1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : boot.c |
---|
3 | // Date : 01/11/2013 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The boot.c file contains the bootloader for the GIET-VM static OS. |
---|
8 | // |
---|
9 | // This code has been written for the MIPS32 processor. |
---|
10 | // The virtual adresses are on 32 bits and use the (unsigned int) type. The |
---|
11 | // physicals addresses can have up to 40 bits, and use type (unsigned long long). |
---|
12 | // It natively supports clusterised shared memory multi-processors architectures, |
---|
13 | // where each processor is identified by a composite index [x,y,p], |
---|
14 | // and where there is one physical memory bank per cluster. |
---|
15 | // |
---|
16 | // The boot.elf file is stored on disk and is loaded into memory by proc[0,0,0], |
---|
17 | // executing the generic preloader (stored in ROM). The boot-loader code itself |
---|
18 | // is executed in parallel by all proc[x,y,0], and performs the following tasks: |
---|
19 | // - load into memory various binary files, from a FAT32 file system. |
---|
20 | // - build the various page tables (one page table per vspace). |
---|
21 | // - initialize the shedulers (one scheduler per processor). |
---|
22 | // |
---|
23 | // 1) The binary files to be loaded are: |
---|
24 | // - the "map.bin" file contains the hardware architecture description, |
---|
25 | // the set of user applications that will be mapped on the architecture, |
---|
26 | // and the mapping directives. The mapping includes the placement of threads |
---|
27 | // on processors, and the placement of virtual segments on the physical |
---|
28 | // segments. It is stored in the the seg_boot_mapping segment |
---|
29 | // (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file). |
---|
30 | // - the "kernel.elf" file contains the kernel binary code and data. |
---|
31 | // - the various "application.elf" files. |
---|
32 | // |
---|
33 | // 2) The GIET-VM uses the paged virtual memory to provide two services: |
---|
34 | // - classical memory protection, when several independant applications compiled |
---|
35 | // in different virtual spaces are executing on the same hardware platform. |
---|
36 | // - data placement in NUMA architectures, to control the placement |
---|
37 | // of the software objects (vsegs) on the physical memory banks (psegs). |
---|
38 | // The max number of vspaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
39 | // The page tables are statically build in the boot phase, and they do not |
---|
40 | // change during execution. |
---|
41 | // For each application, the page tables are replicated in all clusters. |
---|
42 | // The GIET_VM uses both small pages (4 Kbytes), and big pages (2 Mbytes). |
---|
43 | // Each page table (one page table per virtual space) is monolithic, and |
---|
44 | // contains one PT1 (8 Kbytes) and a variable number of PT2s (4 Kbytes each). |
---|
45 | // For each vspace, the max number of PT2s is defined by the size of the PTAB |
---|
46 | // vseg in the mapping. |
---|
47 | // The PT1 is indexed by the ix1 field (11 bits) of the VPN. An entry is 32 bits. |
---|
48 | // A PT2 is indexed the ix2 field (9 bits) of the VPN. An entry is 64 bits. |
---|
49 | // The first word contains the flags, the second word contains the PPN. |
---|
50 | // |
---|
51 | // 3) The Giet-VM implement one private scheduler per processor. |
---|
52 | // For each application, the threads are statically allocated to processors |
---|
53 | // and there is no thread migration during execution. |
---|
54 | // Each sheduler occupies 8K bytes, and contains up to 14 thread contexts |
---|
55 | // The thread context [13] is reserved for the "idle" thread that does nothing, |
---|
56 | // and is launched by the scheduler when there is no other runable thread. |
---|
57 | /////////////////////////////////////////////////////////////////////////////////// |
---|
58 | // Implementation Notes: |
---|
59 | // |
---|
60 | // 1) The cluster_id variable is a linear index in the mapping_info array. |
---|
61 | // The cluster_xy variable is the tological index = x << Y_WIDTH + y |
---|
62 | // |
---|
63 | // 2) We set the _tty0_boot_mode variable to force the _printf() function to use |
---|
64 | // the tty0_spin_lock for exclusive access to TTY0. |
---|
65 | /////////////////////////////////////////////////////////////////////////////////// |
---|
66 | |
---|
67 | #include <giet_config.h> |
---|
68 | #include <hard_config.h> |
---|
69 | #include <mapping_info.h> |
---|
70 | #include <kernel_malloc.h> |
---|
71 | #include <memspace.h> |
---|
72 | #include <tty_driver.h> |
---|
73 | #include <xcu_driver.h> |
---|
74 | #include <bdv_driver.h> |
---|
75 | #include <hba_driver.h> |
---|
76 | #include <sdc_driver.h> |
---|
77 | #include <cma_driver.h> |
---|
78 | #include <nic_driver.h> |
---|
79 | #include <iob_driver.h> |
---|
80 | #include <pic_driver.h> |
---|
81 | #include <mwr_driver.h> |
---|
82 | #include <dma_driver.h> |
---|
83 | #include <mmc_driver.h> |
---|
84 | #include <ctx_handler.h> |
---|
85 | #include <irq_handler.h> |
---|
86 | #include <vmem.h> |
---|
87 | #include <pmem.h> |
---|
88 | #include <utils.h> |
---|
89 | #include <tty0.h> |
---|
90 | #include <kernel_locks.h> |
---|
91 | #include <kernel_barriers.h> |
---|
92 | #include <elf-types.h> |
---|
93 | #include <fat32.h> |
---|
94 | #include <mips32_registers.h> |
---|
95 | #include <stdarg.h> |
---|
96 | |
---|
97 | #if !defined(X_SIZE) |
---|
98 | # error: The X_SIZE value must be defined in the 'hard_config.h' file ! |
---|
99 | #endif |
---|
100 | |
---|
101 | #if !defined(Y_SIZE) |
---|
102 | # error: The Y_SIZE value must be defined in the 'hard_config.h' file ! |
---|
103 | #endif |
---|
104 | |
---|
105 | #if !defined(X_WIDTH) |
---|
106 | # error: The X_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
107 | #endif |
---|
108 | |
---|
109 | #if !defined(Y_WIDTH) |
---|
110 | # error: The Y_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
111 | #endif |
---|
112 | |
---|
113 | #if !defined(SEG_BOOT_MAPPING_BASE) |
---|
114 | # error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file ! |
---|
115 | #endif |
---|
116 | |
---|
117 | #if !defined(NB_PROCS_MAX) |
---|
118 | # error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file ! |
---|
119 | #endif |
---|
120 | |
---|
121 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
122 | # error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
123 | #endif |
---|
124 | |
---|
125 | #if !defined(GIET_ELF_BUFFER_SIZE) |
---|
126 | # error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file ! |
---|
127 | #endif |
---|
128 | |
---|
129 | //////////////////////////////////////////////////////////////////////////// |
---|
130 | // Global variables for boot code |
---|
131 | //////////////////////////////////////////////////////////////////////////// |
---|
132 | |
---|
133 | // Temporaty buffer used to load one complete .elf file |
---|
134 | __attribute__((section(".kdata"))) |
---|
135 | unsigned char _boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(64))); |
---|
136 | |
---|
137 | // Physical memory allocators array (one per cluster) |
---|
138 | __attribute__((section(".kdata"))) |
---|
139 | pmem_alloc_t _boot_pmem_alloc[X_SIZE][Y_SIZE]; |
---|
140 | |
---|
141 | // Schedulers virtual base addresses array (one per processor) |
---|
142 | __attribute__((section(".kdata"))) |
---|
143 | static_scheduler_t* _schedulers[X_SIZE][Y_SIZE][NB_PROCS_MAX]; |
---|
144 | |
---|
145 | // Page tables virtual base addresses (one per vspace and per cluster) |
---|
146 | __attribute__((section(".kdata"))) |
---|
147 | unsigned int _ptabs_vaddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
148 | |
---|
149 | // Page tables physical base addresses (one per vspace and per cluster) |
---|
150 | __attribute__((section(".kdata"))) |
---|
151 | unsigned long long _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
152 | |
---|
153 | // Page tables pt2 allocators (one per vspace and per cluster) |
---|
154 | __attribute__((section(".kdata"))) |
---|
155 | unsigned int _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
156 | |
---|
157 | // Page tables max_pt2 (same value for all page tables) |
---|
158 | __attribute__((section(".kdata"))) |
---|
159 | unsigned int _ptabs_max_pt2; |
---|
160 | |
---|
161 | // boot code uses a spin lock to protect TTY0 |
---|
162 | __attribute__((section(".kdata"))) |
---|
163 | unsigned int _tty0_boot_mode = 1; |
---|
164 | |
---|
165 | // boot code does not uses a lock to protect HBA command list |
---|
166 | __attribute__((section(".kdata"))) |
---|
167 | unsigned int _hba_boot_mode = 1; |
---|
168 | |
---|
169 | // required for concurrent PTAB building |
---|
170 | __attribute__((section(".kdata"))) |
---|
171 | spin_lock_t _ptabs_spin_lock[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
172 | |
---|
173 | // barrier used by boot code for parallel execution |
---|
174 | __attribute__((section(".kdata"))) |
---|
175 | simple_barrier_t _barrier_all_clusters; |
---|
176 | |
---|
177 | ////////////////////////////////////////////////////////////////////////////// |
---|
178 | // Extern variables |
---|
179 | ////////////////////////////////////////////////////////////////////////////// |
---|
180 | |
---|
181 | // this variable is allocated in the tty0.c file |
---|
182 | extern spin_lock_t _tty0_spin_lock; |
---|
183 | |
---|
184 | // this variable is allocated in the mmc_driver.c |
---|
185 | extern unsigned int _mmc_boot_mode; |
---|
186 | |
---|
187 | // these variables are allocated in the bdv_driver.c file |
---|
188 | extern spin_lock_t _bdv_lock __attribute__((aligned(64))); |
---|
189 | extern unsigned int _bdv_trdid; |
---|
190 | extern unsigned int _bdv_status; |
---|
191 | |
---|
192 | extern void boot_entry(); |
---|
193 | |
---|
194 | //////////////////////////////////////////////////////////////////////////////////// |
---|
195 | // Align the value of paddr or vaddr to the required alignement, |
---|
196 | // defined by alignPow2 == L2(alignement). |
---|
197 | //////////////////////////////////////////////////////////////////////////////////// |
---|
198 | paddr_t paddr_align_to( paddr_t paddr, unsigned int alignPow2 ) |
---|
199 | { |
---|
200 | paddr_t mask = (1 << alignPow2) - 1; |
---|
201 | return ((paddr + mask) & ~mask); |
---|
202 | } |
---|
203 | |
---|
204 | unsigned int vaddr_align_to( unsigned int vaddr, unsigned int alignPow2 ) |
---|
205 | { |
---|
206 | unsigned int mask = (1 << alignPow2) - 1; |
---|
207 | return ((vaddr + mask) & ~mask); |
---|
208 | } |
---|
209 | |
---|
210 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
211 | // This function map a vseg identified by the vseg pointer. |
---|
212 | // |
---|
213 | // A given vseg can be mapped in a Big Physical Pages (BPP: 2 Mbytes) or in a |
---|
214 | // Small Physical Pages (SPP: 4 Kbytes), depending on the "big" attribute of vseg. |
---|
215 | // |
---|
216 | // All boot vsegs are packed in a single BPP (2 Mbytes). For all other vsegs, |
---|
217 | // there is only one vseg in a given page (BPP or SPP), but a single vseg can |
---|
218 | // cover several contiguous physical pages. |
---|
219 | // Only the vsegs used by the boot code can be identity mapping. |
---|
220 | // |
---|
221 | // 1) First step: it computes various vseg attributes and checks |
---|
222 | // alignment constraints. |
---|
223 | // |
---|
224 | // 2) Second step: it allocates the required number of contiguous physical pages, |
---|
225 | // computes the physical base address (if the vseg is not identity mapping), |
---|
226 | // register it in the vseg pbase field, and update the page table(s). |
---|
227 | // |
---|
228 | // 3) Third step (only for vseg that have the VSEG_TYPE_PTAB): for a given cluster, |
---|
229 | // the M page tables associated to the M vspaces are packed in the same vseg. |
---|
230 | // We divide this vseg in M sub-segments, and compute the vbase and pbase |
---|
231 | // addresses for M page tables, and register these addresses in the _ptabs_paddr |
---|
232 | // and _ptabs_vaddr arrays. |
---|
233 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
234 | void boot_vseg_map( mapping_vseg_t* vseg, |
---|
235 | unsigned int vspace_id ) |
---|
236 | { |
---|
237 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
238 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
239 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
240 | |
---|
241 | //////////// First step : compute vseg attributes |
---|
242 | |
---|
243 | // compute destination cluster pointer & coordinates |
---|
244 | pseg = pseg + vseg->psegid; |
---|
245 | cluster = cluster + pseg->clusterid; |
---|
246 | unsigned int x_dest = cluster->x; |
---|
247 | unsigned int y_dest = cluster->y; |
---|
248 | |
---|
249 | // compute the "big" vseg attribute |
---|
250 | unsigned int big = vseg->big; |
---|
251 | |
---|
252 | // all vsegs must be aligned on 4Kbytes |
---|
253 | if ( vseg->vbase & 0x00000FFF ) |
---|
254 | { |
---|
255 | _printf("\n[BOOT ERROR] vseg %s not aligned : vbase = %x\n", |
---|
256 | vseg->name, vseg->vbase ); |
---|
257 | _exit(); |
---|
258 | } |
---|
259 | |
---|
260 | // compute the "is_ram" vseg attribute |
---|
261 | unsigned int is_ram; |
---|
262 | if ( pseg->type == PSEG_TYPE_RAM ) is_ram = 1; |
---|
263 | else is_ram = 0; |
---|
264 | |
---|
265 | // compute the "is_ptab" attribute |
---|
266 | unsigned int is_ptab; |
---|
267 | if ( vseg->type == VSEG_TYPE_PTAB ) is_ptab = 1; |
---|
268 | else is_ptab = 0; |
---|
269 | |
---|
270 | // compute actual vspace index |
---|
271 | unsigned int vsid; |
---|
272 | if ( vspace_id == 0xFFFFFFFF ) vsid = 0; |
---|
273 | else vsid = vspace_id; |
---|
274 | |
---|
275 | //////////// Second step : compute ppn and npages |
---|
276 | //////////// - if identity mapping : ppn <= vpn |
---|
277 | //////////// - if vseg is periph : ppn <= pseg.base >> 12 |
---|
278 | //////////// - if vseg is ram : ppn <= physical memory allocator |
---|
279 | |
---|
280 | unsigned int ppn; // first physical page index (28 bits = |x|y|bppi|sppi|) |
---|
281 | unsigned int vpn; // first virtual page index (20 bits = |ix1|ix2|) |
---|
282 | unsigned int vpn_max; // last virtual page index (20 bits = |ix1|ix2|) |
---|
283 | |
---|
284 | vpn = vseg->vbase >> 12; |
---|
285 | vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
286 | |
---|
287 | // compute npages |
---|
288 | unsigned int npages; // number of required (big or small) pages |
---|
289 | if ( big == 0 ) npages = vpn_max - vpn + 1; // number of small pages |
---|
290 | else npages = (vpn_max>>9) - (vpn>>9) + 1; // number of big pages |
---|
291 | |
---|
292 | // compute ppn |
---|
293 | if ( vseg->ident ) // identity mapping : no memory allocation required |
---|
294 | { |
---|
295 | ppn = vpn; |
---|
296 | } |
---|
297 | else // not identity mapping |
---|
298 | { |
---|
299 | if ( is_ram ) // RAM : physical memory allocation required |
---|
300 | { |
---|
301 | // compute pointer on physical memory allocator in dest cluster |
---|
302 | pmem_alloc_t* palloc = &_boot_pmem_alloc[x_dest][y_dest]; |
---|
303 | |
---|
304 | if ( big == 0 ) // allocate contiguous SPPs |
---|
305 | { |
---|
306 | ppn = _get_small_ppn( palloc, npages ); |
---|
307 | } |
---|
308 | else // allocate contiguous BPPs |
---|
309 | { |
---|
310 | ppn = _get_big_ppn( palloc, npages ); |
---|
311 | } |
---|
312 | } |
---|
313 | else // PERI : no memory allocation required |
---|
314 | { |
---|
315 | ppn = pseg->base >> 12; |
---|
316 | } |
---|
317 | } |
---|
318 | |
---|
319 | // update vseg.pbase field and register vseg mapped |
---|
320 | vseg->pbase = ((paddr_t)ppn) << 12; |
---|
321 | vseg->mapped = 1; |
---|
322 | |
---|
323 | //////////// Third step : (only if the vseg is a page table) |
---|
324 | //////////// - compute the physical & virtual base address for each vspace |
---|
325 | //////////// by dividing the vseg in several sub-segments. |
---|
326 | //////////// - register it in _ptabs_vaddr & _ptabs_paddr arrays, |
---|
327 | //////////// and initialize next_pt2 allocators. |
---|
328 | //////////// - reset all entries in first level page tables |
---|
329 | |
---|
330 | if ( is_ptab ) |
---|
331 | { |
---|
332 | unsigned int vs; // vspace index |
---|
333 | unsigned int nspaces; // number of vspaces |
---|
334 | unsigned int nsp; // number of small pages for one PTAB |
---|
335 | unsigned int offset; // address offset for current PTAB |
---|
336 | |
---|
337 | nspaces = header->vspaces; |
---|
338 | offset = 0; |
---|
339 | |
---|
340 | // compute max_pt2: each PTAB must be aligned on a 8 Kbytes boundary |
---|
341 | nsp = ( vseg->length >> 12 ) / nspaces; |
---|
342 | if ( (nsp & 0x1) == 0x1 ) nsp = nsp - 1; |
---|
343 | _ptabs_max_pt2 = ((nsp<<12) - PT1_SIZE) / PT2_SIZE; |
---|
344 | |
---|
345 | // save max_pt2 in header |
---|
346 | header->max_pt2 = _ptabs_max_pt2; |
---|
347 | |
---|
348 | for ( vs = 0 ; vs < nspaces ; vs++ ) |
---|
349 | { |
---|
350 | _ptabs_vaddr [vs][x_dest][y_dest] = (vpn + offset) << 12; |
---|
351 | _ptabs_paddr [vs][x_dest][y_dest] = ((paddr_t)(ppn + offset)) << 12; |
---|
352 | _ptabs_next_pt2[vs][x_dest][y_dest] = 0; |
---|
353 | offset += nsp; |
---|
354 | |
---|
355 | // reset all entries in PT1 (8 Kbytes) |
---|
356 | _physical_memset( _ptabs_paddr[vs][x_dest][y_dest], PT1_SIZE, 0 ); |
---|
357 | } |
---|
358 | } |
---|
359 | |
---|
360 | asm volatile ("sync"); |
---|
361 | |
---|
362 | #if BOOT_DEBUG_PT |
---|
363 | if ( big ) |
---|
364 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
365 | "vbase = %x / length = %x / BIG / npages = %d / pbase = %l\n", |
---|
366 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
367 | else |
---|
368 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
369 | "vbase = %x / length = %x / SMALL / npages = %d / pbase = %l\n", |
---|
370 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
371 | #endif |
---|
372 | |
---|
373 | } // end boot_vseg_map() |
---|
374 | |
---|
375 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
376 | // For the vseg defined by the vseg pointer, this function register PTEs |
---|
377 | // in one or several page tables. |
---|
378 | // It is a global vseg (kernel vseg) if (vspace_id == 0xFFFFFFFF). |
---|
379 | // The number of involved PTABs depends on the "local" and "global" attributes: |
---|
380 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
381 | // - PTEs are replicated in all clusters containing procs for a non local vseg. |
---|
382 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
383 | void boot_vseg_pte( mapping_vseg_t* vseg, |
---|
384 | unsigned int vspace_id ) |
---|
385 | { |
---|
386 | // compute the "global" vseg attribute and actual vspace index |
---|
387 | unsigned int global; |
---|
388 | unsigned int vsid; |
---|
389 | if ( vspace_id == 0xFFFFFFFF ) |
---|
390 | { |
---|
391 | global = 1; |
---|
392 | vsid = 0; |
---|
393 | } |
---|
394 | else |
---|
395 | { |
---|
396 | global = 0; |
---|
397 | vsid = vspace_id; |
---|
398 | } |
---|
399 | |
---|
400 | // compute the "local" and "big" attributes |
---|
401 | unsigned int local = vseg->local; |
---|
402 | unsigned int big = vseg->big; |
---|
403 | |
---|
404 | // compute vseg flags |
---|
405 | // The three flags (Local, Remote and Dirty) are set to 1 |
---|
406 | // to avoid hardware update for these flags, because GIET_VM |
---|
407 | // does use these flags. |
---|
408 | unsigned int flags = 0; |
---|
409 | if (vseg->mode & C_MODE_MASK) flags |= PTE_C; |
---|
410 | if (vseg->mode & X_MODE_MASK) flags |= PTE_X; |
---|
411 | if (vseg->mode & W_MODE_MASK) flags |= PTE_W; |
---|
412 | if (vseg->mode & U_MODE_MASK) flags |= PTE_U; |
---|
413 | if ( global ) flags |= PTE_G; |
---|
414 | flags |= PTE_L; |
---|
415 | flags |= PTE_R; |
---|
416 | flags |= PTE_D; |
---|
417 | |
---|
418 | // compute VPN, PPN and number of pages (big or small) |
---|
419 | unsigned int vpn = vseg->vbase >> 12; |
---|
420 | unsigned int vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
421 | unsigned int ppn = (unsigned int)(vseg->pbase >> 12); |
---|
422 | unsigned int npages; |
---|
423 | if ( big == 0 ) npages = vpn_max - vpn + 1; |
---|
424 | else npages = (vpn_max>>9) - (vpn>>9) + 1; |
---|
425 | |
---|
426 | // compute destination cluster coordinates, for local vsegs |
---|
427 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
428 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
429 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
430 | mapping_pseg_t* pseg_dest = &pseg[vseg->psegid]; |
---|
431 | mapping_cluster_t* cluster_dest = &cluster[pseg_dest->clusterid]; |
---|
432 | unsigned int x_dest = cluster_dest->x; |
---|
433 | unsigned int y_dest = cluster_dest->y; |
---|
434 | |
---|
435 | unsigned int p; // iterator for physical page index |
---|
436 | unsigned int x; // iterator for cluster x coordinate |
---|
437 | unsigned int y; // iterator for cluster y coordinate |
---|
438 | unsigned int v; // iterator for vspace index |
---|
439 | |
---|
440 | // loop on PTEs |
---|
441 | for ( p = 0 ; p < npages ; p++ ) |
---|
442 | { |
---|
443 | if ( (local != 0) && (global == 0) ) // one cluster / one vspace |
---|
444 | { |
---|
445 | if ( big ) // big pages => PTE1s |
---|
446 | { |
---|
447 | _v2p_add_pte1( vsid, |
---|
448 | x_dest, |
---|
449 | y_dest, |
---|
450 | vpn + (p<<9), |
---|
451 | flags, |
---|
452 | ppn + (p<<9), |
---|
453 | vseg->ident ); |
---|
454 | } |
---|
455 | else // small pages => PTE2s |
---|
456 | { |
---|
457 | _v2p_add_pte2( vsid, |
---|
458 | x_dest, |
---|
459 | y_dest, |
---|
460 | vpn + p, |
---|
461 | flags, |
---|
462 | ppn + p, |
---|
463 | vseg->ident ); |
---|
464 | } |
---|
465 | } |
---|
466 | else if ( (local == 0) && (global == 0) ) // all clusters / one vspace |
---|
467 | { |
---|
468 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
469 | { |
---|
470 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
471 | { |
---|
472 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
473 | { |
---|
474 | if ( big ) // big pages => PTE1s |
---|
475 | { |
---|
476 | _v2p_add_pte1( vsid, |
---|
477 | x, |
---|
478 | y, |
---|
479 | vpn + (p<<9), |
---|
480 | flags, |
---|
481 | ppn + (p<<9), |
---|
482 | vseg->ident ); |
---|
483 | } |
---|
484 | else // small pages => PTE2s |
---|
485 | { |
---|
486 | _v2p_add_pte2( vsid, |
---|
487 | x, |
---|
488 | y, |
---|
489 | vpn + p, |
---|
490 | flags, |
---|
491 | ppn + p, |
---|
492 | vseg->ident ); |
---|
493 | } |
---|
494 | } |
---|
495 | } |
---|
496 | } |
---|
497 | } |
---|
498 | else if ( (local != 0) && (global != 0) ) // one cluster / all vspaces |
---|
499 | { |
---|
500 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
501 | { |
---|
502 | if ( big ) // big pages => PTE1s |
---|
503 | { |
---|
504 | _v2p_add_pte1( v, |
---|
505 | x_dest, |
---|
506 | y_dest, |
---|
507 | vpn + (p<<9), |
---|
508 | flags, |
---|
509 | ppn + (p<<9), |
---|
510 | vseg->ident ); |
---|
511 | } |
---|
512 | else // small pages = PTE2s |
---|
513 | { |
---|
514 | _v2p_add_pte2( v, |
---|
515 | x_dest, |
---|
516 | y_dest, |
---|
517 | vpn + p, |
---|
518 | flags, |
---|
519 | ppn + p, |
---|
520 | vseg->ident ); |
---|
521 | } |
---|
522 | } |
---|
523 | } |
---|
524 | else if ( (local == 0) && (global != 0) ) // all clusters / all vspaces |
---|
525 | { |
---|
526 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
527 | { |
---|
528 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
529 | { |
---|
530 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
531 | { |
---|
532 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
533 | { |
---|
534 | if ( big ) // big pages => PTE1s |
---|
535 | { |
---|
536 | _v2p_add_pte1( v, |
---|
537 | x, |
---|
538 | y, |
---|
539 | vpn + (p<<9), |
---|
540 | flags, |
---|
541 | ppn + (p<<9), |
---|
542 | vseg->ident ); |
---|
543 | } |
---|
544 | else // small pages -> PTE2s |
---|
545 | { |
---|
546 | _v2p_add_pte2( v, |
---|
547 | x, |
---|
548 | y, |
---|
549 | vpn + p, |
---|
550 | flags, |
---|
551 | ppn + p, |
---|
552 | vseg->ident ); |
---|
553 | } |
---|
554 | } |
---|
555 | } |
---|
556 | } |
---|
557 | } |
---|
558 | } |
---|
559 | } // end for pages |
---|
560 | |
---|
561 | asm volatile ("sync"); |
---|
562 | |
---|
563 | } // end boot_vseg_pte() |
---|
564 | |
---|
565 | |
---|
566 | /////////////////////////////////////////////////////////////////////////////// |
---|
567 | // This function is executed by processor[x][y][0] in each cluster |
---|
568 | // containing at least one processor. |
---|
569 | // It initialises all page table for all global or private vsegs |
---|
570 | // mapped in cluster[x][y], as specified in the mapping. |
---|
571 | // In each cluster all page tables for the different vspaces must be |
---|
572 | // packed in one vseg occupying one single BPP (Big Physical Page). |
---|
573 | // |
---|
574 | // For each vseg, the mapping is done in two steps: |
---|
575 | // 1) mapping : the boot_vseg_map() function allocates contiguous BPPs |
---|
576 | // or SPPs (if the vseg is not associated to a peripheral), and register |
---|
577 | // the physical base address in the vseg pbase field. It initialises the |
---|
578 | // _ptabs_vaddr[] and _ptabs_paddr[] arrays if the vseg is a PTAB. |
---|
579 | // |
---|
580 | // 2) page table initialisation : the boot_vseg_pte() function initialise |
---|
581 | // the PTEs (both PTE1 and PTE2) in one or several page tables: |
---|
582 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
583 | // - PTEs are replicated in all clusters for a non local vseg. |
---|
584 | // |
---|
585 | // We must handle vsegs in the following order |
---|
586 | // 1) global vseg containing PTAB mapped in cluster[x][y], |
---|
587 | // 2) global vsegs occupying more than one BPP mapped in cluster[x][y], |
---|
588 | // 3) others global vsegs mapped in cluster[x][y], |
---|
589 | // 4) all private vsegs in all user spaces mapped in cluster[x][y]. |
---|
590 | /////////////////////////////////////////////////////////////////////////////// |
---|
591 | void boot_ptab_init( unsigned int cx, |
---|
592 | unsigned int cy ) |
---|
593 | { |
---|
594 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
595 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
596 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
597 | mapping_cluster_t* cluster ; |
---|
598 | mapping_pseg_t* pseg ; |
---|
599 | |
---|
600 | unsigned int vspace_id; |
---|
601 | unsigned int vseg_id; |
---|
602 | |
---|
603 | unsigned int procid = _get_procid(); |
---|
604 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
605 | |
---|
606 | if( lpid ) |
---|
607 | { |
---|
608 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
609 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
610 | _exit(); |
---|
611 | } |
---|
612 | |
---|
613 | if ( header->vspaces == 0 ) |
---|
614 | { |
---|
615 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
616 | "mapping %s contains no vspace\n", header->name ); |
---|
617 | _exit(); |
---|
618 | } |
---|
619 | |
---|
620 | ///////// Phase 1 : global vseg containing the PTAB (two barriers required) |
---|
621 | |
---|
622 | // get PTAB global vseg in cluster(cx,cy) |
---|
623 | unsigned int found = 0; |
---|
624 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
625 | { |
---|
626 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
627 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
628 | if ( (vseg[vseg_id].type == VSEG_TYPE_PTAB) && |
---|
629 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
630 | { |
---|
631 | found = 1; |
---|
632 | break; |
---|
633 | } |
---|
634 | } |
---|
635 | if ( found == 0 ) |
---|
636 | { |
---|
637 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
638 | "cluster[%d][%d] contains no PTAB vseg\n", cx , cy ); |
---|
639 | _exit(); |
---|
640 | } |
---|
641 | |
---|
642 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
643 | |
---|
644 | ////////////////////////////////////////////// |
---|
645 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
646 | ////////////////////////////////////////////// |
---|
647 | |
---|
648 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
649 | |
---|
650 | ////////////////////////////////////////////// |
---|
651 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
652 | ////////////////////////////////////////////// |
---|
653 | |
---|
654 | ///////// Phase 2 : global vsegs occupying more than one BPP |
---|
655 | |
---|
656 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
657 | { |
---|
658 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
659 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
660 | if ( (vseg[vseg_id].length > 0x200000) && |
---|
661 | (vseg[vseg_id].mapped == 0) && |
---|
662 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
663 | { |
---|
664 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
665 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
666 | } |
---|
667 | } |
---|
668 | |
---|
669 | ///////// Phase 3 : all others global vsegs |
---|
670 | |
---|
671 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
672 | { |
---|
673 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
674 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
675 | if ( (vseg[vseg_id].mapped == 0) && |
---|
676 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
677 | { |
---|
678 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
679 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
680 | } |
---|
681 | } |
---|
682 | |
---|
683 | ///////// Phase 4 : all private vsegs |
---|
684 | |
---|
685 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
686 | { |
---|
687 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
688 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
689 | vseg_id++) |
---|
690 | { |
---|
691 | if ( vseg[vseg_id].type == VSEG_TYPE_MMAP ) // no static mapping |
---|
692 | { |
---|
693 | // psegid used as page allocator in MMAP vseg |
---|
694 | vseg[vseg_id].psegid = 0; |
---|
695 | } |
---|
696 | else // static mapping |
---|
697 | { |
---|
698 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
699 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
700 | if ( (cluster->x == cx) && (cluster->y == cy) ) |
---|
701 | { |
---|
702 | boot_vseg_map( &vseg[vseg_id], vspace_id ); |
---|
703 | boot_vseg_pte( &vseg[vseg_id], vspace_id ); |
---|
704 | } |
---|
705 | } |
---|
706 | } |
---|
707 | } |
---|
708 | |
---|
709 | ////////////////////////////////////////////// |
---|
710 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
711 | ////////////////////////////////////////////// |
---|
712 | |
---|
713 | } // end boot_ptab_init() |
---|
714 | |
---|
715 | //////////////////////////////////////////////////////////////////////////////// |
---|
716 | // This function should be executed by P[0][0][0] only. It complete the |
---|
717 | // page table initialisation, taking care of all global vsegs that are |
---|
718 | // not mapped in a cluster containing a processor, and have not been |
---|
719 | // handled by the boot_ptab_init(x,y) function. |
---|
720 | // An example of such vsegs are the external peripherals in TSAR_LETI platform. |
---|
721 | //////////////////////////////////////////////////////////////////////////////// |
---|
722 | void boot_ptab_extend() |
---|
723 | { |
---|
724 | |
---|
725 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
726 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
727 | |
---|
728 | unsigned int vseg_id; |
---|
729 | |
---|
730 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
731 | { |
---|
732 | if ( vseg[vseg_id].mapped == 0 ) |
---|
733 | { |
---|
734 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
735 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
736 | } |
---|
737 | } |
---|
738 | } // end boot_ptab_extend() |
---|
739 | |
---|
740 | /////////////////////////////////////////////////////////////////////////////// |
---|
741 | // This function returns in the vbase and length buffers the virtual base |
---|
742 | // address and the length of the segment allocated to the schedulers array |
---|
743 | // in the cluster defined by the clusterid argument. |
---|
744 | /////////////////////////////////////////////////////////////////////////////// |
---|
745 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
746 | unsigned int* vbase, |
---|
747 | unsigned int* length ) |
---|
748 | { |
---|
749 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
750 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
751 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
752 | |
---|
753 | unsigned int vseg_id; |
---|
754 | unsigned int found = 0; |
---|
755 | |
---|
756 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
757 | { |
---|
758 | if ( (vseg[vseg_id].type == VSEG_TYPE_SCHED) && |
---|
759 | (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) ) |
---|
760 | { |
---|
761 | *vbase = vseg[vseg_id].vbase; |
---|
762 | *length = vseg[vseg_id].length; |
---|
763 | found = 1; |
---|
764 | } |
---|
765 | } |
---|
766 | if ( found == 0 ) |
---|
767 | { |
---|
768 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
769 | _printf("\n[BOOT ERROR] No vseg of type SCHED in cluster [%d,%d]\n", |
---|
770 | cluster[cluster_id].x, cluster[cluster_id].y ); |
---|
771 | _exit(); |
---|
772 | } |
---|
773 | } // end boot_get_sched_vaddr() |
---|
774 | |
---|
775 | #if BOOT_DEBUG_SCHED |
---|
776 | ///////////////////////////////////////////////////////////////////////////// |
---|
777 | // This debug function should be executed by only one procesor. |
---|
778 | // It loops on all processors in all clusters to display |
---|
779 | // the HWI / PTI / WTI interrupt vectors for each processor. |
---|
780 | ///////////////////////////////////////////////////////////////////////////// |
---|
781 | void boot_sched_irq_display() |
---|
782 | { |
---|
783 | unsigned int cx; |
---|
784 | unsigned int cy; |
---|
785 | unsigned int lpid; |
---|
786 | unsigned int slot; |
---|
787 | unsigned int entry; |
---|
788 | unsigned int type; |
---|
789 | unsigned int channel; |
---|
790 | |
---|
791 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
792 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
793 | |
---|
794 | static_scheduler_t* psched; |
---|
795 | |
---|
796 | for ( cx = 0 ; cx < X_SIZE ; cx++ ) |
---|
797 | { |
---|
798 | for ( cy = 0 ; cy < Y_SIZE ; cy++ ) |
---|
799 | { |
---|
800 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
801 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
802 | |
---|
803 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
804 | { |
---|
805 | psched = _schedulers[cx][cy][lpid]; |
---|
806 | |
---|
807 | _printf("\n[BOOT] interrupt vectors for proc[%d,%d,%d]\n", |
---|
808 | cx , cy , lpid ); |
---|
809 | |
---|
810 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
811 | { |
---|
812 | entry = psched->hwi_vector[slot]; |
---|
813 | type = entry & 0xFFFF; |
---|
814 | channel = entry >> 16; |
---|
815 | if ( type != ISR_DEFAULT ) |
---|
816 | _printf(" - HWI : index = %d / type = %s / channel = %d\n", |
---|
817 | slot , _isr_type_str[type] , channel ); |
---|
818 | } |
---|
819 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
820 | { |
---|
821 | entry = psched->wti_vector[slot]; |
---|
822 | type = entry & 0xFFFF; |
---|
823 | channel = entry >> 16; |
---|
824 | if ( type != ISR_DEFAULT ) |
---|
825 | _printf(" - WTI : index = %d / type = %s / channel = %d\n", |
---|
826 | slot , _isr_type_str[type] , channel ); |
---|
827 | } |
---|
828 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
829 | { |
---|
830 | entry = psched->pti_vector[slot]; |
---|
831 | type = entry & 0xFFFF; |
---|
832 | channel = entry >> 16; |
---|
833 | if ( type != ISR_DEFAULT ) |
---|
834 | _printf(" - PTI : index = %d / type = %s / channel = %d\n", |
---|
835 | slot , _isr_type_str[type] , channel ); |
---|
836 | } |
---|
837 | } |
---|
838 | } |
---|
839 | } |
---|
840 | } // end boot_sched_irq_display() |
---|
841 | #endif |
---|
842 | |
---|
843 | |
---|
844 | //////////////////////////////////////////////////////////////////////////////////// |
---|
845 | // This function is executed in parallel by all processors P[x][y][0]. |
---|
846 | // P[x][y][0] initialises all schedulers in cluster[x][y]. The MMU must be activated. |
---|
847 | // It is split in two phases separated by a synchronisation barrier. |
---|
848 | // - In Step 1, it initialises the _schedulers[x][y][p] pointers array, the |
---|
849 | // idle_thread context, the HWI / PTI / WTI interrupt vectors, |
---|
850 | // and the XCU HWI / PTI / WTI masks. |
---|
851 | // - In Step 2, it scan all threads in all vspaces to complete the threads contexts, |
---|
852 | // initialisation as specified in the mapping_info data structure, |
---|
853 | // and set the CP0_SCHED register. |
---|
854 | //////////////////////////////////////////////////////////////////////////////////// |
---|
855 | void boot_scheduler_init( unsigned int x, |
---|
856 | unsigned int y ) |
---|
857 | { |
---|
858 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
859 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
860 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
861 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
862 | mapping_thread_t* thread = _get_thread_base(header); |
---|
863 | mapping_periph_t* periph = _get_periph_base(header); |
---|
864 | mapping_irq_t* irq = _get_irq_base(header); |
---|
865 | |
---|
866 | unsigned int periph_id; |
---|
867 | unsigned int irq_id; |
---|
868 | unsigned int vspace_id; |
---|
869 | unsigned int vseg_id; |
---|
870 | unsigned int thread_id; |
---|
871 | |
---|
872 | unsigned int sched_vbase; // schedulers array vbase address |
---|
873 | unsigned int sched_length; // schedulers array length |
---|
874 | static_scheduler_t* psched; // pointer on processor scheduler |
---|
875 | |
---|
876 | unsigned int cluster_id = (x * Y_SIZE) + y; |
---|
877 | unsigned int cluster_xy = (x << Y_WIDTH) + y; |
---|
878 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
879 | unsigned int lpid; |
---|
880 | |
---|
881 | if ( nprocs > 8 ) |
---|
882 | { |
---|
883 | _printf("\n[BOOT ERROR] cluster[%d,%d] contains more than 8 procs\n", x, y ); |
---|
884 | _exit(); |
---|
885 | } |
---|
886 | |
---|
887 | //////////////////////////////////////////////////////////////////////////////// |
---|
888 | // Step 1 : - initialize the schedulers[] array of pointers, |
---|
889 | // - initialize the "threads" and "current variables. |
---|
890 | // - initialise the idle_thread context. |
---|
891 | // - initialize the HWI, PTI and WTI interrupt vectors. |
---|
892 | // - initialize the XCU masks for HWI / WTI / PTI interrupts. |
---|
893 | // |
---|
894 | // The general policy for interrupts routing is the following: |
---|
895 | // - the local HWI are statically allocatedted to local processors. |
---|
896 | // - the nprocs first PTI are allocated for TICK (one per processor). |
---|
897 | // - we allocate 4 WTI per processor: the first one is for WAKUP, |
---|
898 | // the 3 others WTI are used for external interrupts (from PIC), |
---|
899 | // and are dynamically allocated by kernel on demand. |
---|
900 | /////////////////////////////////////////////////////////////////////////////// |
---|
901 | |
---|
902 | // get scheduler array virtual base address in cluster[x,y] |
---|
903 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
904 | |
---|
905 | if ( sched_length < (nprocs<<13) ) // 8 Kbytes per scheduler |
---|
906 | { |
---|
907 | _printf("\n[BOOT ERROR] Sched segment too small in cluster[%d,%d]\n", |
---|
908 | x, y ); |
---|
909 | _exit(); |
---|
910 | } |
---|
911 | |
---|
912 | // loop on local processors |
---|
913 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
914 | { |
---|
915 | // get scheduler pointer and initialise the schedulers pointers array |
---|
916 | psched = (static_scheduler_t*)(sched_vbase + (lpid<<13)); |
---|
917 | _schedulers[x][y][lpid] = psched; |
---|
918 | |
---|
919 | // initialise the "threads" and "current" variables default values |
---|
920 | psched->threads = 0; |
---|
921 | psched->current = IDLE_THREAD_INDEX; |
---|
922 | |
---|
923 | // set default values for HWI / PTI / SWI vectors (valid bit = 0) |
---|
924 | unsigned int slot; |
---|
925 | for (slot = 0; slot < 32; slot++) |
---|
926 | { |
---|
927 | psched->hwi_vector[slot] = 0; |
---|
928 | psched->pti_vector[slot] = 0; |
---|
929 | psched->wti_vector[slot] = 0; |
---|
930 | } |
---|
931 | |
---|
932 | // initializes the idle_thread context: |
---|
933 | // - the SR slot is 0xFF03 because this thread run in kernel mode. |
---|
934 | // - it uses the page table of vspace[0] |
---|
935 | // - it uses the kernel TTY0 terminal |
---|
936 | // - slots containing addresses (SP,RA,EPC) are initialised by kernel_init() |
---|
937 | // - It is always executable (NORUN == 0) |
---|
938 | |
---|
939 | psched->context[IDLE_THREAD_INDEX].slot[CTX_CR_ID] = 0; |
---|
940 | psched->context[IDLE_THREAD_INDEX].slot[CTX_SR_ID] = 0xFF03; |
---|
941 | psched->context[IDLE_THREAD_INDEX].slot[CTX_PTPR_ID] = _ptabs_paddr[0][x][y]>>13; |
---|
942 | psched->context[IDLE_THREAD_INDEX].slot[CTX_PTAB_ID] = _ptabs_vaddr[0][x][y]; |
---|
943 | psched->context[IDLE_THREAD_INDEX].slot[CTX_NPT2_ID] = _ptabs_next_pt2[0][x][y]; |
---|
944 | psched->context[IDLE_THREAD_INDEX].slot[CTX_TTY_ID] = 0; |
---|
945 | psched->context[IDLE_THREAD_INDEX].slot[CTX_LTID_ID] = IDLE_THREAD_INDEX; |
---|
946 | psched->context[IDLE_THREAD_INDEX].slot[CTX_VSID_ID] = 0; |
---|
947 | psched->context[IDLE_THREAD_INDEX].slot[CTX_NORUN_ID] = 0; |
---|
948 | psched->context[IDLE_THREAD_INDEX].slot[CTX_SIGS_ID] = 0; |
---|
949 | psched->context[IDLE_THREAD_INDEX].slot[CTX_LOCKS_ID] = 0; |
---|
950 | } |
---|
951 | |
---|
952 | // HWI / PTI / WTI masks (up to 8 local processors) |
---|
953 | unsigned int hwi_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
954 | unsigned int pti_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
955 | unsigned int wti_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
956 | |
---|
957 | // scan local peripherals to get and check local XCU |
---|
958 | mapping_periph_t* xcu = NULL; |
---|
959 | unsigned int min = cluster[cluster_id].periph_offset ; |
---|
960 | unsigned int max = min + cluster[cluster_id].periphs ; |
---|
961 | |
---|
962 | for ( periph_id = min ; periph_id < max ; periph_id++ ) |
---|
963 | { |
---|
964 | if( periph[periph_id].type == PERIPH_TYPE_XCU ) |
---|
965 | { |
---|
966 | xcu = &periph[periph_id]; |
---|
967 | |
---|
968 | // check nb_hwi_in |
---|
969 | if ( xcu->arg0 < xcu->irqs ) |
---|
970 | { |
---|
971 | _printf("\n[BOOT ERROR] Not enough HWI inputs for XCU[%d,%d]" |
---|
972 | " : nb_hwi = %d / nb_irqs = %d\n", |
---|
973 | x , y , xcu->arg0 , xcu->irqs ); |
---|
974 | _exit(); |
---|
975 | } |
---|
976 | // check nb_pti_in |
---|
977 | if ( xcu->arg2 < nprocs ) |
---|
978 | { |
---|
979 | _printf("\n[BOOT ERROR] Not enough PTI inputs for XCU[%d,%d]\n", |
---|
980 | x, y ); |
---|
981 | _exit(); |
---|
982 | } |
---|
983 | // check nb_wti_in |
---|
984 | if ( xcu->arg1 < (4 * nprocs) ) |
---|
985 | { |
---|
986 | _printf("\n[BOOT ERROR] Not enough WTI inputs for XCU[%d,%d]\n", |
---|
987 | x, y ); |
---|
988 | _exit(); |
---|
989 | } |
---|
990 | // check nb_irq_out |
---|
991 | if ( xcu->channels < (nprocs * header->irq_per_proc) ) |
---|
992 | { |
---|
993 | _printf("\n[BOOT ERROR] Not enough outputs for XCU[%d,%d]\n", |
---|
994 | x, y ); |
---|
995 | _exit(); |
---|
996 | } |
---|
997 | } |
---|
998 | } |
---|
999 | |
---|
1000 | if ( xcu == NULL ) |
---|
1001 | { |
---|
1002 | _printf("\n[BOOT ERROR] missing XCU in cluster[%d,%d]\n", x , y ); |
---|
1003 | _exit(); |
---|
1004 | } |
---|
1005 | |
---|
1006 | // HWI interrupt vector definition |
---|
1007 | // scan HWI connected to local XCU |
---|
1008 | // for round-robin allocation to local processors |
---|
1009 | lpid = 0; |
---|
1010 | for ( irq_id = xcu->irq_offset ; |
---|
1011 | irq_id < xcu->irq_offset + xcu->irqs ; |
---|
1012 | irq_id++ ) |
---|
1013 | { |
---|
1014 | unsigned int type = irq[irq_id].srctype; |
---|
1015 | unsigned int srcid = irq[irq_id].srcid; |
---|
1016 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
1017 | unsigned int channel = irq[irq_id].channel << 16; |
---|
1018 | |
---|
1019 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
1020 | { |
---|
1021 | _printf("\n[BOOT ERROR] Bad IRQ in cluster[%d,%d]\n", x, y ); |
---|
1022 | _exit(); |
---|
1023 | } |
---|
1024 | |
---|
1025 | // register entry in HWI interrupt vector |
---|
1026 | _schedulers[x][y][lpid]->hwi_vector[srcid] = isr | channel; |
---|
1027 | |
---|
1028 | // update XCU HWI mask for P[x,y,lpid] |
---|
1029 | hwi_mask[lpid] = hwi_mask[lpid] | (1<<srcid); |
---|
1030 | |
---|
1031 | lpid = (lpid + 1) % nprocs; |
---|
1032 | } // end for irqs |
---|
1033 | |
---|
1034 | // PTI interrupt vector definition |
---|
1035 | // one PTI for TICK per processor |
---|
1036 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
1037 | { |
---|
1038 | // register entry in PTI interrupt vector |
---|
1039 | _schedulers[x][y][lpid]->pti_vector[lpid] = ISR_TICK; |
---|
1040 | |
---|
1041 | // update XCU PTI mask for P[x,y,lpid] |
---|
1042 | pti_mask[lpid] = pti_mask[lpid] | (1<<lpid); |
---|
1043 | } |
---|
1044 | |
---|
1045 | // WTI interrupt vector definition |
---|
1046 | // 4 WTI per processor, first for WAKUP |
---|
1047 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
1048 | { |
---|
1049 | // register WAKUP ISR in WTI interrupt vector |
---|
1050 | _schedulers[x][y][lpid]->wti_vector[lpid] = ISR_WAKUP; |
---|
1051 | |
---|
1052 | // update XCU WTI mask for P[x,y,lpid] (4 entries per proc) |
---|
1053 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid )); |
---|
1054 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + NB_PROCS_MAX )); |
---|
1055 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 2*NB_PROCS_MAX)); |
---|
1056 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 3*NB_PROCS_MAX)); |
---|
1057 | } |
---|
1058 | |
---|
1059 | // set the XCU masks for HWI / WTI / PTI interrupts |
---|
1060 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
1061 | { |
---|
1062 | unsigned int channel = lpid * IRQ_PER_PROCESSOR; |
---|
1063 | |
---|
1064 | _xcu_set_mask( cluster_xy, channel, hwi_mask[lpid], IRQ_TYPE_HWI ); |
---|
1065 | _xcu_set_mask( cluster_xy, channel, wti_mask[lpid], IRQ_TYPE_WTI ); |
---|
1066 | _xcu_set_mask( cluster_xy, channel, pti_mask[lpid], IRQ_TYPE_PTI ); |
---|
1067 | } |
---|
1068 | |
---|
1069 | ////////////////////////////////////////////// |
---|
1070 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1071 | ////////////////////////////////////////////// |
---|
1072 | |
---|
1073 | #if BOOT_DEBUG_SCHED |
---|
1074 | if ( cluster_xy == 0 ) boot_sched_irq_display(); |
---|
1075 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1076 | #endif |
---|
1077 | |
---|
1078 | /////////////////////////////////////////////////////////////////////////////// |
---|
1079 | // Step 2 : Initialise the threads context. The context of a thread placed |
---|
1080 | // on processor P must be stored in the scheduler of P. |
---|
1081 | // For each vspace, this require two nested loops: loop on the threads, |
---|
1082 | // and loop on the local processors in cluster[x,y]. |
---|
1083 | // We complete the scheduler when the required placement matches |
---|
1084 | // the local processor. |
---|
1085 | /////////////////////////////////////////////////////////////////////////////// |
---|
1086 | |
---|
1087 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
1088 | { |
---|
1089 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
1090 | // and the stack address are defined in virtual space. |
---|
1091 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13) ); |
---|
1092 | |
---|
1093 | // loop on the threads in vspace (thread_id is the global index in mapping) |
---|
1094 | for (thread_id = vspace[vspace_id].thread_offset; |
---|
1095 | thread_id < (vspace[vspace_id].thread_offset + vspace[vspace_id].threads); |
---|
1096 | thread_id++) |
---|
1097 | { |
---|
1098 | // get the required thread placement coordinates [x,y,p] |
---|
1099 | unsigned int req_x = cluster[thread[thread_id].clusterid].x; |
---|
1100 | unsigned int req_y = cluster[thread[thread_id].clusterid].y; |
---|
1101 | unsigned int req_p = thread[thread_id].proclocid; |
---|
1102 | |
---|
1103 | // ctx_norun : two conditions to activate a thread |
---|
1104 | // - The vspace.active flag is set in the mapping |
---|
1105 | // - The thread.is_main flag is set in the mapping |
---|
1106 | unsigned int ctx_norun = (unsigned int)(vspace[vspace_id].active == 0) | |
---|
1107 | (unsigned int)(thread[thread_id].is_main == 0); |
---|
1108 | |
---|
1109 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
1110 | unsigned int ctx_ptpr = (_ptabs_paddr[vspace_id][req_x][req_y] >> 13); |
---|
1111 | |
---|
1112 | // ctx_ptab : page_table virtual base address |
---|
1113 | unsigned int ctx_ptab = _ptabs_vaddr[vspace_id][req_x][req_y]; |
---|
1114 | |
---|
1115 | // ctx_npt2 : page_table PT2 allocator |
---|
1116 | unsigned int ctx_npt2 = _ptabs_next_pt2[vspace_id][req_x][req_y]; |
---|
1117 | |
---|
1118 | // ctx_entry : Get the virtual address of the memory location containing |
---|
1119 | // the thread entry point : the start_vector is stored by GCC in the |
---|
1120 | // seg_data segment, and we must wait the application.elf loading to get |
---|
1121 | // the entry point value... |
---|
1122 | vseg_id = vspace[vspace_id].start_vseg_id; |
---|
1123 | unsigned int ctx_entry = vseg[vseg_id].vbase + (thread[thread_id].startid)*4; |
---|
1124 | |
---|
1125 | // ctx_sp : Get the vseg containing the stack |
---|
1126 | // allocate 16 slots (64 bytes) for possible arguments. |
---|
1127 | vseg_id = thread[thread_id].stack_vseg_id; |
---|
1128 | unsigned int ctx_sp = vseg[vseg_id].vbase + vseg[vseg_id].length - 64; |
---|
1129 | |
---|
1130 | // loop on the local processors |
---|
1131 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
1132 | { |
---|
1133 | if ( (x == req_x) && (y == req_y) && (req_p == lpid) ) // fit |
---|
1134 | { |
---|
1135 | // pointer on selected scheduler |
---|
1136 | psched = _schedulers[x][y][lpid]; |
---|
1137 | |
---|
1138 | // ltid : compute local thread index in scheduler |
---|
1139 | unsigned int ltid = psched->threads; |
---|
1140 | |
---|
1141 | // update the threads field in scheduler: |
---|
1142 | psched->threads = ltid + 1; |
---|
1143 | |
---|
1144 | // ctx_trdid : compute pthread global identifier |
---|
1145 | unsigned int ctx_trdid = x << 24 | y<<16 | lpid<<8 | ltid; |
---|
1146 | |
---|
1147 | // initializes the thread context |
---|
1148 | psched->context[ltid].slot[CTX_CR_ID] = 0; |
---|
1149 | psched->context[ltid].slot[CTX_SR_ID] = GIET_SR_INIT_VALUE; |
---|
1150 | psched->context[ltid].slot[CTX_SP_ID] = ctx_sp; |
---|
1151 | psched->context[ltid].slot[CTX_EPC_ID] = ctx_entry; |
---|
1152 | psched->context[ltid].slot[CTX_ENTRY_ID] = ctx_entry; |
---|
1153 | psched->context[ltid].slot[CTX_PTPR_ID] = ctx_ptpr; |
---|
1154 | psched->context[ltid].slot[CTX_PTAB_ID] = ctx_ptab; |
---|
1155 | psched->context[ltid].slot[CTX_NPT2_ID] = ctx_npt2; |
---|
1156 | psched->context[ltid].slot[CTX_LTID_ID] = ltid; |
---|
1157 | psched->context[ltid].slot[CTX_TRDID_ID] = ctx_trdid; |
---|
1158 | psched->context[ltid].slot[CTX_VSID_ID] = vspace_id; |
---|
1159 | psched->context[ltid].slot[CTX_NORUN_ID] = ctx_norun; |
---|
1160 | psched->context[ltid].slot[CTX_SIGS_ID] = 0; |
---|
1161 | psched->context[ltid].slot[CTX_LOCKS_ID] = 0; |
---|
1162 | |
---|
1163 | psched->context[ltid].slot[CTX_TTY_ID] = 0xFFFFFFFF; |
---|
1164 | psched->context[ltid].slot[CTX_CMA_FB_ID] = 0xFFFFFFFF; |
---|
1165 | psched->context[ltid].slot[CTX_CMA_RX_ID] = 0xFFFFFFFF; |
---|
1166 | psched->context[ltid].slot[CTX_CMA_TX_ID] = 0xFFFFFFFF; |
---|
1167 | psched->context[ltid].slot[CTX_NIC_RX_ID] = 0xFFFFFFFF; |
---|
1168 | psched->context[ltid].slot[CTX_NIC_TX_ID] = 0xFFFFFFFF; |
---|
1169 | psched->context[ltid].slot[CTX_TIM_ID] = 0xFFFFFFFF; |
---|
1170 | psched->context[ltid].slot[CTX_HBA_ID] = 0xFFFFFFFF; |
---|
1171 | |
---|
1172 | // update thread ltid field in the mapping |
---|
1173 | thread[thread_id].ltid = ltid; |
---|
1174 | |
---|
1175 | #if BOOT_DEBUG_SCHED |
---|
1176 | _printf("\nThread %s in vspace %s allocated to P[%d,%d,%d]\n" |
---|
1177 | " - ctx[LTID] = %d\n" |
---|
1178 | " - ctx[TRDID] = %d\n" |
---|
1179 | " - ctx[SR] = %x\n" |
---|
1180 | " - ctx[SP] = %x\n" |
---|
1181 | " - ctx[ENTRY] = %x\n" |
---|
1182 | " - ctx[PTPR] = %x\n" |
---|
1183 | " - ctx[PTAB] = %x\n" |
---|
1184 | " - ctx[NPT2] = %x\n" |
---|
1185 | " - ctx[VSID] = %d\n" |
---|
1186 | " - ctx[NORUN] = %x\n" |
---|
1187 | " - ctx[SIG] = %x\n", |
---|
1188 | thread[thread_id].name, |
---|
1189 | vspace[vspace_id].name, |
---|
1190 | x, y, lpid, |
---|
1191 | psched->context[ltid].slot[CTX_LTID_ID], |
---|
1192 | psched->context[ltid].slot[CTX_TRDID_ID], |
---|
1193 | psched->context[ltid].slot[CTX_SR_ID], |
---|
1194 | psched->context[ltid].slot[CTX_SP_ID], |
---|
1195 | psched->context[ltid].slot[CTX_ENTRY_ID], |
---|
1196 | psched->context[ltid].slot[CTX_PTPR_ID], |
---|
1197 | psched->context[ltid].slot[CTX_PTAB_ID], |
---|
1198 | psched->context[ltid].slot[CTX_NPT2_ID], |
---|
1199 | psched->context[ltid].slot[CTX_VSID_ID], |
---|
1200 | psched->context[ltid].slot[CTX_NORUN_ID], |
---|
1201 | psched->context[ltid].slot[CTX_SIGS_ID] ); |
---|
1202 | #endif |
---|
1203 | } // end if FIT |
---|
1204 | } // end for loop on local procs |
---|
1205 | } // end loop on threads |
---|
1206 | } // end loop on vspaces |
---|
1207 | } // end boot_scheduler_init() |
---|
1208 | |
---|
1209 | |
---|
1210 | |
---|
1211 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1212 | // This function loads the map.bin file from block device. |
---|
1213 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1214 | void boot_mapping_init() |
---|
1215 | { |
---|
1216 | |
---|
1217 | #if BOOT_DEBUG_MAPPING |
---|
1218 | _printf("\n[BOOT DEBUG] boot_mapin_init() : enter\n"); |
---|
1219 | #endif |
---|
1220 | |
---|
1221 | // load map.bin file into buffer |
---|
1222 | if ( _fat_load_no_cache( "map.bin", |
---|
1223 | SEG_BOOT_MAPPING_BASE, |
---|
1224 | SEG_BOOT_MAPPING_SIZE ) ) |
---|
1225 | { |
---|
1226 | _printf("\n[BOOT ERROR] : map.bin file not found \n"); |
---|
1227 | _exit(); |
---|
1228 | } |
---|
1229 | |
---|
1230 | // check mapping signature, number of clusters, number of vspaces |
---|
1231 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1232 | if ( (header->signature != IN_MAPPING_SIGNATURE) || |
---|
1233 | (header->x_size != X_SIZE) || |
---|
1234 | (header->y_size != Y_SIZE) || |
---|
1235 | (header->vspaces > GIET_NB_VSPACE_MAX) ) |
---|
1236 | { |
---|
1237 | _printf("\n[BOOT ERROR] Illegal mapping : signature = %x\n", header->signature ); |
---|
1238 | _exit(); |
---|
1239 | } |
---|
1240 | |
---|
1241 | #if BOOT_DEBUG_MAPPING |
---|
1242 | unsigned int line; |
---|
1243 | unsigned int* pointer = (unsigned int*)SEG_BOOT_MAPPING_BASE; |
---|
1244 | _printf("\n[BOOT] First block of mapping\n"); |
---|
1245 | for ( line = 0 ; line < 8 ; line++ ) |
---|
1246 | { |
---|
1247 | _printf(" | %X | %X | %X | %X | %X | %X | %X | %X |\n", |
---|
1248 | *(pointer + 0), |
---|
1249 | *(pointer + 1), |
---|
1250 | *(pointer + 2), |
---|
1251 | *(pointer + 3), |
---|
1252 | *(pointer + 4), |
---|
1253 | *(pointer + 5), |
---|
1254 | *(pointer + 6), |
---|
1255 | *(pointer + 7) ); |
---|
1256 | |
---|
1257 | pointer = pointer + 8; |
---|
1258 | } |
---|
1259 | #endif |
---|
1260 | |
---|
1261 | } // end boot_mapping_init() |
---|
1262 | |
---|
1263 | |
---|
1264 | /////////////////////////////////////////////////// |
---|
1265 | void boot_dma_copy( unsigned int cluster_xy, |
---|
1266 | unsigned long long dst_paddr, |
---|
1267 | unsigned long long src_paddr, |
---|
1268 | unsigned int size ) |
---|
1269 | { |
---|
1270 | // size must be multiple of 64 bytes |
---|
1271 | if ( size & 0x3F ) size = (size & (~0x3F)) + 0x40; |
---|
1272 | |
---|
1273 | unsigned int mode = MODE_DMA_NO_IRQ; |
---|
1274 | |
---|
1275 | unsigned int src = 0; |
---|
1276 | unsigned int src_lsb = (unsigned int)src_paddr; |
---|
1277 | unsigned int src_msb = (unsigned int)(src_paddr>>32); |
---|
1278 | |
---|
1279 | unsigned int dst = 1; |
---|
1280 | unsigned int dst_lsb = (unsigned int)dst_paddr; |
---|
1281 | unsigned int dst_msb = (unsigned int)(dst_paddr>>32); |
---|
1282 | |
---|
1283 | // initializes src channel |
---|
1284 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_MODE , mode ); |
---|
1285 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_SIZE , size ); |
---|
1286 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_LSB , src_lsb ); |
---|
1287 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_MSB , src_msb ); |
---|
1288 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING , 1 ); |
---|
1289 | |
---|
1290 | // initializes dst channel |
---|
1291 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_MODE , mode ); |
---|
1292 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_SIZE , size ); |
---|
1293 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_LSB , dst_lsb ); |
---|
1294 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_MSB , dst_msb ); |
---|
1295 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING , 1 ); |
---|
1296 | |
---|
1297 | // start CPY coprocessor (write non-zero value into config register) |
---|
1298 | _mwr_set_coproc_register( cluster_xy, 0 , 1 ); |
---|
1299 | |
---|
1300 | // poll dst channel status register to detect completion |
---|
1301 | unsigned int status; |
---|
1302 | do |
---|
1303 | { |
---|
1304 | status = _mwr_get_channel_register( cluster_xy , dst , MWR_CHANNEL_STATUS ); |
---|
1305 | } while ( status == MWR_CHANNEL_BUSY ); |
---|
1306 | |
---|
1307 | if ( status ) |
---|
1308 | { |
---|
1309 | _printf("\n[BOOT ERROR] in boot_dma_copy()\n"); |
---|
1310 | _exit(); |
---|
1311 | } |
---|
1312 | |
---|
1313 | // stop CPY coprocessor and DMA channels |
---|
1314 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING , 0 ); |
---|
1315 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING , 0 ); |
---|
1316 | _mwr_set_coproc_register ( cluster_xy , 0 , 0 ); |
---|
1317 | |
---|
1318 | } // end boot_dma_copy() |
---|
1319 | |
---|
1320 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1321 | // This function load all loadable segments contained in the .elf file identified |
---|
1322 | // by the "pathname" argument. Some loadable segments can be copied in several |
---|
1323 | // clusters: same virtual address but different physical addresses. |
---|
1324 | // - It open the file. |
---|
1325 | // - It loads the complete file in the dedicated _boot_elf_buffer. |
---|
1326 | // - It copies each loadable segments at the virtual address defined in |
---|
1327 | // the .elf file, making several copies if the target vseg is not local. |
---|
1328 | // - It closes the file. |
---|
1329 | // This function is supposed to be executed by all processors[x,y,0]. |
---|
1330 | // |
---|
1331 | // Note: We must use physical addresses to reach the destination buffers that |
---|
1332 | // can be located in remote clusters. We use either a _physical_memcpy(), |
---|
1333 | // or a _dma_physical_copy() if DMA is available. |
---|
1334 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1335 | void load_one_elf_file( unsigned int is_kernel, // kernel file if non zero |
---|
1336 | char* pathname, |
---|
1337 | unsigned int vspace_id ) // to scan the proper vspace |
---|
1338 | { |
---|
1339 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1340 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
1341 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
1342 | |
---|
1343 | unsigned int procid = _get_procid(); |
---|
1344 | unsigned int cxy = procid >> P_WIDTH; |
---|
1345 | unsigned int x = cxy >> Y_WIDTH; |
---|
1346 | unsigned int y = cxy & ((1<<Y_WIDTH)-1); |
---|
1347 | unsigned int p = procid & ((1<<P_WIDTH)-1); |
---|
1348 | |
---|
1349 | #if BOOT_DEBUG_ELF |
---|
1350 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] enters for %s\n", |
---|
1351 | x , y , p , pathname ); |
---|
1352 | #endif |
---|
1353 | |
---|
1354 | Elf32_Ehdr* elf_header_ptr = NULL; // avoid a warning |
---|
1355 | |
---|
1356 | // only P[0,0,0] load file |
---|
1357 | if ( (cxy == 0) && (p == 0) ) |
---|
1358 | { |
---|
1359 | if ( _fat_load_no_cache( pathname, |
---|
1360 | (unsigned int)_boot_elf_buffer, |
---|
1361 | GIET_ELF_BUFFER_SIZE ) ) |
---|
1362 | { |
---|
1363 | _printf("\n[BOOT ERROR] in load_one_elf_file() : %s\n", pathname ); |
---|
1364 | _exit(); |
---|
1365 | } |
---|
1366 | |
---|
1367 | // Check ELF Magic Number in ELF header |
---|
1368 | Elf32_Ehdr* ptr = (Elf32_Ehdr*)_boot_elf_buffer; |
---|
1369 | |
---|
1370 | if ( (ptr->e_ident[EI_MAG0] != ELFMAG0) || |
---|
1371 | (ptr->e_ident[EI_MAG1] != ELFMAG1) || |
---|
1372 | (ptr->e_ident[EI_MAG2] != ELFMAG2) || |
---|
1373 | (ptr->e_ident[EI_MAG3] != ELFMAG3) ) |
---|
1374 | { |
---|
1375 | _printf("\n[BOOT ERROR] load_one_elf_file() : %s not ELF format\n", |
---|
1376 | pathname ); |
---|
1377 | _exit(); |
---|
1378 | } |
---|
1379 | |
---|
1380 | #if BOOT_DEBUG_ELF |
---|
1381 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] load %s at cycle %d\n", |
---|
1382 | x , y , p , pathname , _get_proctime() ); |
---|
1383 | #endif |
---|
1384 | |
---|
1385 | } // end if P[0,0,0] |
---|
1386 | |
---|
1387 | ////////////////////////////////////////////// |
---|
1388 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1389 | ////////////////////////////////////////////// |
---|
1390 | |
---|
1391 | // Each processor P[x,y,0] copy replicated segments in cluster[x,y] |
---|
1392 | elf_header_ptr = (Elf32_Ehdr*)_boot_elf_buffer; |
---|
1393 | |
---|
1394 | // get program header table pointer |
---|
1395 | unsigned int offset = elf_header_ptr->e_phoff; |
---|
1396 | if( offset == 0 ) |
---|
1397 | { |
---|
1398 | _printf("\n[BOOT ERROR] load_one_elf_file() : file %s " |
---|
1399 | "does not contain loadable segment\n", pathname ); |
---|
1400 | _exit(); |
---|
1401 | } |
---|
1402 | |
---|
1403 | Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(_boot_elf_buffer + offset); |
---|
1404 | |
---|
1405 | // get number of segments |
---|
1406 | unsigned int nsegments = elf_header_ptr->e_phnum; |
---|
1407 | |
---|
1408 | // First loop on loadable segments in the .elf file |
---|
1409 | unsigned int seg_id; |
---|
1410 | for (seg_id = 0 ; seg_id < nsegments ; seg_id++) |
---|
1411 | { |
---|
1412 | if(elf_pht_ptr[seg_id].p_type == PT_LOAD) |
---|
1413 | { |
---|
1414 | // Get segment attributes |
---|
1415 | unsigned int seg_vaddr = elf_pht_ptr[seg_id].p_vaddr; |
---|
1416 | unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset; |
---|
1417 | unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz; |
---|
1418 | unsigned int seg_memsz = elf_pht_ptr[seg_id].p_memsz; |
---|
1419 | |
---|
1420 | if( seg_memsz != seg_filesz ) |
---|
1421 | { |
---|
1422 | _printf("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = %x\n" |
---|
1423 | " in file %s has memsize = %x / filesize = %x \n" |
---|
1424 | " check that all global variables are in data segment\n", |
---|
1425 | seg_vaddr, pathname , seg_memsz , seg_filesz ); |
---|
1426 | _exit(); |
---|
1427 | } |
---|
1428 | |
---|
1429 | unsigned int src_vaddr = (unsigned int)_boot_elf_buffer + seg_offset; |
---|
1430 | |
---|
1431 | // search all vsegs matching the virtual address |
---|
1432 | unsigned int vseg_first; |
---|
1433 | unsigned int vseg_last; |
---|
1434 | unsigned int vseg_id; |
---|
1435 | unsigned int found = 0; |
---|
1436 | if ( is_kernel ) |
---|
1437 | { |
---|
1438 | vseg_first = 0; |
---|
1439 | vseg_last = header->globals; |
---|
1440 | } |
---|
1441 | else |
---|
1442 | { |
---|
1443 | vseg_first = vspace[vspace_id].vseg_offset; |
---|
1444 | vseg_last = vseg_first + vspace[vspace_id].vsegs; |
---|
1445 | } |
---|
1446 | |
---|
1447 | // Second loop on vsegs in the mapping |
---|
1448 | for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ ) |
---|
1449 | { |
---|
1450 | if ( seg_vaddr == vseg[vseg_id].vbase ) // matching |
---|
1451 | { |
---|
1452 | found = 1; |
---|
1453 | |
---|
1454 | // get destination buffer physical address, size, coordinates |
---|
1455 | paddr_t seg_paddr = vseg[vseg_id].pbase; |
---|
1456 | unsigned int seg_size = vseg[vseg_id].length; |
---|
1457 | unsigned int cluster_xy = (unsigned int)(seg_paddr>>32); |
---|
1458 | unsigned int cx = cluster_xy >> Y_WIDTH; |
---|
1459 | unsigned int cy = cluster_xy & ((1<<Y_WIDTH)-1); |
---|
1460 | |
---|
1461 | // check vseg size |
---|
1462 | if ( seg_size < seg_filesz ) |
---|
1463 | { |
---|
1464 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg %s " |
---|
1465 | "is too small for segment %x\n" |
---|
1466 | " file = %s / vseg_size = %x / seg_file_size = %x\n", |
---|
1467 | vseg[vseg_id].name , seg_vaddr , pathname, |
---|
1468 | seg_size , seg_filesz ); |
---|
1469 | _exit(); |
---|
1470 | } |
---|
1471 | |
---|
1472 | // P[x,y,0] copy the segment from boot buffer in cluster[0,0] |
---|
1473 | // to destination buffer in cluster[x,y], using DMA if available |
---|
1474 | if ( (cx == x) && (cy == y) ) |
---|
1475 | { |
---|
1476 | if( USE_MWR_CPY ) |
---|
1477 | { |
---|
1478 | boot_dma_copy( cluster_xy, // DMA in cluster[x,y] |
---|
1479 | seg_paddr, |
---|
1480 | (paddr_t)src_vaddr, |
---|
1481 | seg_filesz ); |
---|
1482 | #if BOOT_DEBUG_ELF |
---|
1483 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : DMA[%d,%d] copy segment %d :\n" |
---|
1484 | " vaddr = %x / size = %x / paddr = %l\n", |
---|
1485 | x , y , seg_id , seg_vaddr , seg_memsz , seg_paddr ); |
---|
1486 | #endif |
---|
1487 | } |
---|
1488 | else |
---|
1489 | { |
---|
1490 | _physical_memcpy( seg_paddr, // dest paddr |
---|
1491 | (paddr_t)src_vaddr, // source paddr |
---|
1492 | seg_filesz ); // size |
---|
1493 | #if BOOT_DEBUG_ELF |
---|
1494 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] copy segment %d :\n" |
---|
1495 | " vaddr = %x / size = %x / paddr = %l\n", |
---|
1496 | x , y , p , seg_id , seg_vaddr , seg_memsz , seg_paddr ); |
---|
1497 | #endif |
---|
1498 | } |
---|
1499 | } |
---|
1500 | } |
---|
1501 | } // end for vsegs |
---|
1502 | |
---|
1503 | // check at least one matching vseg |
---|
1504 | if ( found == 0 ) |
---|
1505 | { |
---|
1506 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg for loadable " |
---|
1507 | "segment %x in file %s not found " |
---|
1508 | "check consistency between the .py and .ld files\n", |
---|
1509 | seg_vaddr, pathname ); |
---|
1510 | _exit(); |
---|
1511 | } |
---|
1512 | } |
---|
1513 | } // end for loadable segments |
---|
1514 | |
---|
1515 | ////////////////////////////////////////////// |
---|
1516 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1517 | ////////////////////////////////////////////// |
---|
1518 | |
---|
1519 | // only P[0,0,0] signals completion |
---|
1520 | if ( (cxy == 0) && (p == 0) ) |
---|
1521 | { |
---|
1522 | _printf("\n[BOOT] File %s loaded at cycle %d\n", |
---|
1523 | pathname , _get_proctime() ); |
---|
1524 | } |
---|
1525 | |
---|
1526 | } // end load_one_elf_file() |
---|
1527 | |
---|
1528 | |
---|
1529 | /////i//////////////////////////////////////////////////////////////////////////////// |
---|
1530 | // This function uses the map.bin data structure to load the "kernel.elf" file |
---|
1531 | // as well as the various "application.elf" files into memory. |
---|
1532 | // - The "preloader.elf" file is not loaded, because it has been burned in the ROM. |
---|
1533 | // - The "boot.elf" file is not loaded, because it has been loaded by the preloader. |
---|
1534 | // This function scans all vsegs defined in the map.bin data structure to collect |
---|
1535 | // all .elf files pathnames, and calls the load_one_elf_file() for each .elf file. |
---|
1536 | // As the code can be replicated in several vsegs, the same code can be copied |
---|
1537 | // in one or several clusters by the load_one_elf_file() function. |
---|
1538 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
1539 | void boot_elf_load() |
---|
1540 | { |
---|
1541 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1542 | mapping_vspace_t* vspace = _get_vspace_base( header ); |
---|
1543 | mapping_vseg_t* vseg = _get_vseg_base( header ); |
---|
1544 | |
---|
1545 | unsigned int vspace_id; |
---|
1546 | unsigned int vseg_id; |
---|
1547 | unsigned int found; |
---|
1548 | |
---|
1549 | // Scan all global vsegs to find the pathname to the kernel.elf file |
---|
1550 | found = 0; |
---|
1551 | for( vseg_id = 0 ; vseg_id < header->globals ; vseg_id++ ) |
---|
1552 | { |
---|
1553 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
1554 | { |
---|
1555 | found = 1; |
---|
1556 | break; |
---|
1557 | } |
---|
1558 | } |
---|
1559 | |
---|
1560 | // We need one kernel.elf file |
---|
1561 | if (found == 0) |
---|
1562 | { |
---|
1563 | _printf("\n[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n"); |
---|
1564 | _exit(); |
---|
1565 | } |
---|
1566 | |
---|
1567 | // Load the kernel |
---|
1568 | load_one_elf_file( 1, // kernel file |
---|
1569 | vseg[vseg_id].binpath, // file pathname |
---|
1570 | 0 ); // vspace 0 |
---|
1571 | |
---|
1572 | // loop on the vspaces, scanning all vsegs in the vspace, |
---|
1573 | // to find the pathname of the .elf file associated to the vspace. |
---|
1574 | for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ ) |
---|
1575 | { |
---|
1576 | // loop on the private vsegs |
---|
1577 | unsigned int found = 0; |
---|
1578 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
1579 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
1580 | vseg_id++) |
---|
1581 | { |
---|
1582 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
1583 | { |
---|
1584 | found = 1; |
---|
1585 | break; |
---|
1586 | } |
---|
1587 | } |
---|
1588 | |
---|
1589 | // We want one .elf file per vspace |
---|
1590 | if (found == 0) |
---|
1591 | { |
---|
1592 | _printf("\n[BOOT ERROR] boot_elf_load() : " |
---|
1593 | ".elf file not found for vspace %s\n", vspace[vspace_id].name ); |
---|
1594 | _exit(); |
---|
1595 | } |
---|
1596 | |
---|
1597 | load_one_elf_file( 0, // not a kernel file |
---|
1598 | vseg[vseg_id].binpath, // file pathname |
---|
1599 | vspace_id ); // vspace index |
---|
1600 | |
---|
1601 | } // end for vspaces |
---|
1602 | |
---|
1603 | } // end boot_elf_load() |
---|
1604 | |
---|
1605 | |
---|
1606 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1607 | // This function is executed in parallel by all processors[x][y][0]. |
---|
1608 | // It initialises the physical memory allocator in each cluster containing |
---|
1609 | // a RAM pseg. |
---|
1610 | ///////////////////////////////////////////////////////////////////////////////// |
---|
1611 | void boot_pmem_init( unsigned int cx, |
---|
1612 | unsigned int cy ) |
---|
1613 | { |
---|
1614 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1615 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1616 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
1617 | |
---|
1618 | unsigned int pseg_id; |
---|
1619 | unsigned int procid = _get_procid(); |
---|
1620 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
1621 | |
---|
1622 | if( lpid ) |
---|
1623 | { |
---|
1624 | _printf("\n[BOOT ERROR] boot_pmem_init() : " |
---|
1625 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
1626 | _exit(); |
---|
1627 | } |
---|
1628 | |
---|
1629 | // scan the psegs in local cluster to find pseg of type RAM |
---|
1630 | unsigned int found = 0; |
---|
1631 | unsigned int cluster_id = cx * Y_SIZE + cy; |
---|
1632 | unsigned int pseg_min = cluster[cluster_id].pseg_offset; |
---|
1633 | unsigned int pseg_max = pseg_min + cluster[cluster_id].psegs; |
---|
1634 | |
---|
1635 | for ( pseg_id = pseg_min ; pseg_id < pseg_max ; pseg_id++ ) |
---|
1636 | { |
---|
1637 | if ( pseg[pseg_id].type == PSEG_TYPE_RAM ) |
---|
1638 | { |
---|
1639 | unsigned int base = (unsigned int)pseg[pseg_id].base; |
---|
1640 | unsigned int size = (unsigned int)pseg[pseg_id].length; |
---|
1641 | _pmem_alloc_init( cx, cy, base, size ); |
---|
1642 | found = 1; |
---|
1643 | |
---|
1644 | #if BOOT_DEBUG_PT |
---|
1645 | _printf("\n[BOOT] pmem allocator initialised in cluster[%d][%d]" |
---|
1646 | " : base = %x / size = %x\n", cx , cy , base , size ); |
---|
1647 | #endif |
---|
1648 | break; |
---|
1649 | } |
---|
1650 | } |
---|
1651 | |
---|
1652 | if ( found == 0 ) |
---|
1653 | { |
---|
1654 | _printf("\n[BOOT ERROR] boot_pmem_init() : no RAM in cluster[%d][%d]\n", |
---|
1655 | cx , cy ); |
---|
1656 | _exit(); |
---|
1657 | } |
---|
1658 | } // end boot_pmem_init() |
---|
1659 | |
---|
1660 | ///////////////////////////////////////////////////////////////////////// |
---|
1661 | // This function is the entry point of the boot code for all processors. |
---|
1662 | ///////////////////////////////////////////////////////////////////////// |
---|
1663 | void boot_init() |
---|
1664 | { |
---|
1665 | |
---|
1666 | unsigned int gpid = _get_procid(); |
---|
1667 | unsigned int cx = gpid >> (Y_WIDTH + P_WIDTH); |
---|
1668 | unsigned int cy = (gpid >> P_WIDTH) & ((1<<Y_WIDTH)-1); |
---|
1669 | unsigned int lpid = gpid & ((1 << P_WIDTH) -1); |
---|
1670 | |
---|
1671 | ////////////////////////////////////////////////////////// |
---|
1672 | // Phase ONE : only P[0][0][0] execute it |
---|
1673 | ////////////////////////////////////////////////////////// |
---|
1674 | if ( gpid == 0 ) |
---|
1675 | { |
---|
1676 | unsigned int cid; // index for loop on clusters |
---|
1677 | |
---|
1678 | // initialises the TTY0 spin lock |
---|
1679 | _spin_lock_init( &_tty0_spin_lock ); |
---|
1680 | |
---|
1681 | _printf("\n[BOOT] P[0,0,0] starts at cycle %d\n", _get_proctime() ); |
---|
1682 | |
---|
1683 | // initialise the MMC locks array |
---|
1684 | _mmc_boot_mode = 1; |
---|
1685 | _mmc_init_locks(); |
---|
1686 | |
---|
1687 | // initialises the IOC peripheral |
---|
1688 | if ( USE_IOC_BDV != 0 ) _bdv_init(); |
---|
1689 | else if ( USE_IOC_HBA != 0 ) _hba_init(); |
---|
1690 | else if ( USE_IOC_SDC != 0 ) _sdc_init(); |
---|
1691 | else if ( USE_IOC_RDK == 0 ) |
---|
1692 | { |
---|
1693 | _printf("\n[BOOT ERROR] boot_init() : no IOC peripheral\n"); |
---|
1694 | _exit(); |
---|
1695 | } |
---|
1696 | |
---|
1697 | // initialises the FAT |
---|
1698 | _fat_init( 0 ); // don't use Inode-Tree, Fat-Cache, etc. |
---|
1699 | |
---|
1700 | _printf("\n[BOOT] FAT initialised at cycle %d\n", _get_proctime() ); |
---|
1701 | |
---|
1702 | // Load the map.bin file into memory |
---|
1703 | boot_mapping_init(); |
---|
1704 | |
---|
1705 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1706 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1707 | |
---|
1708 | _printf("\n[BOOT] Mapping %s at cycle %d\n", |
---|
1709 | header->name , _get_proctime() ); |
---|
1710 | |
---|
1711 | // initialises the barrier for all clusters containing processors |
---|
1712 | unsigned int nclusters = 0; |
---|
1713 | for ( cid = 0 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
1714 | { |
---|
1715 | if ( cluster[cid].procs ) nclusters++ ; |
---|
1716 | } |
---|
1717 | |
---|
1718 | _simple_barrier_init( &_barrier_all_clusters , nclusters ); |
---|
1719 | |
---|
1720 | // wake up all processors P[x][y][0] |
---|
1721 | for ( cid = 1 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
1722 | { |
---|
1723 | unsigned int x = cluster[cid].x; |
---|
1724 | unsigned int y = cluster[cid].y; |
---|
1725 | unsigned int cluster_xy = (x << Y_WIDTH) + y; |
---|
1726 | |
---|
1727 | if ( cluster[cid].procs ) |
---|
1728 | { |
---|
1729 | unsigned long long paddr = (((unsigned long long)cluster_xy)<<32) + |
---|
1730 | SEG_XCU_BASE+XCU_REG( XCU_WTI_REG , 0 ); |
---|
1731 | |
---|
1732 | _physical_write( paddr , (unsigned int)boot_entry ); |
---|
1733 | } |
---|
1734 | } |
---|
1735 | |
---|
1736 | _printf("\n[BOOT] Processors P[x,y,0] start at cycle %d\n", |
---|
1737 | _get_proctime() ); |
---|
1738 | } |
---|
1739 | |
---|
1740 | ///////////////////////////////////////////////////////////////// |
---|
1741 | // Phase TWO : All processors P[x][y][0] execute it in parallel |
---|
1742 | ///////////////////////////////////////////////////////////////// |
---|
1743 | if( lpid == 0 ) |
---|
1744 | { |
---|
1745 | // Initializes physical memory allocator in cluster[cx][cy] |
---|
1746 | boot_pmem_init( cx , cy ); |
---|
1747 | |
---|
1748 | // Build page table in cluster[cx][cy] |
---|
1749 | boot_ptab_init( cx , cy ); |
---|
1750 | |
---|
1751 | ////////////////////////////////////////////// |
---|
1752 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1753 | ////////////////////////////////////////////// |
---|
1754 | |
---|
1755 | // P[0][0][0] complete page tables with vsegs |
---|
1756 | // mapped in clusters without processors |
---|
1757 | if ( gpid == 0 ) |
---|
1758 | { |
---|
1759 | // complete page tables initialisation |
---|
1760 | boot_ptab_extend(); |
---|
1761 | |
---|
1762 | _printf("\n[BOOT] Page tables" |
---|
1763 | " initialized at cycle %d\n", _get_proctime() ); |
---|
1764 | } |
---|
1765 | |
---|
1766 | ////////////////////////////////////////////// |
---|
1767 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1768 | ////////////////////////////////////////////// |
---|
1769 | |
---|
1770 | // All processors P[x,y,0] activate MMU (using local PTAB) |
---|
1771 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
1772 | _set_mmu_mode( 0xF ); |
---|
1773 | |
---|
1774 | // Each processor P[x,y,0] initialises all schedulers in cluster[x,y] |
---|
1775 | boot_scheduler_init( cx , cy ); |
---|
1776 | |
---|
1777 | // Each processor P[x][y][0] initialises its CP0_SCHED register |
---|
1778 | _set_sched( (unsigned int)_schedulers[cx][cy][0] ); |
---|
1779 | |
---|
1780 | ////////////////////////////////////////////// |
---|
1781 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1782 | ////////////////////////////////////////////// |
---|
1783 | |
---|
1784 | if ( gpid == 0 ) |
---|
1785 | { |
---|
1786 | _printf("\n[BOOT] Schedulers initialised at cycle %d\n", |
---|
1787 | _get_proctime() ); |
---|
1788 | } |
---|
1789 | |
---|
1790 | // All processor P[x,y,0] contributes to load .elf files into clusters. |
---|
1791 | boot_elf_load(); |
---|
1792 | |
---|
1793 | ////////////////////////////////////////////// |
---|
1794 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
1795 | ////////////////////////////////////////////// |
---|
1796 | |
---|
1797 | // Each processor P[x][y][0] wake up other processors in same cluster |
---|
1798 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
1799 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
1800 | unsigned int cluster_xy = (cx << Y_WIDTH) + cy; |
---|
1801 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
1802 | unsigned int p; |
---|
1803 | for ( p = 1 ; p < cluster[cluster_id].procs ; p++ ) |
---|
1804 | { |
---|
1805 | _xcu_send_wti( cluster_xy , p , (unsigned int)boot_entry ); |
---|
1806 | } |
---|
1807 | |
---|
1808 | // only P[0][0][0] makes display |
---|
1809 | if ( gpid == 0 ) |
---|
1810 | { |
---|
1811 | _printf("\n[BOOT] All processors start at cycle %d\n", |
---|
1812 | _get_proctime() ); |
---|
1813 | } |
---|
1814 | } |
---|
1815 | // All other processors activate MMU (using local PTAB) |
---|
1816 | if ( lpid != 0 ) |
---|
1817 | { |
---|
1818 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
1819 | _set_mmu_mode( 0xF ); |
---|
1820 | } |
---|
1821 | |
---|
1822 | // All processors set CP0_SCHED register |
---|
1823 | _set_sched( (unsigned int)_schedulers[cx][cy][lpid] ); |
---|
1824 | |
---|
1825 | // All processors reset BEV bit in SR to use GIET_VM exception handler |
---|
1826 | _set_sr( 0 ); |
---|
1827 | |
---|
1828 | // Each processor get kernel entry virtual address |
---|
1829 | unsigned int kernel_entry = 0x80000000; |
---|
1830 | |
---|
1831 | #if BOOT_DEBUG_ELF |
---|
1832 | _printf("\n[DEBUG BOOT_ELF] P[%d,%d,%d] exit boot & jump to %x at cycle %d\n", |
---|
1833 | cx, cy, lpid, kernel_entry , _get_proctime() ); |
---|
1834 | #endif |
---|
1835 | |
---|
1836 | // All processors jump to kernel_init |
---|
1837 | asm volatile( "jr %0" ::"r"(kernel_entry) ); |
---|
1838 | |
---|
1839 | } // end boot_init() |
---|
1840 | |
---|
1841 | |
---|
1842 | // Local Variables: |
---|
1843 | // tab-width: 4 |
---|
1844 | // c-basic-offset: 4 |
---|
1845 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
1846 | // indent-tabs-mode: nil |
---|
1847 | // End: |
---|
1848 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
1849 | |
---|