = (lpid + 1) % nprocs; |
---|
1074 | } // end for irqs |
---|
1075 | |
---|
1076 | ////////////////////////////////////////////// |
---|
1077 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1078 | ////////////////////////////////////////////// |
---|
1079 | |
---|
1080 | //////////////////////////////////////////////////////////////////////// |
---|
1081 | // Step 2 : Initialise the tasks context. The context of task placed |
---|
1082 | // on processor P must be stored in the scheduler of P. |
---|
1083 | // This require two nested loops: loop on the tasks, and loop |
---|
1084 | // on the local processors. We complete the scheduler when the |
---|
1085 | // required placement fit one local processor. |
---|
1086 | |
---|
1087 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1088 | { |
---|
1089 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
1090 | // and the stack address are defined in virtual space. |
---|
1091 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13) ); |
---|
1092 | |
---|
1093 | // loop on the tasks in vspace (task_id is the global index in mapping) |
---|
1094 | for (task_id = vspace[vspace_id].task_offset; |
---|
1095 | task_id < (vspace[vspace_id].task_offset + vspace[vspace_id].tasks); |
---|
1096 | task_id++) |
---|
1097 | { |
---|
1098 | // get the required task placement coordinates [x,y,p] |
---|
1099 | unsigned int req_x = cluster[task[task_id].clusterid].x; |
---|
1100 | unsigned int req_y = cluster[task[task_id].clusterid].y; |
---|
1101 | unsigned int req_p = task[task_id].proclocid; |
---|
1102 | |
---|
1103 | // ctx_sr : value required before an eret instruction |
---|
1104 | unsigned int ctx_sr = 0x2000FF13; |
---|
1105 | |
---|
1106 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
1107 | unsigned int ctx_ptpr = (_ptabs_paddr[vspace_id][req_x][req_y] >> 13); |
---|
1108 | |
---|
1109 | // ctx_ptab : page_table virtual base address |
---|
1110 | unsigned int ctx_ptab = _ptabs_vaddr[vspace_id][req_x][req_y]; |
---|
1111 | |
---|
1112 | // ctx_epc : Get the virtual address of the memory location containing |
---|
1113 | // the task entry point : the start_vector is stored by GCC in the seg_data |
---|
1114 | // segment and we must wait the .elf loading to get the entry point value... |
---|
1115 | vseg_id = vspace[vspace_id].start_vseg_id; |
---|
1116 | unsigned int ctx_epc = vseg[vseg_id].vbase + (task[task_id].startid)*4; |
---|
1117 | |
---|
1118 | // ctx_sp : Get the vseg containing the stack |
---|
1119 | vseg_id = task[task_id].stack_vseg_id; |
---|
1120 | unsigned int ctx_sp = vseg[vseg_id].vbase + vseg[vseg_id].length; |
---|
1121 | |
---|
1122 | // get vspace thread index |
---|
1123 | unsigned int thread_id = task[task_id].trdid; |
---|
1124 | |
---|
1125 | // loop on the local processors |
---|
1126 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
1127 | { |
---|
1128 | if ( (x == req_x) && (y == req_y) && (req_p == lpid) ) // fit |
---|
1129 | { |
---|
1130 | // pointer on selected scheduler |
---|
1131 | psched = _schedulers[x][y][lpid]; |
---|
1132 | |
---|
1133 | // get local task index in scheduler |
---|
1134 | unsigned int ltid = psched->tasks; |
---|
1135 | |
---|
1136 | // update the "tasks" and "current" fields in scheduler: |
---|
1137 | psched->tasks = ltid + 1; |
---|
1138 | psched->current = 0; |
---|
1139 | |
---|
1140 | // initializes the task context |
---|
1141 | psched->context[ltid][CTX_CR_ID] = 0; |
---|
1142 | psched->context[ltid][CTX_SR_ID] = ctx_sr; |
---|
1143 | psched->context[ltid][CTX_SP_ID] = ctx_sp; |
---|
1144 | psched->context[ltid][CTX_EPC_ID] = ctx_epc; |
---|
1145 | psched->context[ltid][CTX_PTPR_ID] = ctx_ptpr; |
---|
1146 | psched->context[ltid][CTX_PTAB_ID] = ctx_ptab; |
---|
1147 | psched->context[ltid][CTX_LTID_ID] = ltid; |
---|
1148 | psched->context[ltid][CTX_GTID_ID] = task_id; |
---|
1149 | psched->context[ltid][CTX_TRDID_ID] = thread_id; |
---|
1150 | psched->context[ltid][CTX_VSID_ID] = vspace_id; |
---|
1151 | psched->context[ltid][CTX_RUN_ID] = 1; |
---|
1152 | |
---|
1153 | psched->context[ltid][CTX_TTY_ID] = 0xFFFFFFFF; |
---|
1154 | psched->context[ltid][CTX_CMA_FB_ID] = 0xFFFFFFFF; |
---|
1155 | psched->context[ltid][CTX_CMA_RX_ID] = 0xFFFFFFFF; |
---|
1156 | psched->context[ltid][CTX_CMA_TX_ID] = 0xFFFFFFFF; |
---|
1157 | psched->context[ltid][CTX_NIC_RX_ID] = 0xFFFFFFFF; |
---|
1158 | psched->context[ltid][CTX_NIC_TX_ID] = 0xFFFFFFFF; |
---|
1159 | psched->context[ltid][CTX_TIM_ID] = 0xFFFFFFFF; |
---|
1160 | psched->context[ltid][CTX_HBA_ID] = 0xFFFFFFFF; |
---|
1161 | |
---|
1162 | #if BOOT_DEBUG_SCHED |
---|
1163 | _printf("\nTask %s in vspace %s allocated to P[%d,%d,%d]\n" |
---|
1164 | " - ctx[LTID] = %d\n" |
---|
1165 | " - ctx[SR] = %x\n" |
---|
1166 | " - ctx[SP] = %x\n" |
---|
1167 | " - ctx[EPC] = %x\n" |
---|
1168 | " - ctx[PTPR] = %x\n" |
---|
1169 | " - ctx[PTAB] = %x\n" |
---|
1170 | " - ctx[VSID] = %d\n" |
---|
1171 | " - ctx[TRDID] = %d\n", |
---|
1172 | task[task_id].name, |
---|
1173 | vspace[vspace_id].name, |
---|
1174 | x, y, lpid, |
---|
1175 | psched->context[ltid][CTX_LTID_ID], |
---|
1176 | psched->context[ltid][CTX_SR_ID], |
---|
1177 | psched->context[ltid][CTX_SP_ID], |
---|
1178 | psched->context[ltid][CTX_EPC_ID], |
---|
1179 | psched->context[ltid][CTX_PTPR_ID], |
---|
1180 | psched->context[ltid][CTX_PTAB_ID], |
---|
1181 | psched->context[ltid][CTX_VSID_ID], |
---|
1182 | psched->context[ltid][CTX_TRDID_ID] ); |
---|
1183 | #endif |
---|
1184 | } // end if FIT |
---|
1185 | } // end for loop on local procs |
---|
1186 | } // end loop on tasks |
---|
1187 | } // end loop on vspaces |
---|
1188 | } // end boot_scheduler_init() |
---|
1189 | |
---|
1190 | |
---|
1191 | ///////////////////////////////////////////////////////////////////////////// |
---|
1192 | // This function loops on all processors in all clusters to display |
---|
1193 | // the interrupt vectors for each processor. |
---|
1194 | ///////////////////////////////////////////////////////////////////////////// |
---|
1195 | void boot_sched_irq_display() |
---|
1196 | { |
---|
1197 | unsigned int cx; |
---|
1198 | unsigned int cy; |
---|
1199 | unsigned int lpid; |
---|
1200 | unsigned int slot; |
---|
1201 | unsigned int entry; |
---|
1202 | |
---|
1203 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1204 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1205 | |
---|
1206 | static_scheduler_t* psched; |
---|
1207 | |
---|
1208 | for ( cx = 0 ; cx < X_SIZE ; cx++ ) |
---|
1209 | { |
---|
1210 | for ( cy = 0 ; cy < Y_SIZE ; cy++ ) |
---|
1211 | { |
---|
1212 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
1213 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
1214 | |
---|
1215 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
1216 | { |
---|
1217 | psched = _schedulers[cx][cy][lpid]; |
---|
1218 | |
---|
1219 | _printf("\n[BOOT] scheduler for proc[%d,%d,%d] : ntasks = %d\n", |
---|
1220 | cx , cy , lpid , psched->tasks ); |
---|
1221 | |
---|
1222 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1223 | { |
---|
1224 | entry = psched->hwi_vector[slot]; |
---|
1225 | if ( entry & 0x80000000 ) |
---|
1226 | _printf(" - HWI %d / isrtype = %d / channel = %d\n", |
---|
1227 | slot , (entry & 0xFFFF) , ((entry >> 16) & 0x7FFF) ); |
---|
1228 | } |
---|
1229 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1230 | { |
---|
1231 | entry = psched->wti_vector[slot]; |
---|
1232 | if ( entry & 0x80000000 ) |
---|
1233 | _printf(" - WTI %d / isrtype = %d / channel = %d\n", |
---|
1234 | slot , (entry & 0xFFFF) , ((entry >> 16) & 0x7FFF) ); |
---|
1235 | } |
---|
1236 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
1237 | { |
---|
1238 | entry = psched->pti_vector[slot]; |
---|
1239 | if ( entry & 0x80000000 ) |
---|
1240 | _printf(" - PTI %d / isrtype = %d / channel = %d\n", |
---|
1241 | slot , (entry & 0xFFFF) , ((entry >> 16) & 0x7FFF) ); |
---|
1242 | } |
---|
1243 | } |
---|
1244 | } |
---|
1245 | } |
---|
1246 | } // end boot_sched_display() |
---|
1247 | |
---|
1248 | |
---|
1249 | ///////////////////////////////////////////////////////////////////////////// |
---|
1250 | // This function complete the schedulers initialisation when the platform |
---|
1251 | // contains a PIC component in the IO cluster. |
---|
1252 | // It is executed by P[0][0][0] only. |
---|
1253 | // It scan HWIs connected to PIC for Round Robin allocation to processors, |
---|
1254 | // as WTI. It allocates one WTI per processor, starting from P[0,0,0], |
---|
1255 | // and increments (cluster_id, lpid) as required. |
---|
1256 | ///////////////////////////////////////////////////////////////////////////// |
---|
1257 | void boot_pic_wti_init() |
---|
1258 | { |
---|
1259 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1260 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1261 | mapping_periph_t* periph = _get_periph_base(header); |
---|
1262 | mapping_irq_t* irq = _get_irq_base(header); |
---|
1263 | |
---|
1264 | unsigned int periph_id; // peripheral index in mapping_info |
---|
1265 | unsigned int irq_id; // irq index in mapping_info |
---|
1266 | |
---|
1267 | // get cluster_io index in mapping |
---|
1268 | unsigned int x_io = header->x_io; |
---|
1269 | unsigned int y_io = header->y_io; |
---|
1270 | unsigned int cluster_io = (x_io * Y_SIZE) + y_io; |
---|
1271 | |
---|
1272 | // scan peripherals in cluster_io to find PIC |
---|
1273 | mapping_periph_t* pic = NULL; |
---|
1274 | |
---|
1275 | for ( periph_id = cluster[cluster_io].periph_offset ; |
---|
1276 | periph_id < cluster[cluster_io].periph_offset + cluster[cluster_io].periphs; |
---|
1277 | periph_id++ ) |
---|
1278 | { |
---|
1279 | if ( periph[periph_id].type == PERIPH_TYPE_PIC ) |
---|
1280 | { |
---|
1281 | pic = &periph[periph_id]; |
---|
1282 | break; |
---|
1283 | } |
---|
1284 | } |
---|
1285 | |
---|
1286 | if ( pic == NULL ) return; |
---|
1287 | |
---|
1288 | // initialize WTI channel allocators in all clusters |
---|
1289 | unsigned int x; |
---|
1290 | unsigned int y; |
---|
1291 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
1292 | { |
---|
1293 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
1294 | { |
---|
1295 | _wti_channel_alloc[x][y] = NB_PROCS_MAX; |
---|
1296 | } |
---|
1297 | } |
---|
1298 | |
---|
1299 | // scan IRQS defined in PIC |
---|
1300 | unsigned int cluster_id = 0; |
---|
1301 | unsigned int lpid = 0; |
---|
1302 | unsigned int cx = cluster[cluster_id].x; |
---|
1303 | unsigned int cy = cluster[cluster_id].y; |
---|
1304 | |
---|
1305 | for ( irq_id = pic->irq_offset ; |
---|
1306 | irq_id < pic->irq_offset + pic->irqs ; |
---|
1307 | irq_id++ ) |
---|
1308 | { |
---|
1309 | // compute next values for cluster_id, lpid, cx, cy |
---|
1310 | // if no more WTI allocatable in current cluster |
---|
1311 | unsigned int overflow = 0; |
---|
1312 | |
---|
1313 | while ( (lpid >= cluster[cluster_id].procs) || |
---|
1314 | (_wti_channel_alloc[cx][cy] >= 32) ) |
---|
1315 | { |
---|
1316 | cluster_id = (cluster_id + 1) % (X_SIZE*Y_SIZE); |
---|
1317 | cx = cluster[cluster_id].x; |
---|
1318 | cy = cluster[cluster_id].y; |
---|
1319 | lpid = 0; |
---|
1320 | |
---|
1321 | overflow++; |
---|
1322 | |
---|
1323 | if ( overflow > 1024 ) |
---|
1324 | { |
---|
1325 | _printf("\n[BOOT ERROR] Not enough processors for external IRQs\n"); |
---|
1326 | _exit(); |
---|
1327 | } |
---|
1328 | } |
---|
1329 | // allocate a WTI to processor defined by (cluster_id,lpid) |
---|
1330 | unsigned int type = irq[irq_id].srctype; |
---|
1331 | unsigned int srcid = irq[irq_id].srcid; |
---|
1332 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
1333 | unsigned int channel = irq[irq_id].channel << 16; |
---|
1334 | |
---|
1335 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
1336 | { |
---|
1337 | _printf("\n[BOOT ERROR] in boot_pic_wti_init() Bad IRQ type\n"); |
---|
1338 | _exit(); |
---|
1339 | } |
---|
1340 | |
---|
1341 | // get scheduler address for selected processor |
---|
1342 | static_scheduler_t* psched = _schedulers[cx][cy][lpid]; |
---|
1343 | |
---|
1344 | // update WTI vector for selected processor |
---|
1345 | unsigned int index = _wti_channel_alloc[cx][cy]; |
---|
1346 | psched->wti_vector[index] = isr | channel | 0x80000000; |
---|
1347 | |
---|
1348 | // update IRQ fields in mapping for PIC initialisation |
---|
1349 | irq[irq_id].dest_id = index; |
---|
1350 | irq[irq_id].dest_xy = (cx << Y_WIDTH) + cy; |
---|
1351 | |
---|
1352 | // update pointers |
---|
1353 | _wti_channel_alloc[cx][cy] = index + 1; |
---|
1354 | lpid = lpid + 1; |
---|
1355 | |
---|
1356 | } // end for IRQs |
---|
1357 | |
---|
1358 | #if BOOT_DEBUG_SCHED |
---|
1359 | boot_sched_irq_display(); |
---|
1360 | #endif |
---|
1361 | |
---|
1362 | } // end boot_pic_wti_init() |
---|
1363 | |
---|
1364 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1365 | // This function loads the map.bin file from block device. |
---|
1366 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1367 | void boot_mapping_init() |
---|
1368 | { |
---|
1369 | // desactivates IOC interrupt |
---|
1370 | _ioc_init( 0 ); |
---|
1371 | |
---|
1372 | // open file "map.bin" |
---|
1373 | int fd_id = _fat_open( IOC_BOOT_MODE, |
---|
1374 | "map.bin", |
---|
1375 | 0 ); // no creation |
---|
1376 | if ( fd_id == -1 ) |
---|
1377 | { |
---|
1378 | _printf("\n[BOOT ERROR] : map.bin file not found \n"); |
---|
1379 | _exit(); |
---|
1380 | } |
---|
1381 | |
---|
1382 | #if BOOT_DEBUG_MAPPING |
---|
1383 | _printf("\n[BOOT] map.bin file successfully open at cycle %d\n", _get_proctime() ); |
---|
1384 | #endif |
---|
1385 | |
---|
1386 | // get "map.bin" file size (from fat) and check it |
---|
1387 | unsigned int size = fat.fd[fd_id].file_size; |
---|
1388 | |
---|
1389 | if ( size > SEG_BOOT_MAPPING_SIZE ) |
---|
1390 | { |
---|
1391 | _printf("\n[BOOT ERROR] : allocated segment too small for map.bin file\n"); |
---|
1392 | _exit(); |
---|
1393 | } |
---|
1394 | |
---|
1395 | #if BOOT_DEBUG_MAPPING |
---|
1396 | _printf("\n[BOOT] map.bin buffer pbase = %x / buffer size = %x / file_size = %x\n", |
---|
1397 | SEG_BOOT_MAPPING_BASE , SEG_BOOT_MAPPING_SIZE , size ); |
---|
1398 | #endif |
---|
1399 | |
---|
1400 | // load "map.bin" file into buffer |
---|
1401 | unsigned int nblocks = size >> 9; |
---|
1402 | unsigned int offset = size & 0x1FF; |
---|
1403 | if ( offset ) nblocks++; |
---|
1404 | |
---|
1405 | unsigned int ok = _fat_read( IOC_BOOT_MODE, |
---|
1406 | fd_id, |
---|
1407 | (unsigned int*)SEG_BOOT_MAPPING_BASE, |
---|
1408 | nblocks, |
---|
1409 | 0 ); // offset |
---|
1410 | if ( ok == -1 ) |
---|
1411 | { |
---|
1412 | _printf("\n[BOOT ERROR] : unable to load map.bin file \n"); |
---|
1413 | _exit(); |
---|
1414 | } |
---|
1415 | |
---|
1416 | #if BOOT_DEBUG_MAPPING |
---|
1417 | _printf("\n[BOOT] map.bin file successfully loaded at cycle %d\n", _get_proctime() ); |
---|
1418 | #endif |
---|
1419 | |
---|
1420 | // check mapping signature, number of clusters, number of vspaces |
---|
1421 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1422 | if ( (header->signature != IN_MAPPING_SIGNATURE) || |
---|
1423 | (header->x_size != X_SIZE) || |
---|
1424 | (header->y_size != Y_SIZE) || |
---|
1425 | (header->vspaces > GIET_NB_VSPACE_MAX) ) |
---|
1426 | { |
---|
1427 | |
---|
1428 | #if BOOT_DEBUG_MAPPING |
---|
1429 | unsigned int line; |
---|
1430 | unsigned int* pointer = (unsigned int*)SEG_BOOT_MAPPING_BASE; |
---|
1431 | _printf("\n[BOOT] First block of mapping\n"); |
---|
1432 | for ( line = 0 ; line < 8 ; line++ ) |
---|
1433 | { |
---|
1434 | _printf(" | %x | %x | %x | %x | %x | %x | %x | %x |\n", |
---|
1435 | *(pointer + 0), |
---|
1436 | *(pointer + 1), |
---|
1437 | *(pointer + 2), |
---|
1438 | *(pointer + 3), |
---|
1439 | *(pointer + 4), |
---|
1440 | *(pointer + 5), |
---|
1441 | *(pointer + 6), |
---|
1442 | *(pointer + 7) ); |
---|
1443 | |
---|
1444 | pointer = pointer + 8; |
---|
1445 | } |
---|
1446 | #endif |
---|
1447 | _printf("\n[BOOT ERROR] Illegal mapping signature: %x\n", header->signature ); |
---|
1448 | _exit(); |
---|
1449 | } |
---|
1450 | |
---|
1451 | #if BOOT_DEBUG_MAPPING |
---|
1452 | _printf("\n[BOOT] map.bin file checked at cycle %d\n", _get_proctime() ); |
---|
1453 | #endif |
---|
1454 | |
---|
1455 | // close file "map.bin" |
---|
1456 | _fat_close( fd_id ); |
---|
1457 | |
---|
1458 | } // end boot_mapping_init() |
---|
1459 | |
---|
1460 | |
---|
1461 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
1462 | // This function load all loadable segments for one .elf file, identified |
---|
1463 | // by the "pathname" argument. Some loadable segments can be copied in several |
---|
1464 | // clusters: same virtual address but different physical addresses. |
---|
1465 | // - It open the file. |
---|
1466 | // - It loads the complete file in the dedicated boot_elf_buffer. |
---|
1467 | // - It copies each loadable segments at the virtual address defined in |
---|
1468 | // the .elf file, making several copies if the target vseg is not local. |
---|
1469 | // - It closes the file. |
---|
1470 | // This function is supposed to be executed by processor[0,0,0]. |
---|
1471 | // Note: |
---|
1472 | // We must use physical addresses to reach the destination buffers that |
---|
1473 | // can be located in remote clusters. We use either a _physical_memcpy(), |
---|
1474 | // or a _dma_physical_copy() if DMA is available. |
---|
1475 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
1476 | void load_one_elf_file( unsigned int is_kernel, // kernel file if non zero |
---|
1477 | char* pathname, |
---|
1478 | unsigned int vspace_id ) // to scan the proper vspace |
---|
1479 | { |
---|
1480 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1481 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
1482 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
1483 | |
---|
1484 | unsigned int seg_id; |
---|
1485 | |
---|
1486 | #if BOOT_DEBUG_ELF |
---|
1487 | _printf("\n[BOOT] Start searching file %s at cycle %d\n", |
---|
1488 | pathname, _get_proctime() ); |
---|
1489 | #endif |
---|
1490 | |
---|
1491 | // open .elf file |
---|
1492 | int fd_id = _fat_open( IOC_BOOT_MODE, |
---|
1493 | pathname, |
---|
1494 | 0 ); // no creation |
---|
1495 | if ( fd_id < 0 ) |
---|
1496 | { |
---|
1497 | _printf("\n[BOOT ERROR] load_one_elf_file() : %s not found\n", pathname ); |
---|
1498 | _exit(); |
---|
1499 | } |
---|
1500 | |
---|
1501 | // check buffer size versus file size |
---|
1502 | if ( fat.fd[fd_id].file_size > GIET_ELF_BUFFER_SIZE ) |
---|
1503 | { |
---|
1504 | _printf("\n[BOOT ERROR] in load_one_elf_file() : %s / size = %x " |
---|
1505 | "larger than GIET_ELF_BUFFER_SIZE = %x\n", |
---|
1506 | pathname , fat.fd[fd_id].file_size , GIET_ELF_BUFFER_SIZE ); |
---|
1507 | _exit(); |
---|
1508 | } |
---|
1509 | |
---|
1510 | // compute number of sectors |
---|
1511 | unsigned int nbytes = fat.fd[fd_id].file_size; |
---|
1512 | unsigned int nsectors = nbytes>>9; |
---|
1513 | if( nbytes & 0x1FF) nsectors++; |
---|
1514 | |
---|
1515 | // load file in elf buffer |
---|
1516 | if( _fat_read( IOC_BOOT_MODE, |
---|
1517 | fd_id, |
---|
1518 | boot_elf_buffer, |
---|
1519 | nsectors, |
---|
1520 | 0 ) != nsectors ) |
---|
1521 | { |
---|
1522 | _printf("\n[BOOT ERROR] load_one_elf_file() : unexpected EOF for file %s\n", |
---|
1523 | pathname ); |
---|
1524 | _exit(); |
---|
1525 | } |
---|
1526 | |
---|
1527 | // Check ELF Magic Number in ELF header |
---|
1528 | Elf32_Ehdr* elf_header_ptr = (Elf32_Ehdr*)boot_elf_buffer; |
---|
1529 | |
---|
1530 | if ( (elf_header_ptr->e_ident[EI_MAG0] != ELFMAG0) || |
---|
1531 | (elf_header_ptr->e_ident[EI_MAG1] != ELFMAG1) || |
---|
1532 | (elf_header_ptr->e_ident[EI_MAG2] != ELFMAG2) || |
---|
1533 | (elf_header_ptr->e_ident[EI_MAG3] != ELFMAG3) ) |
---|
1534 | { |
---|
1535 | _printf("\n[BOOT ERROR] load_elf() : file %s does not use ELF format\n", |
---|
1536 | pathname ); |
---|
1537 | _exit(); |
---|
1538 | } |
---|
1539 | |
---|
1540 | // get program header table pointer |
---|
1541 | unsigned int pht_index = elf_header_ptr->e_phoff; |
---|
1542 | if( pht_index == 0 ) |
---|
1543 | { |
---|
1544 | _printf("\n[BOOT ERROR] load_one_elf_file() : file %s " |
---|
1545 | "does not contain loadable segment\n", pathname ); |
---|
1546 | _exit(); |
---|
1547 | } |
---|
1548 | Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(boot_elf_buffer + pht_index); |
---|
1549 | |
---|
1550 | // get number of segments |
---|
1551 | unsigned int nsegments = elf_header_ptr->e_phnum; |
---|
1552 | |
---|
1553 | // Loop on loadable segments in the .elf file |
---|
1554 | for (seg_id = 0 ; seg_id < nsegments ; seg_id++) |
---|
1555 | { |
---|
1556 | if(elf_pht_ptr[seg_id].p_type == PT_LOAD) |
---|
1557 | { |
---|
1558 | // Get segment attributes |
---|
1559 | unsigned int seg_vaddr = elf_pht_ptr[seg_id].p_vaddr; |
---|
1560 | unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset; |
---|
1561 | unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz; |
---|
1562 | unsigned int seg_memsz = elf_pht_ptr[seg_id].p_memsz; |
---|
1563 | |
---|
1564 | #if BOOT_DEBUG_ELF |
---|
1565 | _printf("\n[BOOT] Segment %d : vaddr = %x / size = %x\n", |
---|
1566 | seg_id , seg_vaddr , seg_filesz ); |
---|
1567 | #endif |
---|
1568 | |
---|
1569 | if( seg_memsz < seg_filesz ) |
---|
1570 | { |
---|
1571 | _printf("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = %x" |
---|
1572 | " in file %s has memsize < filesize \n", seg_vaddr, pathname ); |
---|
1573 | _exit(); |
---|
1574 | } |
---|
1575 | |
---|
1576 | // fill empty space with 0 as required |
---|
1577 | if( seg_memsz > seg_filesz ) |
---|
1578 | { |
---|
1579 | unsigned int i; |
---|
1580 | for( i = seg_filesz ; i < seg_memsz ; i++ ) |
---|
1581 | boot_elf_buffer[i+seg_offset] = 0; |
---|
1582 | } |
---|
1583 | |
---|
1584 | unsigned int src_vaddr = (unsigned int)boot_elf_buffer + seg_offset; |
---|
1585 | |
---|
1586 | // search all vsegs matching the virtual address |
---|
1587 | unsigned int vseg_first; |
---|
1588 | unsigned int vseg_last; |
---|
1589 | unsigned int vseg_id; |
---|
1590 | unsigned int found = 0; |
---|
1591 | if ( is_kernel ) |
---|
1592 | { |
---|
1593 | vseg_first = 0; |
---|
1594 | vseg_last = header->globals; |
---|
1595 | } |
---|
1596 | else |
---|
1597 | { |
---|
1598 | vseg_first = vspace[vspace_id].vseg_offset; |
---|
1599 | vseg_last = vseg_first + vspace[vspace_id].vsegs; |
---|
1600 | } |
---|
1601 | |
---|
1602 | for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ ) |
---|
1603 | { |
---|
1604 | if ( seg_vaddr == vseg[vseg_id].vbase ) // matching |
---|
1605 | { |
---|
1606 | found = 1; |
---|
1607 | |
---|
1608 | // get destination buffer physical address and size |
---|
1609 | paddr_t seg_paddr = vseg[vseg_id].pbase; |
---|
1610 | unsigned int seg_size = vseg[vseg_id].length; |
---|
1611 | |
---|
1612 | #if BOOT_DEBUG_ELF |
---|
1613 | _printf(" loaded into vseg %s at paddr = %l / buffer size = %x\n", |
---|
1614 | vseg[vseg_id].name , seg_paddr , seg_size ); |
---|
1615 | #endif |
---|
1616 | // check vseg size |
---|
1617 | if ( seg_size < seg_filesz ) |
---|
1618 | { |
---|
1619 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg %s " |
---|
1620 | "is to small for loadable segment %x in file %s\n", |
---|
1621 | vseg[vseg_id].name , seg_vaddr , pathname ); |
---|
1622 | _exit(); |
---|
1623 | } |
---|
1624 | |
---|
1625 | // copy the segment from boot buffer to destination buffer |
---|
1626 | // using DMA channel[0,0,0] if it is available. |
---|
1627 | if( NB_DMA_CHANNELS > 0 ) |
---|
1628 | { |
---|
1629 | _dma_physical_copy( 0, // DMA in cluster[0,0] |
---|
1630 | 0, // DMA channel 0 |
---|
1631 | (paddr_t)seg_paddr, // destination paddr |
---|
1632 | (paddr_t)src_vaddr, // source paddr |
---|
1633 | seg_filesz ); // size |
---|
1634 | } |
---|
1635 | else |
---|
1636 | { |
---|
1637 | _physical_memcpy( (paddr_t)seg_paddr, // destination paddr |
---|
1638 | (paddr_t)src_vaddr, // source paddr |
---|
1639 | seg_filesz ); // size |
---|
1640 | } |
---|
1641 | } |
---|
1642 | } // end for vsegs in vspace |
---|
1643 | |
---|
1644 | // check at least one matching vseg |
---|
1645 | if ( found == 0 ) |
---|
1646 | { |
---|
1647 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg for loadable " |
---|
1648 | "segment %x in file %s not found " |
---|
1649 | "check consistency between the .py and .ld files\n", |
---|
1650 | seg_vaddr, pathname ); |
---|
1651 | _exit(); |
---|
1652 | } |
---|
1653 | } |
---|
1654 | } // end for loadable segments |
---|
1655 | |
---|
1656 | // close .elf file |
---|
1657 | _fat_close( fd_id ); |
---|
1658 | |
---|
1659 | _printf("\n[BOOT] File %s loaded at cycle %d\n", |
---|
1660 | pathname , _get_proctime() ); |
---|
1661 | |
---|
1662 | } // end load_one_elf_file() |
---|
1663 | |
---|
1664 | |
---|
1665 | /////i//////////////////////////////////////////////////////////////////////////////// |
---|
1666 | // This function uses the map.bin data structure to load the "kernel.elf" file |
---|
1667 | // as well as the various "application.elf" files into memory. |
---|
1668 | // - The "preloader.elf" file is not loaded, because it has been burned in the ROM. |
---|
1669 | // - The "boot.elf" file is not loaded, because it has been loaded by the preloader. |
---|
1670 | // This function scans all vsegs defined in the map.bin data structure to collect |
---|
1671 | // all .elf files pathnames, and calls the load_one_elf_file() for each .elf file. |
---|
1672 | // As the code can be replicated in several vsegs, the same code can be copied |
---|
1673 | // in one or several clusters by the load_one_elf_file() function. |
---|
1674 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
1675 | void boot_elf_load() |
---|
1676 | { |
---|
1677 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1678 | mapping_vspace_t* vspace = _get_vspace_base( header ); |
---|
1679 | mapping_vseg_t* vseg = _get_vseg_base( header ); |
---|
1680 | |
---|
1681 | unsigned int vspace_id; |
---|
1682 | unsigned int vseg_id; |
---|
1683 | unsigned int found; |
---|
1684 | |
---|
1685 | // Scan all global vsegs to find the pathname to the kernel.elf file |
---|
1686 | found = 0; |
---|
1687 | for( vseg_id = 0 ; vseg_id < header->globals ; vseg_id++ ) |
---|
1688 | { |
---|
1689 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
1690 | { |
---|
1691 | found = 1; |
---|
1692 | break; |
---|
1693 | } |
---|
1694 | } |
---|
1695 | |
---|
1696 | // We need one kernel.elf file |
---|
1697 | if (found == 0) |
---|
1698 | { |
---|
1699 | _printf("\n[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n"); |
---|
1700 | _exit(); |
---|
1701 | } |
---|
1702 | |
---|
1703 | // Load the kernel |
---|
1704 | load_one_elf_file( 1, // kernel file |
---|
1705 | vseg[vseg_id].binpath, // file pathname |
---|
1706 | 0 ); // vspace 0 |
---|
1707 | |
---|
1708 | // loop on the vspaces, scanning all vsegs in the vspace, |
---|
1709 | // to find the pathname of the .elf file associated to the vspace. |
---|
1710 | for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ ) |
---|
1711 | { |
---|
1712 | // loop on the private vsegs |
---|
1713 | unsigned int found = 0; |
---|
1714 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
1715 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
1716 | vseg_id++) |
---|
1717 | { |
---|
1718 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
1719 | { |
---|
1720 | found = 1; |
---|
1721 | break; |
---|
1722 | } |
---|
1723 | } |
---|
1724 | |
---|
1725 | // We want one .elf file per vspace |
---|
1726 | if (found == 0) |
---|
1727 | { |
---|
1728 | _printf("\n[BOOT ERROR] boot_elf_load() : " |
---|
1729 | ".elf file not found for vspace %s\n", vspace[vspace_id].name ); |
---|
1730 | _exit(); |
---|
1731 | } |
---|
1732 | |
---|
1733 | load_one_elf_file( 0, // not a kernel file |
---|
1734 | vseg[vseg_id].binpath, // file pathname |
---|
1735 | vspace_id ); // vspace index |
---|
1736 | |
---|
1737 | } // end for vspaces |
---|
1738 | |
---|
1739 | } // end boot_elf_load() |
---|
1740 | |
---|
1741 | //////////////////////////////////////////////////////////////////////////////// |
---|
1742 | // This function intializes the periherals and coprocessors, as specified |
---|
1743 | // in the mapping_info file. |
---|
1744 | //////////////////////////////////////////////////////////////////////////////// |
---|
1745 | void boot_peripherals_init() |
---|
1746 | { |
---|
1747 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1748 | mapping_cluster_t * cluster = _get_cluster_base(header); |
---|
1749 | mapping_periph_t * periph = _get_periph_base(header); |
---|
1750 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
1751 | mapping_coproc_t * coproc = _get_coproc_base(header); |
---|
1752 | mapping_cp_port_t * cp_port = _get_cp_port_base(header); |
---|
1753 | mapping_irq_t * irq = _get_irq_base(header); |
---|
1754 | |
---|
1755 | unsigned int cluster_id; |
---|
1756 | unsigned int periph_id; |
---|
1757 | unsigned int coproc_id; |
---|
1758 | unsigned int cp_port_id; |
---|
1759 | unsigned int channel_id; |
---|
1760 | |
---|
1761 | // loop on all physical clusters |
---|
1762 | for (cluster_id = 0; cluster_id < X_SIZE*Y_SIZE; cluster_id++) |
---|
1763 | { |
---|
1764 | // computes cluster coordinates |
---|
1765 | unsigned int x = cluster[cluster_id].x; |
---|
1766 | unsigned int y = cluster[cluster_id].y; |
---|
1767 | unsigned int cluster_xy = (x<<Y_WIDTH) + y; |
---|
1768 | |
---|
1769 | #if BOOT_DEBUG_PERI |
---|
1770 | _printf("\n[BOOT] Peripherals initialisation in cluster[%d,%d]\n", x , y ); |
---|
1771 | #endif |
---|
1772 | |
---|
1773 | // loop on peripherals |
---|
1774 | for (periph_id = cluster[cluster_id].periph_offset; |
---|
1775 | periph_id < cluster[cluster_id].periph_offset + |
---|
1776 | cluster[cluster_id].periphs; periph_id++) |
---|
1777 | { |
---|
1778 | unsigned int type = periph[periph_id].type; |
---|
1779 | unsigned int subtype = periph[periph_id].subtype; |
---|
1780 | unsigned int channels = periph[periph_id].channels; |
---|
1781 | |
---|
1782 | switch (type) |
---|
1783 | { |
---|
1784 | case PERIPH_TYPE_IOC: // vci_block_device component |
---|
1785 | { |
---|
1786 | if ( subtype == PERIPH_SUBTYPE_BDV ) |
---|
1787 | { |
---|
1788 | _bdv_init(); |
---|
1789 | } |
---|
1790 | else if ( subtype == PERIPH_SUBTYPE_HBA ) |
---|
1791 | { |
---|
1792 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1793 | _hba_init( channel_id ); |
---|
1794 | } |
---|
1795 | else if ( subtype == PERIPH_SUBTYPE_SPI ) |
---|
1796 | { |
---|
1797 | //TODO |
---|
1798 | } |
---|
1799 | break; |
---|
1800 | } |
---|
1801 | case PERIPH_TYPE_TTY: // vci_multi_tty component |
---|
1802 | { |
---|
1803 | for (channel_id = 0; channel_id < channels; channel_id++) |
---|
1804 | { |
---|
1805 | _tty_init( channel_id ); |
---|
1806 | } |
---|
1807 | break; |
---|
1808 | } |
---|
1809 | case PERIPH_TYPE_NIC: // vci_multi_nic component |
---|
1810 | { |
---|
1811 | _nic_global_init( 1, // broadcast accepted |
---|
1812 | 1, // bypass activated |
---|
1813 | 0, // tdm non activated |
---|
1814 | 0 ); // tdm period |
---|
1815 | break; |
---|
1816 | } |
---|
1817 | case PERIPH_TYPE_IOB: // vci_io_bridge component |
---|
1818 | { |
---|
1819 | if (GIET_USE_IOMMU) |
---|
1820 | { |
---|
1821 | // TODO |
---|
1822 | // get the iommu page table physical address |
---|
1823 | // set IOMMU page table address |
---|
1824 | // pseg_base[IOB_IOMMU_PTPR] = ptab_pbase; |
---|
1825 | // activate IOMMU |
---|
1826 | // pseg_base[IOB_IOMMU_ACTIVE] = 1; |
---|
1827 | } |
---|
1828 | break; |
---|
1829 | } |
---|
1830 | case PERIPH_TYPE_PIC: // vci_iopic component |
---|
1831 | { |
---|
1832 | // scan all IRQs defined in mapping for PIC component, |
---|
1833 | // and initialises addresses for WTI IRQs |
---|
1834 | for ( channel_id = periph[periph_id].irq_offset ; |
---|
1835 | channel_id < periph[periph_id].irq_offset + periph[periph_id].irqs ; |
---|
1836 | channel_id++ ) |
---|
1837 | { |
---|
1838 | unsigned int hwi_id = irq[channel_id].srcid; // HWI index in PIC |
---|
1839 | unsigned int wti_id = irq[channel_id].dest_id; // WTI index in XCU |
---|
1840 | unsigned int cluster_xy = irq[channel_id].dest_xy; // XCU coordinates |
---|
1841 | unsigned int vaddr; |
---|
1842 | |
---|
1843 | _xcu_get_wti_address( wti_id, &vaddr ); |
---|
1844 | _pic_init( hwi_id, vaddr, cluster_xy ); |
---|
1845 | |
---|
1846 | #if BOOT_DEBUG_PERI |
---|
1847 | _printf("[BOOT] PIC : hwi_index = %d => wti_index = %d for XCU[%d,%d]\n", |
---|
1848 | hwi_id , wti_id , cluster_xy >> Y_WIDTH , cluster_xy & ((1<<Y_WIDTH)-1) ); |
---|
1849 | #endif |
---|
1850 | } |
---|
1851 | break; |
---|
1852 | } |
---|
1853 | } // end switch periph type |
---|
1854 | } // end for periphs |
---|
1855 | |
---|
1856 | #if BOOT_DEBUG_PERI |
---|
1857 | _printf("\n[BOOT] Coprocessors initialisation in cluster[%d,%d]\n", x , y ); |
---|
1858 | #endif |
---|
1859 | |
---|
1860 | // loop on coprocessors |
---|
1861 | for ( coproc_id = cluster[cluster_id].coproc_offset; |
---|
1862 | coproc_id < cluster[cluster_id].coproc_offset + |
---|
1863 | cluster[cluster_id].coprocs; coproc_id++ ) |
---|
1864 | { |
---|
1865 | // loop on the coprocessor ports |
---|
1866 | for ( cp_port_id = coproc[coproc_id].port_offset; |
---|
1867 | cp_port_id < coproc[coproc_id].port_offset + coproc[coproc_id].ports; |
---|
1868 | cp_port_id++ ) |
---|
1869 | { |
---|
1870 | // get global index of associted vseg |
---|
1871 | unsigned int vseg_id = cp_port[cp_port_id].mwmr_vseg_id; |
---|
1872 | |
---|
1873 | // get MWMR channel base address |
---|
1874 | page_table_t* ptab = (page_table_t*)_ptabs_vaddr[0][x][y]; |
---|
1875 | unsigned int vbase = vseg[vseg_id].vbase; |
---|
1876 | unsigned int ppn; |
---|
1877 | unsigned int flags; |
---|
1878 | paddr_t pbase; |
---|
1879 | |
---|
1880 | _v2p_translate( ptab, |
---|
1881 | vbase>>12 , |
---|
1882 | &ppn, |
---|
1883 | &flags ); |
---|
1884 | |
---|
1885 | pbase = ((paddr_t)ppn)<<12; |
---|
1886 | |
---|
1887 | // initialise cp_port |
---|
1888 | _mwr_hw_init( cluster_xy, |
---|
1889 | cp_port_id, |
---|
1890 | cp_port[cp_port_id].direction, |
---|
1891 | pbase ); |
---|
1892 | |
---|
1893 | } // end for cp_ports |
---|
1894 | } // end for coprocs |
---|
1895 | } // end for clusters |
---|
1896 | } // end boot_peripherals_init() |
---|
1897 | |
---|
1898 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
1899 | // This function is executed in parallel by all processors[x][y][0]. |
---|
1900 | // It initialises the physical memory allocator in each cluster containing a RAM pseg. |
---|
1901 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
1902 | void boot_pmem_init( unsigned int cx, |
---|
1903 | unsigned int cy ) |
---|
1904 | { |
---|
1905 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1906 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1907 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
1908 | |
---|
1909 | unsigned int pseg_id; |
---|
1910 | unsigned int procid = _get_procid(); |
---|
1911 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
1912 | |
---|
1913 | if( lpid ) |
---|
1914 | { |
---|
1915 | _printf("\n[BOOT ERROR] boot_pmem_init() : " |
---|
1916 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
1917 | _exit(); |
---|
1918 | } |
---|
1919 | |
---|
1920 | // scan the psegs in local cluster to find pseg of type RAM |
---|
1921 | unsigned int found = 0; |
---|
1922 | unsigned int cluster_id = cx * Y_SIZE + cy; |
---|
1923 | unsigned int pseg_min = cluster[cluster_id].pseg_offset; |
---|
1924 | unsigned int pseg_max = pseg_min + cluster[cluster_id].psegs; |
---|
1925 | for ( pseg_id = pseg_min ; pseg_id < pseg_max ; pseg_id++ ) |
---|
1926 | { |
---|
1927 | if ( pseg[pseg_id].type == PSEG_TYPE_RAM ) |
---|
1928 | { |
---|
1929 | unsigned int base = (unsigned int)pseg[pseg_id].base; |
---|
1930 | unsigned int size = (unsigned int)pseg[pseg_id].length; |
---|
1931 | _pmem_alloc_init( cx, cy, base, size ); |
---|
1932 | found = 1; |
---|
1933 | |
---|
1934 | #if BOOT_DEBUG_PT |
---|
1935 | _printf("\n[BOOT] pmem allocator initialised in cluster[%d][%d]" |
---|
1936 | " : base = %x / size = %x\n", cx , cy , base , size ); |
---|
1937 | #endif |
---|
1938 | break; |
---|
1939 | } |
---|
1940 | } |
---|
1941 | |
---|
1942 | if ( found == 0 ) |
---|
1943 | { |
---|
1944 | _printf("\n[BOOT ERROR] boot_pmem_init() : no RAM in cluster[%d][%d]\n", |
---|
1945 | cx , cy ); |
---|
1946 | _exit(); |
---|
1947 | } |
---|
1948 | } // end boot_pmem_init() |
---|
1949 | |
---|
1950 | ///////////////////////////////////////////////////////////////////////// |
---|
1951 | // This function is the entry point of the boot code for all processors. |
---|
1952 | ///////////////////////////////////////////////////////////////////////// |
---|
1953 | void boot_init() |
---|
1954 | { |
---|
1955 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1956 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1957 | |
---|
1958 | unsigned int gpid = _get_procid(); |
---|
1959 | unsigned int cx = gpid >> (Y_WIDTH + P_WIDTH); |
---|
1960 | unsigned int cy = (gpid >> P_WIDTH) & ((1<<Y_WIDTH)-1); |
---|
1961 | unsigned int lpid = gpid & ((1 << P_WIDTH) -1); |
---|
1962 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
1963 | |
---|
1964 | // Phase ONE : only P[0][0][0] execute it |
---|
1965 | if ( gpid == 0 ) |
---|
1966 | { |
---|
1967 | unsigned int cid; // index for loops |
---|
1968 | |
---|
1969 | // initialises the TTY0 spin lock |
---|
1970 | _spin_lock_init( &_tty0_spin_lock ); |
---|
1971 | |
---|
1972 | _printf("\n[BOOT] P[0,0,0] starts at cycle %d\n", _get_proctime() ); |
---|
1973 | |
---|
1974 | // initialises the FAT |
---|
1975 | _fat_init( IOC_BOOT_MODE ); |
---|
1976 | |
---|
1977 | _printf("\n[BOOT] FAT initialised at cycle %d\n", _get_proctime() ); |
---|
1978 | |
---|
1979 | // Load the map.bin file into memory |
---|
1980 | boot_mapping_init(); |
---|
1981 | |
---|
1982 | _printf("\n[BOOT] Mapping %s loaded at cycle %d\n", |
---|
1983 | header->name , _get_proctime() ); |
---|
1984 | |
---|
1985 | // initialises the barrier for all clusters containing processors |
---|
1986 | unsigned int nclusters = 0; |
---|
1987 | for ( cid = 0 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
1988 | { |
---|
1989 | if ( cluster[cid].procs ) nclusters++ ; |
---|
1990 | } |
---|
1991 | |
---|
1992 | _simple_barrier_init( &_barrier_all_clusters , nclusters ); |
---|
1993 | |
---|
1994 | // wake up all processors P[x][y][0] |
---|
1995 | for ( cid = 1 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
1996 | { |
---|
1997 | unsigned int x = cluster[cid].x; |
---|
1998 | unsigned int y = cluster[cid].y; |
---|
1999 | unsigned int cluster_xy = (x << Y_WIDTH) + y; |
---|
2000 | |
---|
2001 | if ( cluster[cid].procs ) |
---|
2002 | { |
---|
2003 | unsigned long long paddr = (((unsigned long long)cluster_xy)<<32) + |
---|
2004 | SEG_XCU_BASE + XCU_REG( XCU_WTI_REG , 0 ); |
---|
2005 | |
---|
2006 | _physical_write( paddr , (unsigned int)boot_entry ); |
---|
2007 | } |
---|
2008 | } |
---|
2009 | |
---|
2010 | _printf("\n[BOOT] Processors P[x,y,0] start at cycle %d\n", _get_proctime() ); |
---|
2011 | } |
---|
2012 | |
---|
2013 | // Phase TWO : All processors P[x][y][0] execute it in parallel |
---|
2014 | if( lpid == 0 ) |
---|
2015 | { |
---|
2016 | // Initializes physical memory allocator in cluster[cx][cy] |
---|
2017 | boot_pmem_init( cx , cy ); |
---|
2018 | |
---|
2019 | // Build page table in cluster[cx][cy] |
---|
2020 | boot_ptab_init( cx , cy ); |
---|
2021 | |
---|
2022 | ////////////////////////////////////////////// |
---|
2023 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
2024 | ////////////////////////////////////////////// |
---|
2025 | |
---|
2026 | // P[0][0][0] complete page tables with vsegs |
---|
2027 | // mapped in clusters without processors |
---|
2028 | if ( gpid == 0 ) |
---|
2029 | { |
---|
2030 | // complete page tables initialisation |
---|
2031 | boot_ptab_extend(); |
---|
2032 | |
---|
2033 | _printf("\n[BOOT] Physical memory allocators and page tables" |
---|
2034 | " initialized at cycle %d\n", _get_proctime() ); |
---|
2035 | } |
---|
2036 | |
---|
2037 | ////////////////////////////////////////////// |
---|
2038 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
2039 | ////////////////////////////////////////////// |
---|
2040 | |
---|
2041 | // All processors P[x,y,0] activate MMU (using local PTAB) |
---|
2042 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
2043 | _set_mmu_mode( 0xF ); |
---|
2044 | |
---|
2045 | // Each processor P[x,y,0] initialises all schedulers in cluster[x,y] |
---|
2046 | boot_scheduler_init( cx , cy ); |
---|
2047 | |
---|
2048 | // Each processor P[x][y][0] initialises its CP0_SCHED register |
---|
2049 | _set_sched( (unsigned int)_schedulers[cx][cy][0] ); |
---|
2050 | |
---|
2051 | ////////////////////////////////////////////// |
---|
2052 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
2053 | ////////////////////////////////////////////// |
---|
2054 | |
---|
2055 | // Processor P[0,0,0] completes schedulers with PIC-WTI |
---|
2056 | // initialises external peripherals and load .elf files. |
---|
2057 | if ( gpid == 0 ) |
---|
2058 | { |
---|
2059 | // complete schedulers initialisation |
---|
2060 | boot_pic_wti_init(); |
---|
2061 | |
---|
2062 | _printf("\n[BOOT] Schedulers initialised at cycle %d\n", _get_proctime() ); |
---|
2063 | |
---|
2064 | // initialize non replicated peripherals |
---|
2065 | boot_peripherals_init(); |
---|
2066 | |
---|
2067 | _printf("\n[BOOT] Peripherals initialised at cycle %d\n", _get_proctime() ); |
---|
2068 | |
---|
2069 | // Loading all .elf files |
---|
2070 | boot_elf_load(); |
---|
2071 | } |
---|
2072 | /* |
---|
2073 | // Each processor P[x][y][0] checks sequencially its local page table |
---|
2074 | unsigned int seq_x; |
---|
2075 | unsigned int seq_y; |
---|
2076 | for ( seq_x = 0 ; seq_x < X_SIZE ; seq_x++ ) |
---|
2077 | { |
---|
2078 | for ( seq_y = 0 ; seq_y < Y_SIZE ; seq_y++ ) |
---|
2079 | { |
---|
2080 | if ( (cx == seq_x) && (cy == seq_y) ) boot_ptab_check( cx , cy ); |
---|
2081 | |
---|
2082 | ////////////////////////////////////////////// |
---|
2083 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
2084 | ////////////////////////////////////////////// |
---|
2085 | } |
---|
2086 | } |
---|
2087 | */ |
---|
2088 | ////////////////////////////////////////////// |
---|
2089 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
2090 | ////////////////////////////////////////////// |
---|
2091 | |
---|
2092 | // each processor P[x][y][0] wake up other processors in same cluster |
---|
2093 | unsigned int cluster_xy = (cx << Y_WIDTH) + cy; |
---|
2094 | unsigned int p; |
---|
2095 | for ( p = 1 ; p < cluster[cluster_id].procs ; p++ ) |
---|
2096 | { |
---|
2097 | _xcu_send_wti( cluster_xy , p , (unsigned int)boot_entry ); |
---|
2098 | } |
---|
2099 | |
---|
2100 | if ( gpid == 0 ) // only P[0][0][0] makes display |
---|
2101 | _printf("\n[BOOT] All processors start at cycle %d\n", _get_proctime() ); |
---|
2102 | } |
---|
2103 | |
---|
2104 | // Other processors than P[x][y][0] activate MMU (using local PTAB) |
---|
2105 | if ( lpid != 0 ) |
---|
2106 | { |
---|
2107 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
2108 | _set_mmu_mode( 0xF ); |
---|
2109 | } |
---|
2110 | |
---|
2111 | // All processors set CP0_SCHED register |
---|
2112 | _set_sched( (unsigned int)_schedulers[cx][cy][lpid] ); |
---|
2113 | |
---|
2114 | // All processors reset BEV bit in SR to use GIET_VM exception handler |
---|
2115 | _set_sr( 0 ); |
---|
2116 | |
---|
2117 | // All processors jump to kernel_init |
---|
2118 | unsigned int kernel_entry = (unsigned int)&kernel_init_vbase; |
---|
2119 | asm volatile( "jr %0" ::"r"(kernel_entry) ); |
---|
2120 | |
---|
2121 | } // end boot_init() |
---|
2122 | |
---|
2123 | |
---|
2124 | // Local Variables: |
---|
2125 | // tab-width: 4 |
---|
2126 | // c-basic-offset: 4 |
---|
2127 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
2128 | // indent-tabs-mode: nil |
---|
2129 | // End: |
---|
2130 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
2131 | |
---|