source: soft/giet_vm/giet_boot/boot.c @ 572

Last change on this file since 572 was 564, checked in by alain, 9 years ago

Cosmetic.

File size: 78.1 KB
Line 
1///////////////////////////////////////////////////////////////////////////////////
2// File     : boot.c
3// Date     : 01/11/2013
4// Author   : alain greiner
5// Copyright (c) UPMC-LIP6
6///////////////////////////////////////////////////////////////////////////////////
7// The boot.c file contains the bootloader for the GIET-VM static OS. 
8//
9// This code has been written for the MIPS32 processor.
10// The virtual adresses are on 32 bits and use the (unsigned int) type. The
11// physicals addresses can have up to 40 bits, and use type (unsigned long long).
12// It natively supports clusterised shared memory multi-processors architectures,
13// where each processor is identified by a composite index [x,y,p],
14// and where there is one physical memory bank per cluster.
15//
16// The boot.elf file is stored on disk and is loaded into memory by proc[0,0,0],
17// executing the generic preloader (stored in ROM). The boot-loader code itself
18// is executed in parallel by all proc[x,y,0], and performs the following tasks:
19// - load into memory various binary files, from a FAT32 file system.
20// - build the various page tables (one page table per vspace).
21// - initialize the shedulers (one scheduler per processor).
22// - initialize the external peripherals.
23//
24// 1) The binary files to be loaded are:
25//    - the "map.bin" file contains the hardware architecture description and the
26//      mapping directives. It must be stored in the the seg_boot_mapping segment
27//      (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file).
28//    - the "kernel.elf" file contains the kernel binary code and data.
29//    - the various "application.elf" files.
30//
31// 2) The "map.bin" file contains the C binary structure defining:
32//    - the hardware architecture: number of clusters, number or processors,
33//      size of the memory segments, and peripherals in each cluster.
34//    - The structure of the various multi-threaded software applications:
35//      number of tasks, communication channels.
36//    - The mapping: placement of virtual segments (vseg) in the physical
37//      segments (pseg), placement of software tasks on the processors,
38//
39// 3) The GIET-VM uses the paged virtual memory to provides two services:
40//    - classical memory protection, when several independant applications compiled
41//      in different virtual spaces are executing on the same hardware platform.
42//    - data placement in NUMA architectures, to control the placement
43//      of the software objects (vsegs) on the physical memory banks (psegs).
44//
45//    The max number of vspaces (GIET_NB_VSPACE_MAX) is a configuration parameter.
46//    For each application, the tasks are statically allocateded on processors.
47//    The page table are statically build in the boot phase, and they do not
48//    change during execution.
49//    The GIET_VM uses both small pages (4 Kbytes), and big pages (2 Mbytes).
50//
51//    Each page table (one page table per virtual space) is monolithic, and
52//    contains one PT1 (8 Kbytes) and a variable number of PT2s (4 Kbytes each).
53//    For each vspace, the number of PT2s is defined by the size of the PTAB vseg
54//    in the mapping.
55//    The PT1 is indexed by the ix1 field (11 bits) of the VPN. An entry is 32 bits.
56//    A PT2 is indexed the ix2 field (9 bits) of the VPN. An entry is 64 bits.
57//    The first word contains the flags, the second word contains the PPN.
58//    The page tables are distributed/replicated in all clusters.
59///////////////////////////////////////////////////////////////////////////////////
60// Implementation Notes:
61//
62// 1) The cluster_id variable is a linear index in the mapping_info array.
63//    The cluster_xy variable is the tological index = x << Y_WIDTH + y
64//
65// 2) We set the _tty0_boot_mode variable to force the _printf() function to use
66//    the tty0_spin_lock for exclusive access to TTY0.
67///////////////////////////////////////////////////////////////////////////////////
68
69#include <giet_config.h>
70#include <hard_config.h>
71#include <mapping_info.h>
72#include <kernel_malloc.h>
73#include <memspace.h>
74#include <tty_driver.h>
75#include <xcu_driver.h>
76#include <bdv_driver.h>
77#include <hba_driver.h>
78#include <sdc_driver.h>
79#include <cma_driver.h>
80#include <nic_driver.h>
81#include <iob_driver.h>
82#include <pic_driver.h>
83#include <mwr_driver.h>
84#include <dma_driver.h>
85#include <ctx_handler.h>
86#include <irq_handler.h>
87#include <vmem.h>
88#include <pmem.h>
89#include <utils.h>
90#include <tty0.h>
91#include <kernel_locks.h>
92#include <kernel_barriers.h>
93#include <elf-types.h>
94#include <fat32.h>
95#include <mips32_registers.h>
96#include <stdarg.h>
97
98#if !defined(X_SIZE)
99# error: The X_SIZE value must be defined in the 'hard_config.h' file !
100#endif
101
102#if !defined(Y_SIZE)
103# error: The Y_SIZE value must be defined in the 'hard_config.h' file !
104#endif
105
106#if !defined(X_WIDTH)
107# error: The X_WIDTH value must be defined in the 'hard_config.h' file !
108#endif
109
110#if !defined(Y_WIDTH)
111# error: The Y_WIDTH value must be defined in the 'hard_config.h' file !
112#endif
113
114#if !defined(SEG_BOOT_MAPPING_BASE)
115# error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file !
116#endif
117
118#if !defined(NB_PROCS_MAX)
119# error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file !
120#endif
121
122#if !defined(GIET_NB_VSPACE_MAX)
123# error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file !
124#endif
125
126#if !defined(GIET_ELF_BUFFER_SIZE)
127# error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file !
128#endif
129
130////////////////////////////////////////////////////////////////////////////
131//      Global variables for boot code
132////////////////////////////////////////////////////////////////////////////
133
134// FAT internal representation for boot code 
135__attribute__((section(".kdata")))
136fat32_fs_t  _fat   __attribute__((aligned(512)));
137
138// Temporaty buffer used to load one complete .elf file 
139__attribute__((section(".kdata")))
140char  _boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(512)));
141
142// Physical memory allocators array (one per cluster)
143__attribute__((section(".kdata")))
144pmem_alloc_t  boot_pmem_alloc[X_SIZE][Y_SIZE];
145
146// Distributed kernel heap (one per cluster)
147// __attribute__((section(".kdata")))
148// kernel_heap_t       kernel_heap[X_SIZE][Y_SIZE];
149
150// Schedulers virtual base addresses array (one per processor)
151__attribute__((section(".kdata")))
152static_scheduler_t* _schedulers[X_SIZE][Y_SIZE][NB_PROCS_MAX];
153
154// Page tables virtual base addresses (one per vspace and per cluster)
155__attribute__((section(".kdata")))
156unsigned int        _ptabs_vaddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
157
158// Page tables physical base addresses (one per vspace and per cluster)
159__attribute__((section(".kdata")))
160paddr_t             _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
161
162// Page tables pt2 allocators (one per vspace and per cluster)
163__attribute__((section(".kdata")))
164unsigned int        _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
165
166// Page tables max_pt2  (same value for all page tables)
167__attribute__((section(".kdata")))
168unsigned int        _ptabs_max_pt2;
169
170// boot code uses a spin lock to protect TTY0
171__attribute__((section(".kdata")))
172unsigned int        _tty0_boot_mode = 1;
173
174__attribute__((section(".kdata")))
175spin_lock_t         _ptabs_spin_lock[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
176
177// barrier used by boot code for parallel execution
178__attribute__((section(".kdata")))
179simple_barrier_t    _barrier_all_clusters;
180
181//////////////////////////////////////////////////////////////////////////////
182//        Extern variables
183//////////////////////////////////////////////////////////////////////////////
184
185// this variable is defined in the tty0.c file
186extern spin_lock_t  _tty0_spin_lock;
187
188extern void boot_entry();
189
190//////////////////////////////////////////////////////////////////////////////
191// This function registers a new PTE1 in the page table defined
192// by the vspace_id argument, and the (x,y) coordinates.
193// It updates only the first level PT1.
194// As each vseg is mapped by a different processor, the PT1 entry cannot
195// be concurrently accessed, and we don't need to take any lock.
196//////////////////////////////////////////////////////////////////////////////
197void boot_add_pte1( unsigned int vspace_id,
198                    unsigned int x,
199                    unsigned int y,
200                    unsigned int vpn,        // 20 bits right-justified
201                    unsigned int flags,      // 10 bits left-justified
202                    unsigned int ppn )       // 28 bits right-justified
203{
204    // compute index in PT1
205    unsigned int    ix1 = vpn >> 9;         // 11 bits for ix1
206
207    // get page table physical base address
208    paddr_t  pt1_pbase = _ptabs_paddr[vspace_id][x][y];
209
210    if ( pt1_pbase == 0 )
211    {
212        _printf("\n[BOOT ERROR] in boot_add_pte1() : no PTAB in cluster[%d,%d]"
213                    " containing processors\n", x , y );
214        _exit();
215    }
216
217    // compute pte1 : 2 bits V T / 8 bits flags / 3 bits RSVD / 19 bits bppi
218    unsigned int    pte1 = PTE_V |
219                           (flags & 0x3FC00000) |
220                           ((ppn>>9) & 0x0007FFFF);
221
222    // write pte1 in PT1
223    _physical_write( pt1_pbase + 4*ix1, pte1 );
224
225    asm volatile ("sync");
226
227}   // end boot_add_pte1()
228
229//////////////////////////////////////////////////////////////////////////////
230// This function registers a new PTE2 in the page table defined
231// by the vspace_id argument, and the (x,y) coordinates.
232// It updates both the first level PT1 and the second level PT2.
233// As the set of PT2s is implemented as a fixed size array (no dynamic
234// allocation), this function checks a possible overflow of the PT2 array.
235// As a given entry in PT1 can be shared by several vsegs, mapped by
236// different processors, we need to take the lock protecting PTAB[v][x]y].
237//////////////////////////////////////////////////////////////////////////////
238void boot_add_pte2( unsigned int vspace_id,
239                    unsigned int x,
240                    unsigned int y,
241                    unsigned int vpn,        // 20 bits right-justified
242                    unsigned int flags,      // 10 bits left-justified
243                    unsigned int ppn )       // 28 bits right-justified
244{
245    unsigned int ix1;
246    unsigned int ix2;
247    paddr_t      pt2_pbase;     // PT2 physical base address
248    paddr_t      pte2_paddr;    // PTE2 physical address
249    unsigned int pt2_id;        // PT2 index
250    unsigned int ptd;           // PTD : entry in PT1
251
252    ix1 = vpn >> 9;             // 11 bits for ix1
253    ix2 = vpn & 0x1FF;          //  9 bits for ix2
254
255    // get page table physical base address
256    paddr_t      pt1_pbase = _ptabs_paddr[vspace_id][x][y];
257
258    if ( pt1_pbase == 0 )
259    {
260        _printf("\n[BOOT ERROR] in boot_add_pte2() : no PTAB for vspace %d "
261                "in cluster[%d,%d]\n", vspace_id , x , y );
262        _exit();
263    }
264
265    // get lock protecting PTAB[vspace_id][x][y]
266    _spin_lock_acquire( &_ptabs_spin_lock[vspace_id][x][y] );
267
268    // get ptd in PT1
269    ptd = _physical_read( pt1_pbase + 4 * ix1 );
270
271    if ((ptd & PTE_V) == 0)    // undefined PTD: compute PT2 base address,
272                               // and set a new PTD in PT1
273    {
274        // get a new pt2_id
275        pt2_id = _ptabs_next_pt2[vspace_id][x][y];
276        _ptabs_next_pt2[vspace_id][x][y] = pt2_id + 1;
277
278        // check overflow
279        if (pt2_id == _ptabs_max_pt2) 
280        {
281            _printf("\n[BOOT ERROR] in boot_add_pte2() : PTAB[%d,%d,%d]"
282                    " contains not enough PT2s\n", vspace_id, x, y );
283            _exit();
284        }
285
286        pt2_pbase = pt1_pbase + PT1_SIZE + PT2_SIZE * pt2_id;
287        ptd = PTE_V | PTE_T | (unsigned int) (pt2_pbase >> 12);
288
289        // set PTD into PT1
290        _physical_write( pt1_pbase + 4*ix1, ptd);
291    }
292    else                       // valid PTD: compute PT2 base address
293    {
294        pt2_pbase = ((paddr_t)(ptd & 0x0FFFFFFF)) << 12;
295    }
296
297    // set PTE in PT2 : flags & PPN in two 32 bits words
298    pte2_paddr  = pt2_pbase + 8 * ix2;
299    _physical_write(pte2_paddr     , (PTE_V | flags) );
300    _physical_write(pte2_paddr + 4 , ppn );
301
302    // release lock protecting PTAB[vspace_id][x][y]
303    _spin_lock_release( &_ptabs_spin_lock[vspace_id][x][y] );
304
305    asm volatile ("sync");
306
307}   // end boot_add_pte2()
308
309////////////////////////////////////////////////////////////////////////////////////
310// Align the value of paddr or vaddr to the required alignement,
311// defined by alignPow2 == L2(alignement).
312////////////////////////////////////////////////////////////////////////////////////
313paddr_t paddr_align_to( paddr_t paddr, unsigned int alignPow2 ) 
314{
315    paddr_t mask = (1 << alignPow2) - 1;
316    return ((paddr + mask) & ~mask);
317}
318
319unsigned int vaddr_align_to( unsigned int vaddr, unsigned int alignPow2 ) 
320{
321    unsigned int mask = (1 << alignPow2) - 1;
322    return ((vaddr + mask) & ~mask);
323}
324
325/////////////////////////////////////////////////////////////////////////////////////
326// This function map a vseg identified by the vseg pointer.
327//
328// A given vseg can be mapped in a Big Physical Pages (BPP: 2 Mbytes) or in a
329// Small Physical Pages (SPP: 4 Kbytes), depending on the "big" attribute of vseg,
330// with the following rules:
331// - SPP : There is only one vseg in a small physical page, but a single vseg
332//   can cover several contiguous small physical pages.
333// - BPP : It can exist several vsegs in a single big physical page, and a single
334//   vseg can cover several contiguous big physical pages.
335//
336// 1) First step: it computes various vseg attributes and checks
337//    alignment constraints.
338//
339// 2) Second step: it allocates the required number of contiguous physical pages,
340//    computes the physical base address (if the vseg is not identity mapping),
341//    and register it in the vseg pbase field.
342//    Only the vsegs used by the boot code and the peripheral vsegs
343//    can be identity mapping. The first big physical page in cluster[0,0]
344//    is reserved for the boot vsegs.
345//
346// 3) Third step (only for vseg that have the VSEG_TYPE_PTAB): the M page tables
347//    associated to the M vspaces must be packed in the same vseg.
348//    We divide this vseg in M sub-segments, and compute the vbase and pbase
349//    addresses for M page tables, and register these addresses in the _ptabs_paddr
350//    and _ptabs_vaddr arrays.
351// 
352/////////////////////////////////////////////////////////////////////////////////////
353void boot_vseg_map( mapping_vseg_t* vseg,
354                    unsigned int    vspace_id )
355{
356    mapping_header_t*   header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
357    mapping_cluster_t*  cluster = _get_cluster_base(header);
358    mapping_pseg_t*     pseg    = _get_pseg_base(header);
359
360    //////////// First step : compute vseg attributes
361
362    // compute destination cluster pointer & coordinates
363    pseg    = pseg + vseg->psegid;
364    cluster = cluster + pseg->clusterid;
365    unsigned int        x_dest     = cluster->x;
366    unsigned int        y_dest     = cluster->y;
367
368    // compute the "big" vseg attribute
369    unsigned int        big = vseg->big;
370
371    // all vsegs must be aligned on 4Kbytes
372    if ( vseg->vbase & 0x00000FFF ) 
373    {
374        _printf("\n[BOOT ERROR] vseg %s not aligned : vbase = %x\n", 
375                vseg->name, vseg->vbase );
376        _exit();
377    }
378
379    // compute the "is_ram" vseg attribute
380    unsigned int        is_ram;
381    if ( pseg->type == PSEG_TYPE_RAM )  is_ram = 1;
382    else                                is_ram = 0;
383
384    // compute the "is_ptab" attribute
385    unsigned int        is_ptab;
386    if ( vseg->type == VSEG_TYPE_PTAB ) is_ptab = 1;
387    else                                is_ptab = 0;
388
389    // compute actual vspace index
390    unsigned int vsid;
391    if ( vspace_id == 0xFFFFFFFF ) vsid = 0;
392    else                           vsid = vspace_id;
393
394    //////////// Second step : compute ppn and npages 
395    //////////// - if identity mapping :  ppn <= vpn
396    //////////// - if vseg is periph   :  ppn <= pseg.base >> 12
397    //////////// - if vseg is ram      :  ppn <= physical memory allocator
398
399    unsigned int ppn;          // first physical page index (28 bits = |x|y|bppi|sppi|)
400    unsigned int vpn;          // first virtual page index  (20 bits = |ix1|ix2|)
401    unsigned int vpn_max;      // last  virtual page index  (20 bits = |ix1|ix2|)
402
403    vpn     = vseg->vbase >> 12;
404    vpn_max = (vseg->vbase + vseg->length - 1) >> 12;
405
406    // compute npages
407    unsigned int npages;       // number of required (big or small) pages
408    if ( big == 0 ) npages  = vpn_max - vpn + 1;            // number of small pages
409    else            npages  = (vpn_max>>9) - (vpn>>9) + 1;  // number of big pages
410
411    // compute ppn
412    if ( vseg->ident )           // identity mapping
413    {
414        ppn = vpn;
415    }
416    else                         // not identity mapping
417    {
418        if ( is_ram )            // RAM : physical memory allocation required
419        {
420            // compute pointer on physical memory allocator in dest cluster
421            pmem_alloc_t*     palloc = &boot_pmem_alloc[x_dest][y_dest];
422
423            if ( big == 0 )             // SPP : small physical pages
424            {
425                // allocate contiguous small physical pages
426                ppn = _get_small_ppn( palloc, npages );
427            }
428            else                            // BPP : big physical pages
429            {
430 
431                // one big page can be shared by several vsegs
432                // we must chek if BPP already allocated
433                if ( is_ptab )   // It cannot be mapped
434                {
435                    ppn = _get_big_ppn( palloc, npages ); 
436                }
437                else             // It can be mapped
438                {
439                    unsigned int ix1   = vpn >> 9;   // 11 bits
440                    paddr_t      paddr = _ptabs_paddr[vsid][x_dest][y_dest] + (ix1<<2);
441                    unsigned int pte1  = _physical_read( paddr );
442
443                    if ( (pte1 & PTE_V) == 0 )     // BPP not allocated yet
444                    {
445                        // allocate contiguous big physical pages
446                        ppn = _get_big_ppn( palloc, npages );
447                    }
448                    else                           // BPP already allocated
449                    {
450                        // test if new vseg has the same mode bits than
451                        // the other vsegs in the same big page
452                        unsigned int pte1_mode = 0;
453                        if (pte1 & PTE_C) pte1_mode |= C_MODE_MASK;
454                        if (pte1 & PTE_X) pte1_mode |= X_MODE_MASK;
455                        if (pte1 & PTE_W) pte1_mode |= W_MODE_MASK;
456                        if (pte1 & PTE_U) pte1_mode |= U_MODE_MASK;
457                        if (vseg->mode != pte1_mode) 
458                        {
459                            _printf("\n[BOOT ERROR] in boot_vseg_map() : "
460                                    "vseg %s has different flags than another vseg "
461                                    "in the same BPP\n", vseg->name );
462                            _exit();
463                        }
464                        ppn = ((pte1 << 9) & 0x0FFFFE00);
465                    }
466                }
467                ppn = ppn | (vpn & 0x1FF);
468            }
469        }
470        else                    // PERI : no memory allocation required
471        {
472            ppn = pseg->base >> 12;
473        }
474    }
475
476    // update vseg.pbase field and update vsegs chaining
477    vseg->pbase     = ((paddr_t)ppn) << 12;
478    vseg->mapped    = 1;
479
480
481    //////////// Third step : (only if the vseg is a page table)
482    //////////// - compute the physical & virtual base address for each vspace
483    ////////////   by dividing the vseg in several sub-segments.
484    //////////// - register it in _ptabs_vaddr & _ptabs_paddr arrays,
485    ////////////   and initialize next_pt2 allocators.
486    //////////// - reset all entries in first level page tables
487   
488    if ( is_ptab )
489    {
490        unsigned int   vs;        // vspace index
491        unsigned int   nspaces;   // number of vspaces
492        unsigned int   nsp;       // number of small pages for one PTAB
493        unsigned int   offset;    // address offset for current PTAB
494
495        nspaces = header->vspaces;
496        offset  = 0;
497
498        // each PTAB must be aligned on a 8 Kbytes boundary
499        nsp = ( vseg->length >> 12 ) / nspaces;
500        if ( (nsp & 0x1) == 0x1 ) nsp = nsp - 1;
501
502        // compute max_pt2
503        _ptabs_max_pt2 = ((nsp<<12) - PT1_SIZE) / PT2_SIZE;
504
505        for ( vs = 0 ; vs < nspaces ; vs++ )
506        {
507            _ptabs_vaddr   [vs][x_dest][y_dest] = (vpn + offset) << 12;
508            _ptabs_paddr   [vs][x_dest][y_dest] = ((paddr_t)(ppn + offset)) << 12;
509            _ptabs_next_pt2[vs][x_dest][y_dest] = 0;
510            offset += nsp;
511
512            // reset all entries in PT1 (8 Kbytes)
513            _physical_memset( _ptabs_paddr[vs][x_dest][y_dest], PT1_SIZE, 0 );
514        }
515    }
516
517    asm volatile ("sync");
518
519#if BOOT_DEBUG_PT
520if ( big )
521_printf("\n[BOOT] vseg %s : cluster[%d,%d] / "
522       "vbase = %x / length = %x / BIG    / npages = %d / pbase = %l\n",
523       vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase );
524else
525_printf("\n[BOOT] vseg %s : cluster[%d,%d] / "
526        "vbase = %x / length = %x / SMALL / npages = %d / pbase = %l\n",
527       vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase );
528#endif
529
530} // end boot_vseg_map()
531
532/////////////////////////////////////////////////////////////////////////////////////
533// For the vseg defined by the vseg pointer, this function register PTEs
534// in one or several page tables.
535// It is a global vseg (kernel vseg) if (vspace_id == 0xFFFFFFFF).
536// The number of involved PTABs depends on the "local" and "global" attributes:
537//  - PTEs are replicated in all vspaces for a global vseg.
538//  - PTEs are replicated in all clusters containing procs for a non local vseg.
539/////////////////////////////////////////////////////////////////////////////////////
540void boot_vseg_pte( mapping_vseg_t*  vseg,
541                    unsigned int     vspace_id )
542{
543    // compute the "global" vseg attribute and actual vspace index
544    unsigned int        global;
545    unsigned int        vsid;   
546    if ( vspace_id == 0xFFFFFFFF )
547    {
548        global = 1;
549        vsid   = 0;
550    }
551    else
552    {
553        global = 0;
554        vsid   = vspace_id;
555    }
556
557    // compute the "local" and "big" attributes
558    unsigned int        local  = vseg->local;
559    unsigned int        big    = vseg->big;
560
561    // compute vseg flags
562    // The three flags (Local, Remote and Dirty) are set to 1
563    // to avoid hardware update for these flags, because GIET_VM
564    // does use these flags.
565    unsigned int flags = 0;
566    if (vseg->mode & C_MODE_MASK) flags |= PTE_C;
567    if (vseg->mode & X_MODE_MASK) flags |= PTE_X;
568    if (vseg->mode & W_MODE_MASK) flags |= PTE_W;
569    if (vseg->mode & U_MODE_MASK) flags |= PTE_U;
570    if ( global )                 flags |= PTE_G;
571                                  flags |= PTE_L;
572                                  flags |= PTE_R;
573                                  flags |= PTE_D;
574
575    // compute VPN, PPN and number of pages (big or small)
576    unsigned int vpn     = vseg->vbase >> 12;
577    unsigned int vpn_max = (vseg->vbase + vseg->length - 1) >> 12;
578    unsigned int ppn     = (unsigned int)(vseg->pbase >> 12);
579    unsigned int npages;
580    if ( big == 0 ) npages  = vpn_max - vpn + 1;           
581    else            npages  = (vpn_max>>9) - (vpn>>9) + 1; 
582
583    // compute destination cluster coordinates, for local vsegs
584    mapping_header_t*   header       = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
585    mapping_cluster_t*  cluster      = _get_cluster_base(header);
586    mapping_pseg_t*     pseg         = _get_pseg_base(header);
587    mapping_pseg_t*     pseg_dest    = &pseg[vseg->psegid];
588    mapping_cluster_t*  cluster_dest = &cluster[pseg_dest->clusterid];
589    unsigned int        x_dest       = cluster_dest->x;
590    unsigned int        y_dest       = cluster_dest->y;
591
592    unsigned int p;           // iterator for physical page index
593    unsigned int x;           // iterator for cluster x coordinate 
594    unsigned int y;           // iterator for cluster y coordinate 
595    unsigned int v;           // iterator for vspace index
596
597    // loop on PTEs
598    for ( p = 0 ; p < npages ; p++ )
599    { 
600        if  ( (local != 0) && (global == 0) )         // one cluster  / one vspace
601        {
602            if ( big )   // big pages => PTE1s
603            {
604                boot_add_pte1( vsid,
605                               x_dest,
606                               y_dest,
607                               vpn + (p<<9),
608                               flags, 
609                               ppn + (p<<9) );
610            }
611            else         // small pages => PTE2s
612            {
613                boot_add_pte2( vsid,
614                               x_dest,
615                               y_dest,
616                               vpn + p,     
617                               flags, 
618                               ppn + p );
619            }
620        }
621        else if ( (local == 0) && (global == 0) )     // all clusters / one vspace
622        {
623            for ( x = 0 ; x < X_SIZE ; x++ )
624            {
625                for ( y = 0 ; y < Y_SIZE ; y++ )
626                {
627                    if ( cluster[(x * Y_SIZE) + y].procs )
628                    {
629                        if ( big )   // big pages => PTE1s
630                        {
631                            boot_add_pte1( vsid,
632                                           x,
633                                           y,
634                                           vpn + (p<<9),
635                                           flags, 
636                                           ppn + (p<<9) );
637                        }
638                        else         // small pages => PTE2s
639                        {
640                            boot_add_pte2( vsid,
641                                           x,
642                                           y,
643                                           vpn + p,
644                                           flags, 
645                                           ppn + p );
646                        }
647                    }
648                }
649            }
650        }
651        else if ( (local != 0) && (global != 0) )     // one cluster  / all vspaces
652        {
653            for ( v = 0 ; v < header->vspaces ; v++ )
654            {
655                if ( big )   // big pages => PTE1s
656                {
657                    boot_add_pte1( v,
658                                   x_dest,
659                                   y_dest,
660                                   vpn + (p<<9),
661                                   flags, 
662                                   ppn + (p<<9) );
663                }
664                else         // small pages = PTE2s
665                { 
666                    boot_add_pte2( v,
667                                   x_dest,
668                                   y_dest,
669                                   vpn + p,
670                                   flags, 
671                                   ppn + p );
672                }
673            }
674        }
675        else if ( (local == 0) && (global != 0) )     // all clusters / all vspaces
676        {
677            for ( x = 0 ; x < X_SIZE ; x++ )
678            {
679                for ( y = 0 ; y < Y_SIZE ; y++ )
680                {
681                    if ( cluster[(x * Y_SIZE) + y].procs )
682                    {
683                        for ( v = 0 ; v < header->vspaces ; v++ )
684                        {
685                            if ( big )  // big pages => PTE1s
686                            {
687                                boot_add_pte1( v,
688                                               x,
689                                               y,
690                                               vpn + (p<<9),
691                                               flags, 
692                                               ppn + (p<<9) );
693                            }
694                            else        // small pages -> PTE2s
695                            {
696                                boot_add_pte2( v,
697                                               x,
698                                               y,
699                                               vpn + p,
700                                               flags, 
701                                               ppn + p );
702                            }
703                        }
704                    }
705                }
706            }
707        }
708    }  // end for pages
709
710    asm volatile ("sync");
711
712}  // end boot_vseg_pte()
713
714
715///////////////////////////////////////////////////////////////////////////////
716// This function is executed by  processor[x][y][0] in each cluster
717// containing at least one processor.
718// It initialises all page table for all global or private vsegs
719// mapped in cluster[x][y], as specified in the mapping.
720// In each cluster all page tables for the different vspaces must be
721// packed in one vseg occupying one single BPP (Big Physical Page).
722//
723// For each vseg, the mapping is done in two steps:
724// 1) mapping : the boot_vseg_map() function allocates contiguous BPPs
725//    or SPPs (if the vseg is not associated to a peripheral), and register
726//    the physical base address in the vseg pbase field. It initialises the
727//    _ptabs_vaddr[] and _ptabs_paddr[] arrays if the vseg is a PTAB.
728//
729// 2) page table initialisation : the boot_vseg_pte() function initialise
730//    the PTEs (both PTE1 and PTE2) in one or several page tables:
731//    - PTEs are replicated in all vspaces for a global vseg.
732//    - PTEs are replicated in all clusters for a non local vseg.
733//
734// We must handle vsegs in the following order
735//   1) global vseg containing PTAB mapped in cluster[x][y],
736//   2) global vsegs occupying more than one BPP mapped in cluster[x][y],
737//   3) others global vsegs mapped in cluster[x][y],
738//   4) all private vsegs in all user spaces mapped in cluster[x][y].
739///////////////////////////////////////////////////////////////////////////////
740void boot_ptab_init( unsigned int cx,
741                     unsigned int cy ) 
742{
743    mapping_header_t*   header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
744    mapping_vspace_t*   vspace = _get_vspace_base(header);
745    mapping_vseg_t*     vseg   = _get_vseg_base(header);
746    mapping_cluster_t*  cluster ;
747    mapping_pseg_t*     pseg    ;
748
749    unsigned int vspace_id;
750    unsigned int vseg_id;
751
752    unsigned int procid     = _get_procid();
753    unsigned int lpid       = procid & ((1<<P_WIDTH)-1);
754
755    if( lpid )
756    {
757        _printf("\n[BOOT ERROR] in boot_ptab_init() : "
758                "P[%d][%d][%d] should not execute it\n", cx, cy, lpid );
759        _exit();
760    } 
761
762    if ( header->vspaces == 0 )
763    {
764        _printf("\n[BOOT ERROR] in boot_ptab_init() : "
765                "mapping %s contains no vspace\n", header->name );
766        _exit();
767    }
768
769    ///////// Phase 1 : global vseg containing the PTAB (two barriers required)
770
771    // get PTAB global vseg in cluster(cx,cy)
772    unsigned int found = 0;
773    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
774    {
775        pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
776        cluster = _get_cluster_base(header) + pseg->clusterid;
777        if ( (vseg[vseg_id].type == VSEG_TYPE_PTAB) && 
778             (cluster->x == cx) && (cluster->y == cy) )
779        {
780            found = 1;
781            break;
782        }
783    }
784    if ( found == 0 )
785    {
786        _printf("\n[BOOT ERROR] in boot_ptab_init() : "
787                "cluster[%d][%d] contains no PTAB vseg\n", cx , cy );
788        _exit();
789    }
790
791    boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
792
793    //////////////////////////////////////////////
794    _simple_barrier_wait( &_barrier_all_clusters );
795    //////////////////////////////////////////////
796
797    boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
798
799    //////////////////////////////////////////////
800    _simple_barrier_wait( &_barrier_all_clusters );
801    //////////////////////////////////////////////
802
803    ///////// Phase 2 : global vsegs occupying more than one BPP
804
805    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
806    {
807        pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
808        cluster = _get_cluster_base(header) + pseg->clusterid;
809        if ( (vseg[vseg_id].length > 0x200000) &&
810             (vseg[vseg_id].mapped == 0) &&
811             (cluster->x == cx) && (cluster->y == cy) )
812        {
813            boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
814            boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
815        }
816    }
817
818    ///////// Phase 3 : all others global vsegs
819
820    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
821    { 
822        pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
823        cluster = _get_cluster_base(header) + pseg->clusterid;
824        if ( (vseg[vseg_id].mapped == 0) && 
825             (cluster->x == cx) && (cluster->y == cy) )
826        {
827            boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
828            boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
829        }
830    }
831
832    ///////// Phase 4 : all private vsegs
833
834    for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) 
835    {
836        for (vseg_id = vspace[vspace_id].vseg_offset;
837             vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs);
838             vseg_id++) 
839        {
840            pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
841            cluster = _get_cluster_base(header) + pseg->clusterid;
842            if ( (cluster->x == cx) && (cluster->y == cy) )
843            {
844                boot_vseg_map( &vseg[vseg_id], vspace_id );
845                boot_vseg_pte( &vseg[vseg_id], vspace_id );
846            }
847        }
848    }
849
850    //////////////////////////////////////////////
851    _simple_barrier_wait( &_barrier_all_clusters );
852    //////////////////////////////////////////////
853
854} // end boot_ptab_init()
855
856////////////////////////////////////////////////////////////////////////////////
857// This function should be executed by P[0][0][0] only. It complete the
858// page table initialisation, taking care of all global vsegs that are
859// not mapped in a cluster containing a processor, and have not been
860// handled by the boot_ptab_init(x,y) function.
861// An example of such vsegs are the external peripherals in TSAR_LETI platform.
862////////////////////////////////////////////////////////////////////////////////
863void boot_ptab_extend()
864{
865
866    mapping_header_t*   header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
867    mapping_vseg_t*     vseg   = _get_vseg_base(header);
868
869    unsigned int vseg_id;
870
871    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
872    {
873        if ( vseg[vseg_id].mapped == 0 ) 
874        {
875            boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
876            boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
877        }
878    }
879}  // end boot_ptab_extend()
880
881///////////////////////////////////////////////////////////////////////////////
882// This function returns in the vbase and length buffers the virtual base
883// address and the length of the  segment allocated to the schedulers array
884// in the cluster defined by the clusterid argument.
885///////////////////////////////////////////////////////////////////////////////
886void boot_get_sched_vaddr( unsigned int  cluster_id,
887                           unsigned int* vbase, 
888                           unsigned int* length )
889{
890    mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
891    mapping_vseg_t*   vseg   = _get_vseg_base(header);
892    mapping_pseg_t*   pseg   = _get_pseg_base(header);
893
894    unsigned int vseg_id;
895    unsigned int found = 0;
896
897    for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ )
898    {
899        if ( (vseg[vseg_id].type == VSEG_TYPE_SCHED) && 
900             (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) )
901        {
902            *vbase  = vseg[vseg_id].vbase;
903            *length = vseg[vseg_id].length;
904            found = 1;
905        }
906    }
907    if ( found == 0 )
908    {
909        mapping_cluster_t* cluster = _get_cluster_base(header);
910        _printf("\n[BOOT ERROR] No vseg of type SCHED in cluster [%d,%d]\n",
911                cluster[cluster_id].x, cluster[cluster_id].y );
912        _exit();
913    }
914} // end boot_get_sched_vaddr()
915
916#if BOOT_DEBUG_SCHED
917/////////////////////////////////////////////////////////////////////////////
918// This debug function should be executed by only one procesor.
919// It loops on all processors in all clusters to display
920// the HWI / PTI / WTI interrupt vectors for each processor.
921/////////////////////////////////////////////////////////////////////////////
922void boot_sched_irq_display()
923{
924    unsigned int         cx;
925    unsigned int         cy;
926    unsigned int         lpid;
927    unsigned int         slot;
928    unsigned int         entry;
929    unsigned int         type;
930    unsigned int         channel;
931
932    mapping_header_t*    header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
933    mapping_cluster_t*   cluster = _get_cluster_base(header);
934
935    static_scheduler_t*  psched; 
936
937    for ( cx = 0 ; cx < X_SIZE ; cx++ )
938    {
939        for ( cy = 0 ; cy < Y_SIZE ; cy++ )
940        {
941            unsigned int cluster_id = (cx * Y_SIZE) + cy;
942            unsigned int nprocs = cluster[cluster_id].procs;
943
944            for ( lpid = 0 ; lpid < nprocs ; lpid++ )
945            {
946                psched = _schedulers[cx][cy][lpid];
947       
948                _printf("\n[BOOT] interrupt vectors for proc[%d,%d,%d]\n",
949                        cx , cy , lpid );
950
951                for ( slot = 0 ; slot < 32 ; slot++ )
952                {
953                    entry   = psched->hwi_vector[slot];
954                    type    = entry & 0xFFFF;
955                    channel = entry >> 16;
956                    if ( type != ISR_DEFAULT )     
957                    _printf(" - HWI : index = %d / type = %s / channel = %d\n",
958                            slot , _isr_type_str[type] , channel );
959                }
960                for ( slot = 0 ; slot < 32 ; slot++ )
961                {
962                    entry   = psched->wti_vector[slot];
963                    type    = entry & 0xFFFF;
964                    channel = entry >> 16;
965                    if ( type != ISR_DEFAULT )     
966                    _printf(" - WTI : index = %d / type = %s / channel = %d\n",
967                            slot , _isr_type_str[type] , channel );
968                }
969                for ( slot = 0 ; slot < 32 ; slot++ )
970                {
971                    entry   = psched->pti_vector[slot];
972                    type    = entry & 0xFFFF;
973                    channel = entry >> 16;
974                    if ( type != ISR_DEFAULT )     
975                    _printf(" - PTI : index = %d / type = %s / channel = %d\n",
976                            slot , _isr_type_str[type] , channel );
977                }
978            }
979        }
980    } 
981}  // end boot_sched_irq_display()
982#endif
983
984
985////////////////////////////////////////////////////////////////////////////////////
986// This function is executed in parallel by all processors P[x][y][0].
987// It initialises all schedulers in cluster [x][y]. The MMU must be activated.
988// It is split in two phases separated by a synchronisation barrier.
989// - In Step 1, it initialises the _schedulers[x][y][l] pointers array, the
990//              idle_task context, the  HWI / PTI / WTI interrupt vectors,
991//              and the CU HWI / PTI / WTI masks.
992// - In Step 2, it scan all tasks in all vspaces to complete the tasks contexts,
993//              initialisation as specified in the mapping_info data structure,
994//              and set the CP0_SCHED register.
995////////////////////////////////////////////////////////////////////////////////////
996void boot_scheduler_init( unsigned int x, 
997                          unsigned int y )
998{
999    mapping_header_t*    header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1000    mapping_cluster_t*   cluster = _get_cluster_base(header);
1001    mapping_vspace_t*    vspace  = _get_vspace_base(header);
1002    mapping_vseg_t*      vseg    = _get_vseg_base(header);
1003    mapping_task_t*      task    = _get_task_base(header);
1004    mapping_periph_t*    periph  = _get_periph_base(header);
1005    mapping_irq_t*       irq     = _get_irq_base(header);
1006
1007    unsigned int         periph_id; 
1008    unsigned int         irq_id;
1009    unsigned int         vspace_id;
1010    unsigned int         vseg_id;
1011    unsigned int         task_id; 
1012
1013    unsigned int         sched_vbase;          // schedulers array vbase address
1014    unsigned int         sched_length;         // schedulers array length
1015    static_scheduler_t*  psched;               // pointer on processor scheduler
1016
1017    unsigned int cluster_id = (x * Y_SIZE) + y;
1018    unsigned int cluster_xy = (x << Y_WIDTH) + y; 
1019    unsigned int nprocs = cluster[cluster_id].procs;
1020    unsigned int lpid;                       
1021   
1022    if ( nprocs > 8 )
1023    {
1024        _printf("\n[BOOT ERROR] cluster[%d,%d] contains more than 8 procs\n", x, y );
1025        _exit();
1026    }
1027
1028    ////////////////////////////////////////////////////////////////////////////////
1029    // Step 1 : - initialize the schedulers[] array of pointers,
1030    //          - initialize the "tasks" and "current variables.
1031    //          - initialise the idle task context.
1032    //          - initialize the HWI, PTI and WTI interrupt vectors.
1033    //          - initialize the XCU masks for HWI / WTI / PTI interrupts.
1034    //
1035    // The general policy for interrupts routing is the following:         
1036    //          - the local HWI are statically allocatedted to local processors.
1037    //          - the nprocs first PTI are allocated for TICK (one per processor).
1038    //          - we allocate 4 WTI per processor: the first one is for WAKUP,
1039    //            the 3 others WTI are used for external interrupts (from PIC),
1040    //            and are dynamically allocated by kernel on demand.
1041    ///////////////////////////////////////////////////////////////////////////////
1042
1043    // get scheduler array virtual base address in cluster[x,y]
1044    boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length );
1045
1046    if ( sched_length < (nprocs<<13) ) // 8 Kbytes per scheduler
1047    {
1048        _printf("\n[BOOT ERROR] Sched segment too small in cluster[%d,%d]\n",
1049                x, y );
1050        _exit();
1051    }
1052
1053    // loop on local processors
1054    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1055    {
1056        // get scheduler pointer and initialise the schedulers pointers array
1057        psched = (static_scheduler_t*)(sched_vbase + (lpid<<13));
1058        _schedulers[x][y][lpid] = psched;
1059
1060        // initialise the "tasks" and "current" variables default values
1061        psched->tasks   = 0;
1062        psched->current = IDLE_TASK_INDEX;
1063
1064        // set default values for HWI / PTI / SWI vectors (valid bit = 0)
1065        unsigned int slot;
1066        for (slot = 0; slot < 32; slot++)
1067        {
1068            psched->hwi_vector[slot] = 0;
1069            psched->pti_vector[slot] = 0;
1070            psched->wti_vector[slot] = 0;
1071        }
1072
1073        // initializes the idle_task context:
1074        // - the SR slot is 0xFF03 because this task run in kernel mode.
1075        // - it uses the page table of vspace[0]
1076        // - it uses the kernel TTY terminal
1077        // - slots containing addresses (SP,RA,EPC) are initialised by kernel_init()
1078
1079        psched->context[IDLE_TASK_INDEX][CTX_CR_ID]   = 0;
1080        psched->context[IDLE_TASK_INDEX][CTX_SR_ID]   = 0xFF03;
1081        psched->context[IDLE_TASK_INDEX][CTX_PTPR_ID] = _ptabs_paddr[0][x][y]>>13;
1082        psched->context[IDLE_TASK_INDEX][CTX_PTAB_ID] = _ptabs_vaddr[0][x][y];
1083        psched->context[IDLE_TASK_INDEX][CTX_TTY_ID]  = 0;
1084        psched->context[IDLE_TASK_INDEX][CTX_LTID_ID] = IDLE_TASK_INDEX;
1085        psched->context[IDLE_TASK_INDEX][CTX_VSID_ID] = 0;
1086        psched->context[IDLE_TASK_INDEX][CTX_RUN_ID]  = 1;
1087    }
1088
1089    // HWI / PTI / WTI masks (up to 8 local processors)
1090    unsigned int hwi_mask[8] = {0,0,0,0,0,0,0,0};
1091    unsigned int pti_mask[8] = {0,0,0,0,0,0,0,0};
1092    unsigned int wti_mask[8] = {0,0,0,0,0,0,0,0};
1093
1094    // scan local peripherals to get and check local XCU
1095    mapping_periph_t*  xcu = NULL;
1096    unsigned int       min = cluster[cluster_id].periph_offset ;
1097    unsigned int       max = min + cluster[cluster_id].periphs ;
1098
1099    for ( periph_id = min ; periph_id < max ; periph_id++ )
1100    {
1101        if( periph[periph_id].type == PERIPH_TYPE_XCU ) 
1102        {
1103            xcu = &periph[periph_id];
1104
1105            // check nb_hwi_in
1106            if ( xcu->arg0 < xcu->irqs )
1107            {
1108                _printf("\n[BOOT ERROR] Not enough HWI inputs for XCU[%d,%d]"
1109                        " : nb_hwi = %d / nb_irqs = %d\n",
1110                         x , y , xcu->arg0 , xcu->irqs );
1111                _exit();
1112            }
1113            // check nb_pti_in
1114            if ( xcu->arg2 < nprocs )
1115            {
1116                _printf("\n[BOOT ERROR] Not enough PTI inputs for XCU[%d,%d]\n",
1117                         x, y );
1118                _exit();
1119            }
1120            // check nb_wti_in
1121            if ( xcu->arg1 < (4 * nprocs) )
1122            {
1123                _printf("\n[BOOT ERROR] Not enough WTI inputs for XCU[%d,%d]\n",
1124                        x, y );
1125                _exit();
1126            }
1127            // check nb_irq_out
1128            if ( xcu->channels < (nprocs * header->irq_per_proc) )
1129            {
1130                _printf("\n[BOOT ERROR] Not enough outputs for XCU[%d,%d]\n",
1131                        x, y );
1132                _exit();
1133            }
1134        }
1135    } 
1136
1137    if ( xcu == NULL )
1138    {         
1139        _printf("\n[BOOT ERROR] missing XCU in cluster[%d,%d]\n", x , y );
1140        _exit();
1141    }
1142
1143    // HWI interrupt vector definition
1144    // scan HWI connected to local XCU
1145    // for round-robin allocation to local processors
1146    lpid = 0;
1147    for ( irq_id = xcu->irq_offset ;
1148          irq_id < xcu->irq_offset + xcu->irqs ;
1149          irq_id++ )
1150    {
1151        unsigned int type    = irq[irq_id].srctype;
1152        unsigned int srcid   = irq[irq_id].srcid;
1153        unsigned int isr     = irq[irq_id].isr & 0xFFFF;
1154        unsigned int channel = irq[irq_id].channel << 16;
1155
1156        if ( (type != IRQ_TYPE_HWI) || (srcid > 31) )
1157        {
1158            _printf("\n[BOOT ERROR] Bad IRQ in cluster[%d,%d]\n", x, y );
1159            _exit();
1160        }
1161
1162        // register entry in HWI interrupt vector
1163        _schedulers[x][y][lpid]->hwi_vector[srcid] = isr | channel;
1164
1165        // update XCU HWI mask for P[x,y,lpid]
1166        hwi_mask[lpid] = hwi_mask[lpid] | (1<<srcid);
1167
1168        lpid = (lpid + 1) % nprocs; 
1169    } // end for irqs
1170
1171    // PTI interrupt vector definition
1172    // one PTI for TICK per processor
1173    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1174    {
1175        // register entry in PTI interrupt vector
1176        _schedulers[x][y][lpid]->pti_vector[lpid] = ISR_TICK;
1177
1178        // update XCU PTI mask for P[x,y,lpid]
1179        pti_mask[lpid] = pti_mask[lpid] | (1<<lpid);
1180    }
1181
1182    // WTI interrupt vector definition
1183    // 4 WTI per processor, first for WAKUP
1184    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1185    {
1186        // register WAKUP ISR in WTI interrupt vector
1187        _schedulers[x][y][lpid]->wti_vector[lpid] = ISR_WAKUP;
1188
1189        // update XCU WTI mask for P[x,y,lpid] (4 entries per proc)
1190        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid                 ));
1191        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + NB_PROCS_MAX  ));
1192        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 2*NB_PROCS_MAX));
1193        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 3*NB_PROCS_MAX));
1194    }
1195
1196    // set the XCU masks for HWI / WTI / PTI interrupts
1197    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1198    {
1199        unsigned int channel = lpid * IRQ_PER_PROCESSOR; 
1200
1201        _xcu_set_mask( cluster_xy, channel, hwi_mask[lpid], IRQ_TYPE_HWI ); 
1202        _xcu_set_mask( cluster_xy, channel, wti_mask[lpid], IRQ_TYPE_WTI );
1203        _xcu_set_mask( cluster_xy, channel, pti_mask[lpid], IRQ_TYPE_PTI );
1204    }
1205
1206    //////////////////////////////////////////////
1207    _simple_barrier_wait( &_barrier_all_clusters );
1208    //////////////////////////////////////////////
1209
1210#if BOOT_DEBUG_SCHED
1211if ( cluster_xy == 0 ) boot_sched_irq_display();
1212_simple_barrier_wait( &_barrier_all_clusters );
1213#endif
1214
1215    ///////////////////////////////////////////////////////////////////////////////
1216    // Step 2 : Initialise the tasks context. The context of task placed
1217    //          on  processor P must be stored in the scheduler of P.
1218    //          This require two nested loops: loop on the tasks, and loop
1219    //          on the local processors. We complete the scheduler when the
1220    //          required placement fit one local processor.
1221    ///////////////////////////////////////////////////////////////////////////////
1222
1223    for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) 
1224    {
1225        // We must set the PTPR depending on the vspace, because the start_vector
1226        // and the stack address are defined in virtual space.
1227        _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13) );
1228
1229        // loop on the tasks in vspace (task_id is the global index in mapping)
1230        for (task_id = vspace[vspace_id].task_offset;
1231             task_id < (vspace[vspace_id].task_offset + vspace[vspace_id].tasks);
1232             task_id++) 
1233        {
1234            // get the required task placement coordinates [x,y,p]
1235            unsigned int req_x      = cluster[task[task_id].clusterid].x;
1236            unsigned int req_y      = cluster[task[task_id].clusterid].y;
1237            unsigned int req_p      = task[task_id].proclocid;                 
1238
1239            // ctx_sr : value required before an eret instruction
1240            unsigned int ctx_sr = 0x2000FF13;
1241
1242            // ctx_ptpr : page table physical base address (shifted by 13 bit)
1243            unsigned int ctx_ptpr = (_ptabs_paddr[vspace_id][req_x][req_y] >> 13);
1244
1245            // ctx_ptab : page_table virtual base address
1246            unsigned int ctx_ptab = _ptabs_vaddr[vspace_id][req_x][req_y];
1247
1248            // ctx_epc : Get the virtual address of the memory location containing
1249            // the task entry point : the start_vector is stored by GCC in the
1250            // seg_data segment, and we must wait the .elf loading to get
1251            // the entry point value...
1252            vseg_id = vspace[vspace_id].start_vseg_id;     
1253            unsigned int ctx_epc = vseg[vseg_id].vbase + (task[task_id].startid)*4;
1254
1255            // ctx_sp :  Get the vseg containing the stack
1256            vseg_id = task[task_id].stack_vseg_id;
1257            unsigned int ctx_sp = vseg[vseg_id].vbase + vseg[vseg_id].length;
1258
1259            // get vspace thread index
1260            unsigned int thread_id = task[task_id].trdid;
1261
1262            // loop on the local processors
1263            for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1264            {
1265                if ( (x == req_x) && (y == req_y) && (req_p == lpid) )   // fit
1266                {
1267                    // pointer on selected scheduler
1268                    psched = _schedulers[x][y][lpid];
1269
1270                    // get local task index in scheduler
1271                    unsigned int ltid = psched->tasks;
1272
1273                    // update the "tasks" and "current" fields in scheduler:
1274                    psched->tasks   = ltid + 1;
1275                    psched->current = 0;
1276
1277                    // initializes the task context
1278                    psched->context[ltid][CTX_CR_ID]     = 0;
1279                    psched->context[ltid][CTX_SR_ID]     = ctx_sr;
1280                    psched->context[ltid][CTX_SP_ID]     = ctx_sp;
1281                    psched->context[ltid][CTX_EPC_ID]    = ctx_epc;
1282                    psched->context[ltid][CTX_PTPR_ID]   = ctx_ptpr;
1283                    psched->context[ltid][CTX_PTAB_ID]   = ctx_ptab;
1284                    psched->context[ltid][CTX_LTID_ID]   = ltid;
1285                    psched->context[ltid][CTX_GTID_ID]   = task_id;
1286                    psched->context[ltid][CTX_TRDID_ID]  = thread_id;
1287                    psched->context[ltid][CTX_VSID_ID]   = vspace_id;
1288                    psched->context[ltid][CTX_RUN_ID]    = 1;
1289
1290                    psched->context[ltid][CTX_TTY_ID]    = 0xFFFFFFFF;
1291                    psched->context[ltid][CTX_CMA_FB_ID] = 0xFFFFFFFF;
1292                    psched->context[ltid][CTX_CMA_RX_ID] = 0xFFFFFFFF;
1293                    psched->context[ltid][CTX_CMA_TX_ID] = 0xFFFFFFFF;
1294                    psched->context[ltid][CTX_NIC_RX_ID] = 0xFFFFFFFF;
1295                    psched->context[ltid][CTX_NIC_TX_ID] = 0xFFFFFFFF;
1296                    psched->context[ltid][CTX_TIM_ID]    = 0xFFFFFFFF;
1297                    psched->context[ltid][CTX_HBA_ID]    = 0xFFFFFFFF;
1298
1299#if BOOT_DEBUG_SCHED
1300_printf("\nTask %s in vspace %s allocated to P[%d,%d,%d]\n"
1301        " - ctx[LTID]  = %d\n"
1302        " - ctx[SR]    = %x\n"
1303        " - ctx[SP]    = %x\n"
1304        " - ctx[EPC]   = %x\n"
1305        " - ctx[PTPR]  = %x\n"
1306        " - ctx[PTAB]  = %x\n"
1307        " - ctx[VSID]  = %d\n"
1308        " - ctx[TRDID] = %d\n",
1309        task[task_id].name,
1310        vspace[vspace_id].name,
1311        x, y, lpid,
1312        psched->context[ltid][CTX_LTID_ID],
1313        psched->context[ltid][CTX_SR_ID],
1314        psched->context[ltid][CTX_SP_ID],
1315        psched->context[ltid][CTX_EPC_ID],
1316        psched->context[ltid][CTX_PTPR_ID],
1317        psched->context[ltid][CTX_PTAB_ID],
1318        psched->context[ltid][CTX_VSID_ID],
1319        psched->context[ltid][CTX_TRDID_ID] );
1320#endif
1321                } // end if FIT
1322            } // end for loop on local procs
1323        } // end loop on tasks
1324    } // end loop on vspaces
1325} // end boot_scheduler_init()
1326
1327
1328
1329//////////////////////////////////////////////////////////////////////////////////
1330// This function loads the map.bin file from block device.
1331//////////////////////////////////////////////////////////////////////////////////
1332void boot_mapping_init()
1333{
1334    // open file "map.bin"
1335    int fd_id = _fat_open( 0, "map.bin", 0 );    // no IRQ / no creation
1336
1337    if ( fd_id == -1 )
1338    {
1339        _printf("\n[BOOT ERROR] : map.bin file not found \n");
1340        _exit();
1341    }
1342
1343#if BOOT_DEBUG_MAPPING
1344_printf("\n[BOOT] map.bin file successfully open at cycle %d\n", 
1345        _get_proctime() );
1346#endif
1347
1348    // get "map.bin" file size (from fat) and check it
1349    unsigned int size    = _fat.fd[fd_id].file_size;
1350
1351    if ( size > SEG_BOOT_MAPPING_SIZE )
1352    {
1353        _printf("\n[BOOT ERROR] : segment too small for map.bin file\n");
1354        _exit();
1355    }
1356
1357#if BOOT_DEBUG_MAPPING
1358_printf("\n[BOOT] map.bin buf_pbase = %x / buf_size = %x / file_size = %x\n",
1359        SEG_BOOT_MAPPING_BASE , SEG_BOOT_MAPPING_SIZE , size );
1360#endif
1361
1362    // load "map.bin" file into buffer
1363    unsigned int nblocks = size >> 9;
1364    unsigned int offset  = size & 0x1FF;
1365    if ( offset ) nblocks++;
1366
1367    unsigned int ok = _fat_read( 0,        // No IRQ
1368                                 fd_id, 
1369                                 (unsigned int*)SEG_BOOT_MAPPING_BASE, 
1370                                 nblocks,       
1371                                 0 );      // offset
1372    if ( ok == -1 )
1373    {
1374        _printf("\n[BOOT ERROR] : unable to load map.bin file \n");
1375        _exit();
1376    }
1377
1378#if BOOT_DEBUG_MAPPING
1379_printf("\n[BOOT] map.bin file successfully loaded at cycle %d\n", _get_proctime() );
1380#endif
1381
1382    // check mapping signature, number of clusters, number of vspaces 
1383    mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1384    if ( (header->signature != IN_MAPPING_SIGNATURE) ||
1385         (header->x_size    != X_SIZE)               || 
1386         (header->y_size    != Y_SIZE)               ||
1387         (header->vspaces   > GIET_NB_VSPACE_MAX)    )
1388    {
1389        _printf("\n[BOOT ERROR] Illegal mapping signature: %x\n", header->signature );
1390        _exit();
1391    }
1392
1393#if BOOT_DEBUG_MAPPING
1394unsigned int  line;
1395unsigned int* pointer = (unsigned int*)SEG_BOOT_MAPPING_BASE;
1396_printf("\n[BOOT] First block of mapping\n");
1397for ( line = 0 ; line < 8 ; line++ )
1398{
1399    _printf(" | %x | %x | %x | %x | %x | %x | %x | %x |\n",
1400            *(pointer + 0),
1401            *(pointer + 1),
1402            *(pointer + 2),
1403            *(pointer + 3),
1404            *(pointer + 4),
1405            *(pointer + 5),
1406            *(pointer + 6),
1407            *(pointer + 7) );
1408
1409    pointer = pointer + 8;
1410}
1411#endif
1412
1413#if BOOT_DEBUG_MAPPING
1414_printf("\n[BOOT] map.bin file checked at cycle %d\n", _get_proctime() );
1415#endif
1416
1417    // close file "map.bin"
1418    _fat_close( fd_id );
1419   
1420} // end boot_mapping_init()
1421
1422
1423///////////////////////////////////////////////////
1424void boot_dma_copy( unsigned int        cluster_xy,     
1425                    unsigned long long  dst_paddr,
1426                    unsigned long long  src_paddr, 
1427                    unsigned int        size )   
1428{
1429    // size must be multiple of 64 bytes
1430    if ( size & 0x3F ) size = (size & (~0x3F)) + 0x40;
1431
1432    unsigned int mode = MODE_DMA_NO_IRQ;
1433
1434    unsigned int src     = 0;
1435    unsigned int src_lsb = (unsigned int)src_paddr;
1436    unsigned int src_msb = (unsigned int)(src_paddr>>32);
1437   
1438    unsigned int dst     = 1;
1439    unsigned int dst_lsb = (unsigned int)dst_paddr;
1440    unsigned int dst_msb = (unsigned int)(dst_paddr>>32);
1441
1442    // initializes src channel
1443    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_MODE       , mode );
1444    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_SIZE       , size );
1445    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_LSB , src_lsb );
1446    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_MSB , src_msb );
1447    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING    , 1 );
1448
1449    // initializes dst channel
1450    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_MODE       , mode );
1451    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_SIZE       , size );
1452    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_LSB , dst_lsb );
1453    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_MSB , dst_msb );
1454    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING    , 1 );
1455
1456    // start CPY coprocessor (write non-zero value into config register)
1457    _mwr_set_coproc_register( cluster_xy, 0 , 1 );
1458
1459    // poll dst channel status register to detect completion
1460    unsigned int status;
1461    do
1462    {
1463        status = _mwr_get_channel_register( cluster_xy , dst , MWR_CHANNEL_STATUS );
1464    } while ( status == MWR_CHANNEL_BUSY );
1465
1466    if ( status )
1467    {
1468        _printf("\n[BOOT ERROR] in boot_dma_copy()\n");
1469        _exit();
1470    } 
1471 
1472    // stop CPY coprocessor and DMA channels
1473    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING    , 0 );
1474    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING    , 0 );
1475    _mwr_set_coproc_register ( cluster_xy , 0 , 0 );
1476
1477}  // end boot_dma_copy()
1478
1479//////////////////////////////////////////////////////////////////////////////////
1480// This function load all loadable segments contained in the .elf file identified
1481// by the "pathname" argument. Some loadable segments can be copied in several
1482// clusters: same virtual address but different physical addresses. 
1483// - It open the file.
1484// - It loads the complete file in the dedicated _boot_elf_buffer.
1485// - It copies each loadable segments  at the virtual address defined in
1486//   the .elf file, making several copies if the target vseg is not local.
1487// - It closes the file.
1488// This function is supposed to be executed by all processors[x,y,0].
1489//
1490// Note: We must use physical addresses to reach the destination buffers that
1491// can be located in remote clusters. We use either a _physical_memcpy(),
1492// or a _dma_physical_copy() if DMA is available.
1493//////////////////////////////////////////////////////////////////////////////////
1494void load_one_elf_file( unsigned int is_kernel,     // kernel file if non zero
1495                        char*        pathname,
1496                        unsigned int vspace_id )    // to scan the proper vspace
1497{
1498    mapping_header_t  * header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1499    mapping_vspace_t  * vspace  = _get_vspace_base(header);
1500    mapping_vseg_t    * vseg    = _get_vseg_base(header);
1501
1502    unsigned int procid = _get_procid();
1503    unsigned int cxy    = procid >> P_WIDTH;
1504    unsigned int x      = cxy >> Y_WIDTH;
1505    unsigned int y      = cxy & ((1<<Y_WIDTH)-1);
1506    unsigned int p      = procid & ((1<<P_WIDTH)-1);
1507
1508#if BOOT_DEBUG_ELF
1509_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] enters for %s\n",
1510        x , y , p , pathname );
1511#endif
1512
1513    Elf32_Ehdr* elf_header_ptr = NULL;  //  avoid a warning
1514
1515    int fd_id = 0;                      //  avoid a warning
1516
1517    // only P[0,0,0] load file from FAT
1518    if ( (cxy == 0) && (p == 0) )
1519    {
1520        // open .elf file
1521        fd_id = _fat_open( 0 , pathname , 0 );  // no IRQ / no creation
1522
1523        if ( fd_id < 0 )
1524        {
1525            _printf("\n[BOOT ERROR] load_one_elf_file() : %s not found\n", 
1526                    pathname );
1527            _exit();
1528        }
1529
1530        // check buffer size versus file size
1531        if ( _fat.fd[fd_id].file_size > GIET_ELF_BUFFER_SIZE )
1532        {
1533            _printf("\n[BOOT ERROR] in load_one_elf_file() : %s / size = %x "
1534                    "larger than GIET_ELF_BUFFER_SIZE = %x\n",
1535                    pathname , _fat.fd[fd_id].file_size , GIET_ELF_BUFFER_SIZE );
1536            _exit();
1537        }
1538
1539        // compute number of sectors
1540        unsigned int nbytes   = _fat.fd[fd_id].file_size;
1541        unsigned int nsectors = nbytes>>9;
1542        if( nbytes & 0x1FF) nsectors++;
1543
1544        // load file to elf buffer
1545        if( _fat_read( 0,                    // no IRQ
1546                       fd_id, 
1547                       _boot_elf_buffer,
1548                       nsectors,
1549                       0 ) != nsectors )     // offset
1550        {
1551            _printf("\n[BOOT ERROR] load_one_elf_file() : unexpected EOF for %s\n",
1552                    pathname );
1553            _exit();
1554        }
1555
1556        // Check ELF Magic Number in ELF header
1557        Elf32_Ehdr* ptr = (Elf32_Ehdr*)_boot_elf_buffer;
1558
1559        if ( (ptr->e_ident[EI_MAG0] != ELFMAG0) ||
1560             (ptr->e_ident[EI_MAG1] != ELFMAG1) ||
1561             (ptr->e_ident[EI_MAG2] != ELFMAG2) ||
1562             (ptr->e_ident[EI_MAG3] != ELFMAG3) )
1563        {
1564            _printf("\n[BOOT ERROR] load_one_elf_file() : %s not ELF format\n",
1565                    pathname );
1566            _exit();
1567        }
1568
1569#if BOOT_DEBUG_ELF
1570_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] load %s at cycle %d\n", 
1571        x , y , p , pathname , _get_proctime() );
1572#endif
1573
1574    } // end if P[0,0,0]
1575
1576    //////////////////////////////////////////////
1577    _simple_barrier_wait( &_barrier_all_clusters );
1578    //////////////////////////////////////////////
1579
1580    // Each processor P[x,y,0] copy replicated segments in cluster[x,y]
1581    elf_header_ptr = (Elf32_Ehdr*)_boot_elf_buffer;
1582
1583    // get program header table pointer
1584    unsigned int offset = elf_header_ptr->e_phoff;
1585    if( offset == 0 )
1586    {
1587        _printf("\n[BOOT ERROR] load_one_elf_file() : file %s "
1588                "does not contain loadable segment\n", pathname );
1589        _exit();
1590    }
1591
1592    Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(_boot_elf_buffer + offset);
1593
1594    // get number of segments
1595    unsigned int nsegments   = elf_header_ptr->e_phnum;
1596
1597    // First loop on loadable segments in the .elf file
1598    unsigned int seg_id;
1599    for (seg_id = 0 ; seg_id < nsegments ; seg_id++)
1600    {
1601        if(elf_pht_ptr[seg_id].p_type == PT_LOAD)
1602        {
1603            // Get segment attributes
1604            unsigned int seg_vaddr  = elf_pht_ptr[seg_id].p_vaddr;
1605            unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset;
1606            unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz;
1607            unsigned int seg_memsz  = elf_pht_ptr[seg_id].p_memsz;
1608
1609            if( seg_memsz != seg_filesz )
1610            {
1611                _printf("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = %x\n"
1612                        " in file %s has memsize = %x / filesize = %x \n"
1613                        " check that all global variables are in data segment\n", 
1614                        seg_vaddr, pathname , seg_memsz , seg_filesz );
1615                _exit();
1616            }
1617
1618            unsigned int src_vaddr = (unsigned int)_boot_elf_buffer + seg_offset;
1619
1620            // search all vsegs matching the virtual address
1621            unsigned int vseg_first;
1622            unsigned int vseg_last;
1623            unsigned int vseg_id;
1624            unsigned int found = 0;
1625            if ( is_kernel )
1626            {
1627                vseg_first = 0;
1628                vseg_last  = header->globals;
1629            }
1630            else
1631            {
1632                vseg_first = vspace[vspace_id].vseg_offset;
1633                vseg_last  = vseg_first + vspace[vspace_id].vsegs;
1634            }
1635
1636            // Second loop on vsegs in the mapping
1637            for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ )
1638            {
1639                if ( seg_vaddr == vseg[vseg_id].vbase )  // matching
1640                {
1641                    found = 1;
1642
1643                    // get destination buffer physical address, size, coordinates
1644                    paddr_t      seg_paddr  = vseg[vseg_id].pbase;
1645                    unsigned int seg_size   = vseg[vseg_id].length;
1646                    unsigned int cluster_xy = (unsigned int)(seg_paddr>>32);
1647                    unsigned int cx         = cluster_xy >> Y_WIDTH;
1648                    unsigned int cy         = cluster_xy & ((1<<Y_WIDTH)-1);
1649
1650                    // check vseg size
1651                    if ( seg_size < seg_filesz )
1652                    {
1653                        _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg %s "
1654                                "is to small for loadable segment %x in file %s\n",
1655                                vseg[vseg_id].name , seg_vaddr , pathname );
1656                        _exit();
1657                    }
1658
1659                    // P[x,y,0] copy the segment from boot buffer in cluster[0,0]
1660                    // to destination buffer in cluster[x,y], using DMA if available
1661                    if ( (cx == x) && (cy == y) )
1662                    {
1663                        if( USE_MWR_CPY )
1664                        {
1665                            boot_dma_copy( cluster_xy,  // DMA in cluster[x,y]       
1666                                           seg_paddr,
1667                                           (paddr_t)src_vaddr, 
1668                                           seg_filesz );   
1669#if BOOT_DEBUG_ELF
1670_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : DMA[%d,%d] copy segment %d :\n"
1671        "  vaddr = %x / size = %x / paddr = %l\n",
1672        x , y , seg_id , seg_vaddr , seg_memsz , seg_paddr );
1673#endif
1674                        }
1675                        else
1676                        {
1677                            _physical_memcpy( seg_paddr,            // dest paddr
1678                                              (paddr_t)src_vaddr,   // source paddr
1679                                              seg_filesz );         // size
1680#if BOOT_DEBUG_ELF
1681_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] copy segment %d :\n"
1682        "  vaddr = %x / size = %x / paddr = %l\n",
1683        x , y , p , seg_id , seg_vaddr , seg_memsz , seg_paddr );
1684#endif
1685                        }
1686                    }
1687                }
1688            }  // end for vsegs
1689
1690            // check at least one matching vseg
1691            if ( found == 0 )
1692            {
1693                _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg for loadable "
1694                        "segment %x in file %s not found "
1695                        "check consistency between the .py and .ld files\n",
1696                        seg_vaddr, pathname );
1697                _exit();
1698            }
1699        }
1700    }  // end for loadable segments
1701
1702    //////////////////////////////////////////////
1703    _simple_barrier_wait( &_barrier_all_clusters );
1704    //////////////////////////////////////////////
1705
1706    // only P[0,0,0] close the file
1707    if ( (cxy == 0) && (p == 0) )
1708    {
1709        // close .elf file
1710        _fat_close( fd_id );
1711
1712        _printf("\n[BOOT] File %s loaded at cycle %d\n", 
1713                pathname , _get_proctime() );
1714    }
1715
1716} // end load_one_elf_file()
1717
1718
1719/////i////////////////////////////////////////////////////////////////////////////////
1720// This function uses the map.bin data structure to load the "kernel.elf" file
1721// as well as the various "application.elf" files into memory.
1722// - The "preloader.elf" file is not loaded, because it has been burned in the ROM.
1723// - The "boot.elf" file is not loaded, because it has been loaded by the preloader.
1724// This function scans all vsegs defined in the map.bin data structure to collect
1725// all .elf files pathnames, and calls the load_one_elf_file() for each .elf file.
1726// As the code can be replicated in several vsegs, the same code can be copied
1727// in one or several clusters by the load_one_elf_file() function.
1728//////////////////////////////////////////////////////////////////////////////////////
1729void boot_elf_load()
1730{
1731    mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1732    mapping_vspace_t* vspace = _get_vspace_base( header );
1733    mapping_vseg_t*   vseg   = _get_vseg_base( header );
1734
1735    unsigned int      vspace_id;
1736    unsigned int      vseg_id;
1737    unsigned int      found;
1738
1739    // Scan all global vsegs to find the pathname to the kernel.elf file
1740    found = 0;
1741    for( vseg_id = 0 ; vseg_id < header->globals ; vseg_id++ )
1742    {
1743        if(vseg[vseg_id].type == VSEG_TYPE_ELF) 
1744        {   
1745            found = 1;
1746            break;
1747        }
1748    }
1749
1750    // We need one kernel.elf file
1751    if (found == 0)
1752    {
1753        _printf("\n[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n");
1754        _exit();
1755    }
1756
1757    // Load the kernel
1758    load_one_elf_file( 1,                           // kernel file
1759                       vseg[vseg_id].binpath,       // file pathname
1760                       0 );                         // vspace 0
1761
1762    // loop on the vspaces, scanning all vsegs in the vspace,
1763    // to find the pathname of the .elf file associated to the vspace.
1764    for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ )
1765    {
1766        // loop on the private vsegs
1767        unsigned int found = 0;
1768        for (vseg_id = vspace[vspace_id].vseg_offset;
1769             vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs);
1770             vseg_id++) 
1771        {
1772            if(vseg[vseg_id].type == VSEG_TYPE_ELF) 
1773            {   
1774                found = 1;
1775                break;
1776            }
1777        }
1778
1779        // We want one .elf file per vspace
1780        if (found == 0)
1781        {
1782            _printf("\n[BOOT ERROR] boot_elf_load() : "
1783                    ".elf file not found for vspace %s\n", vspace[vspace_id].name );
1784            _exit();
1785        }
1786
1787        load_one_elf_file( 0,                          // not a kernel file
1788                           vseg[vseg_id].binpath,      // file pathname
1789                           vspace_id );                // vspace index
1790
1791    }  // end for vspaces
1792
1793} // end boot_elf_load()
1794
1795
1796/////////////////////////////////////////////////////////////////////////////////
1797// This function is executed in parallel by all processors[x][y][0].
1798// It initialises the physical memory allocator in each cluster containing
1799// a RAM pseg.
1800/////////////////////////////////////////////////////////////////////////////////
1801void boot_pmem_init( unsigned int cx,
1802                     unsigned int cy ) 
1803{
1804    mapping_header_t*  header     = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1805    mapping_cluster_t* cluster    = _get_cluster_base(header);
1806    mapping_pseg_t*    pseg       = _get_pseg_base(header);
1807
1808    unsigned int pseg_id;
1809    unsigned int procid     = _get_procid();
1810    unsigned int lpid       = procid & ((1<<P_WIDTH)-1);
1811
1812    if( lpid )
1813    {
1814        _printf("\n[BOOT ERROR] boot_pmem_init() : "
1815        "P[%d][%d][%d] should not execute it\n", cx, cy, lpid );
1816        _exit();
1817    }   
1818
1819    // scan the psegs in local cluster to find  pseg of type RAM
1820    unsigned int found      = 0;
1821    unsigned int cluster_id = cx * Y_SIZE + cy;
1822    unsigned int pseg_min   = cluster[cluster_id].pseg_offset;
1823    unsigned int pseg_max   = pseg_min + cluster[cluster_id].psegs;
1824    for ( pseg_id = pseg_min ; pseg_id < pseg_max ; pseg_id++ )
1825    {
1826        if ( pseg[pseg_id].type == PSEG_TYPE_RAM )
1827        {
1828            unsigned int base = (unsigned int)pseg[pseg_id].base;
1829            unsigned int size = (unsigned int)pseg[pseg_id].length;
1830            _pmem_alloc_init( cx, cy, base, size );
1831            found = 1;
1832
1833#if BOOT_DEBUG_PT
1834_printf("\n[BOOT] pmem allocator initialised in cluster[%d][%d]"
1835        " : base = %x / size = %x\n", cx , cy , base , size );
1836#endif
1837            break;
1838        }
1839    }
1840
1841    if ( found == 0 )
1842    {
1843        _printf("\n[BOOT ERROR] boot_pmem_init() : no RAM in cluster[%d][%d]\n",
1844                cx , cy );
1845        _exit();
1846    }   
1847} // end boot_pmem_init()
1848 
1849/////////////////////////////////////////////////////////////////////////
1850// This function is the entry point of the boot code for all processors.
1851/////////////////////////////////////////////////////////////////////////
1852void boot_init() 
1853{
1854
1855    unsigned int       gpid       = _get_procid();
1856    unsigned int       cx         = gpid >> (Y_WIDTH + P_WIDTH);
1857    unsigned int       cy         = (gpid >> P_WIDTH) & ((1<<Y_WIDTH)-1);
1858    unsigned int       lpid       = gpid & ((1 << P_WIDTH) -1);
1859
1860    //////////////////////////////////////////////////////////
1861    // Phase ONE : only P[0][0][0] execute it
1862    //////////////////////////////////////////////////////////
1863    if ( gpid == 0 )   
1864    {
1865        unsigned int cid;  // index for loop on clusters
1866
1867        // initialises the TTY0 spin lock
1868        _spin_lock_init( &_tty0_spin_lock );
1869
1870        _printf("\n[BOOT] P[0,0,0] starts at cycle %d\n", _get_proctime() );
1871
1872        // initialises the IOC peripheral
1873        if      ( USE_IOC_BDV != 0 ) _bdv_init();
1874        else if ( USE_IOC_HBA != 0 ) _hba_init();
1875        else if ( USE_IOC_SDC != 0 ) _sdc_init();
1876        else if ( USE_IOC_RDK == 0 )
1877        {
1878            _printf("\n[BOOT ERROR] boot_init() : no IOC peripheral\n");
1879            _exit();
1880        }
1881
1882        // initialises the FAT
1883        _fat_init( 0 );          // no IRQ
1884
1885        _printf("\n[BOOT] FAT initialised at cycle %d\n", _get_proctime() );
1886
1887        // Load the map.bin file into memory
1888        boot_mapping_init();
1889
1890        mapping_header_t*  header     = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1891        mapping_cluster_t* cluster    = _get_cluster_base(header);
1892
1893        _printf("\n[BOOT] Mapping %s loaded at cycle %d\n",
1894                header->name , _get_proctime() );
1895
1896        // initialises the barrier for all clusters containing processors
1897        unsigned int nclusters = 0;
1898        for ( cid = 0 ; cid < X_SIZE*Y_SIZE ; cid++ )
1899        {
1900            if ( cluster[cid].procs ) nclusters++ ;
1901        } 
1902
1903        _simple_barrier_init( &_barrier_all_clusters , nclusters );
1904
1905        // wake up all processors P[x][y][0]
1906        for ( cid = 1 ; cid < X_SIZE*Y_SIZE ; cid++ ) 
1907        {
1908            unsigned int x          = cluster[cid].x;
1909            unsigned int y          = cluster[cid].y;
1910            unsigned int cluster_xy = (x << Y_WIDTH) + y;
1911
1912            if ( cluster[cid].procs ) 
1913            {
1914                unsigned long long paddr = (((unsigned long long)cluster_xy)<<32) +
1915                                           SEG_XCU_BASE+XCU_REG( XCU_WTI_REG , 0 );
1916
1917                _physical_write( paddr , (unsigned int)boot_entry );
1918            }
1919        }
1920
1921        _printf("\n[BOOT] Processors P[x,y,0] start at cycle %d\n",
1922                _get_proctime() );
1923    }
1924
1925    /////////////////////////////////////////////////////////////////
1926    // Phase TWO : All processors P[x][y][0] execute it in parallel
1927    /////////////////////////////////////////////////////////////////
1928    if( lpid == 0 )
1929    {
1930        // Initializes physical memory allocator in cluster[cx][cy]
1931        boot_pmem_init( cx , cy );
1932
1933        // Build page table in cluster[cx][cy]
1934        boot_ptab_init( cx , cy );
1935
1936        //////////////////////////////////////////////
1937        _simple_barrier_wait( &_barrier_all_clusters );
1938        //////////////////////////////////////////////
1939
1940        // P[0][0][0] complete page tables with vsegs
1941        // mapped in clusters without processors
1942        if ( gpid == 0 )   
1943        {
1944            // complete page tables initialisation
1945            boot_ptab_extend();
1946
1947            _printf("\n[BOOT] Physical memory allocators and page tables"
1948                    " initialized at cycle %d\n", _get_proctime() );
1949        }
1950
1951        //////////////////////////////////////////////
1952        _simple_barrier_wait( &_barrier_all_clusters );
1953        //////////////////////////////////////////////
1954
1955        // All processors P[x,y,0] activate MMU (using local PTAB)
1956        _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) );
1957        _set_mmu_mode( 0xF );
1958       
1959        // Each processor P[x,y,0] initialises all schedulers in cluster[x,y]
1960        boot_scheduler_init( cx , cy );
1961
1962        // Each processor P[x][y][0] initialises its CP0_SCHED register
1963        _set_sched( (unsigned int)_schedulers[cx][cy][0] );
1964
1965        //////////////////////////////////////////////
1966        _simple_barrier_wait( &_barrier_all_clusters );
1967        //////////////////////////////////////////////
1968
1969        if ( gpid == 0 ) 
1970        {
1971            _printf("\n[BOOT] Schedulers initialised at cycle %d\n", 
1972                    _get_proctime() );
1973        }
1974
1975        // All processor P[x,y,0] contributes to load .elf files into clusters.
1976        boot_elf_load();
1977
1978        //////////////////////////////////////////////
1979        _simple_barrier_wait( &_barrier_all_clusters );
1980        //////////////////////////////////////////////
1981       
1982        // Each processor P[x][y][0] wake up other processors in same cluster
1983        mapping_header_t*  header     = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1984        mapping_cluster_t* cluster    = _get_cluster_base(header);
1985        unsigned int       cluster_xy = (cx << Y_WIDTH) + cy;
1986        unsigned int       cluster_id = (cx * Y_SIZE) + cy;
1987        unsigned int p;
1988        for ( p = 1 ; p < cluster[cluster_id].procs ; p++ )
1989        {
1990            _xcu_send_wti( cluster_xy , p , (unsigned int)boot_entry );
1991        }
1992
1993        // only P[0][0][0] makes display
1994        if ( gpid == 0 )
1995        {   
1996            _printf("\n[BOOT] All processors start at cycle %d\n",
1997                    _get_proctime() );
1998        }
1999    }
2000    // All other processors activate MMU (using local PTAB)
2001    if ( lpid != 0 )
2002    {
2003        _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) );
2004        _set_mmu_mode( 0xF );
2005    }
2006
2007    // All processors set CP0_SCHED register
2008    _set_sched( (unsigned int)_schedulers[cx][cy][lpid] );
2009
2010    // All processors reset BEV bit in SR to use GIET_VM exception handler
2011    _set_sr( 0 );
2012
2013    // Each proocessor get kernel entry virtual address
2014    unsigned int kernel_entry = (unsigned int)&kernel_init_vbase;
2015
2016#if BOOT_DEBUG_ELF
2017_printf("\n[DEBUG BOOT_ELF] P[%d,%d,%d] exit boot & jump to %x at cycle %d\n",
2018        cx, cy, lpid, kernel_entry , _get_proctime() );
2019#endif
2020
2021    // All processors jump to kernel_init
2022    asm volatile( "jr   %0" ::"r"(kernel_entry) );
2023
2024} // end boot_init()
2025
2026
2027// Local Variables:
2028// tab-width: 4
2029// c-basic-offset: 4
2030// c-file-offsets:((innamespace . 0)(inline-open . 0))
2031// indent-tabs-mode: nil
2032// End:
2033// vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4
2034
Note: See TracBrowser for help on using the repository browser.