/////////////////////////////////////////////////////////////////////////////////// // File : utils.c // Date : 18/10/2013 // Author : alain greiner // Copyright (c) UPMC-LIP6 /////////////////////////////////////////////////////////////////////////////////// // The utils.c and utils.h files are part of the GIET-VM nano-kernel. // They define more or less the GIET-VM HAL (Hardware Abstraction Layer), // and contains various utility functions, that can be used by both the // boot code and the kernel code. /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include // This global variable is allocated in the boot.c file or in kernel_init.c file extern static_scheduler_t* _schedulers[NB_PROCS_MAX<<(X_WIDTH+Y_WIDTH)]; /////////////////////////////////////////////////////////////////////////////////// // CP0 registers access functions /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// // Returns the value contained in CP0 SCHED register // (virtual base address of the processor scheduler). /////////////////////////////////////////////////////////////////////////////////// unsigned int _get_sched() { unsigned int ret; asm volatile( "mfc0 %0, $4,2 \n" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // Returns EPC register content. /////////////////////////////////////////////////////////////////////////////////// unsigned int _get_epc() { unsigned int ret; asm volatile( "mfc0 %0, $14 \n" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // Returns BVAR register content. /////////////////////////////////////////////////////////////////////////////////// unsigned int _get_bvar() { unsigned int ret; asm volatile( "mfc0 %0, $8 \n" : "=r"(ret)); return ret; } /////////////////////////////////////////////////////////////////////////////////// // Returns CR register content. /////////////////////////////////////////////////////////////////////////////////// unsigned int _get_cr() { unsigned int ret; asm volatile( "mfc0 %0, $13 \n" : "=r"(ret)); return ret; } /////////////////////////////////////////////////////////////////////////////////// // Returns SR register content /////////////////////////////////////////////////////////////////////////////////// unsigned int _get_sr() { unsigned int ret; asm volatile( "mfc0 %0, $12 \n" : "=r"(ret)); return ret; } ////////////////////////////////////////////////////////////////////////////// // This function set a new value for the CP0 status register. ////////////////////////////////////////////////////////////////////////////// void _set_sr(unsigned int val) { asm volatile( "mtc0 %0, $12 \n" : :"r" (val) ); } ////////////////////////////////////////////////////////////////////////////// // Returns processor index ////////////////////////////////////////////////////////////////////////////// unsigned int _get_procid() { unsigned int ret; asm volatile ( "mfc0 %0, $15, 1 \n" :"=r" (ret) ); return (ret & 0x3FF); } ////////////////////////////////////////////////////////////////////////////// // Returns local time (32 bits value) // boot_proctime() ////////////////////////////////////////////////////////////////////////////// unsigned int _get_proctime() { unsigned int ret; asm volatile ( "mfc0 %0, $9 \n" :"=r" (ret) ); return ret; } ////////////////////////////////////////////////////////////////////////////// // Save SR value into save_sr_ptr variable and disable IRQs. ////////////////////////////////////////////////////////////////////////////// void _it_disable( unsigned int * save_sr_ptr) { unsigned int sr = 0; asm volatile( "li $3, 0xFFFFFFFE \n" "mfc0 %0, $12 \n" "and $3, $3, %0 \n" "mtc0 $3, $12 \n" : "+r"(sr) : : "$3" ); *save_sr_ptr = sr; } ////////////////////////////////////////////////////////////////////////////// // Restores previous SR value. ////////////////////////////////////////////////////////////////////////////// void _it_restore( unsigned int * save_sr_ptr ) { unsigned int sr = *save_sr_ptr; asm volatile( "mtc0 %0, $12 \n" : : "r"(sr) : "memory" ); } ////////////////////////////////////////////////////////////////////////////// // This function set a new value in CP0 SCHED register. // (virtual base address of the processor scheduler). ////////////////////////////////////////////////////////////////////////////// void _set_sched(unsigned int val) { asm volatile ( "mtc0 %0, $4, 2 \n" : :"r" (val) ); } /////////////////////////////////////////////////////////////////////////////////// // CP2 registers access functions /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// // Returns PTPR register content. /////////////////////////////////////////////////////////////////////////////////// unsigned int _get_mmu_ptpr() { unsigned int ret; asm volatile( "mfc2 %0, $0 \n" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // Returns MODE register content. /////////////////////////////////////////////////////////////////////////////////// unsigned int _get_mmu_mode() { unsigned int ret; asm volatile( "mfc2 %0, $1 \n" : "=r"(ret) ); return ret; } ////////////////////////////////////////////////////////////////////////////// // This function set a new value for the MMU PTPR register. ////////////////////////////////////////////////////////////////////////////// void _set_mmu_ptpr(unsigned int val) { asm volatile ( "mtc2 %0, $0 \n" : :"r" (val) :"memory" ); } ////////////////////////////////////////////////////////////////////////////// // This function set a new value for the MMU MODE register. ////////////////////////////////////////////////////////////////////////////// void _set_mmu_mode(unsigned int val) { asm volatile ( "mtc2 %0, $1 \n" : :"r" (val) :"memory" ); } //////////////////////////////////////////////////////////////////////////// // Physical addressing related functions //////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// // This function makes a physical read access to a 32 bits word in memory, // after a temporary DTLB de-activation and paddr extension. //////////////////////////////////////////////////////////////////////////// unsigned int _physical_read( unsigned long long paddr ) { unsigned int value; unsigned int lsb = (unsigned int) paddr; unsigned int msb = (unsigned int) (paddr >> 32); unsigned int sr; _it_disable(&sr); asm volatile( "mfc2 $2, $1 \n" /* $2 <= MMU_MODE */ "andi $3, $2, 0xb \n" "mtc2 $3, $1 \n" /* DTLB off */ "mtc2 %2, $24 \n" /* PADDR_EXT <= msb */ "lw %0, 0(%1) \n" /* value <= *paddr */ "mtc2 $0, $24 \n" /* PADDR_EXT <= 0 */ "mtc2 $2, $1 \n" /* restore MMU_MODE */ : "=r" (value) : "r" (lsb), "r" (msb) : "$2", "$3" ); _it_restore(&sr); return value; } //////////////////////////////////////////////////////////////////////////// // This function makes a physical write access to a 32 bits word in memory, // after a temporary DTLB de-activation and paddr extension. //////////////////////////////////////////////////////////////////////////// void _physical_write( unsigned long long paddr, unsigned int value ) { unsigned int lsb = (unsigned int)paddr; unsigned int msb = (unsigned int)(paddr >> 32); unsigned int sr; _it_disable(&sr); asm volatile( "mfc2 $2, $1 \n" /* $2 <= MMU_MODE */ "andi $3, $2, 0xb \n" "mtc2 $3, $1 \n" /* DTLB off */ "mtc2 %2, $24 \n" /* PADDR_EXT <= msb */ "sw %0, 0(%1) \n" /* *paddr <= value */ "mtc2 $0, $24 \n" /* PADDR_EXT <= 0 */ "mtc2 $2, $1 \n" /* restore MMU_MODE */ "sync \n" : : "r" (value), "r" (lsb), "r" (msb) : "$2", "$3" ); _it_restore(&sr); } //////////////////////////////////////////////////////////////////////////// // This function makes a physical read access to a 64 bits word in memory, // after a temporary DTLB de-activation and paddr extension. //////////////////////////////////////////////////////////////////////////// unsigned long long _physical_read_ull( unsigned long long paddr ) { unsigned int data_lsb; unsigned int data_msb; unsigned int addr_lsb = (unsigned int) paddr; unsigned int addr_msb = (unsigned int) (paddr >> 32); unsigned int sr; _it_disable(&sr); asm volatile( "mfc2 $2, $1 \n" /* $2 <= MMU_MODE */ "andi $3, $2, 0xb \n" "mtc2 $3, $1 \n" /* DTLB off */ "mtc2 %3, $24 \n" /* PADDR_EXT <= msb */ "lw %0, 0(%2) \n" /* data_lsb <= *paddr */ "lw %1, 4(%2) \n" /* data_msb <= *paddr+4 */ "mtc2 $0, $24 \n" /* PADDR_EXT <= 0 */ "mtc2 $2, $1 \n" /* restore MMU_MODE */ : "=r" (data_lsb), "=r"(data_msb) : "r" (addr_lsb), "r" (addr_msb) : "$2", "$3" ); _it_restore(&sr); return ( (((unsigned long long)data_msb)<<32) + (((unsigned long long)data_lsb)) ); } //////////////////////////////////////////////////////////////////////////// // This function makes a physical write access to a 64 bits word in memory, // after a temporary DTLB de-activation and paddr extension. //////////////////////////////////////////////////////////////////////////// void _physical_write_ull( unsigned long long paddr, unsigned long long value ) { unsigned int addr_lsb = (unsigned int)paddr; unsigned int addr_msb = (unsigned int)(paddr >> 32); unsigned int data_lsb = (unsigned int)value; unsigned int data_msb = (unsigned int)(value >> 32); unsigned int sr; _it_disable(&sr); asm volatile( "mfc2 $2, $1 \n" /* $2 <= MMU_MODE */ "andi $3, $2, 0xb \n" "mtc2 $3, $1 \n" /* DTLB off */ "mtc2 %3, $24 \n" /* PADDR_EXT <= msb */ "sw %0, 0(%2) \n" /* *paddr <= value */ "sw %1, 4(%2) \n" /* *paddr+4 <= value */ "mtc2 $0, $24 \n" /* PADDR_EXT <= 0 */ "mtc2 $2, $1 \n" /* restore MMU_MODE */ "sync \n" : : "r" (data_lsb), "r" (data_msb), "r" (addr_lsb), "r" (addr_msb) : "$2", "$3" ); _it_restore(&sr); } /////////////////////////////////////////////////////////////////////////////////// // This function makes a memcpy from a source buffer to a destination buffer // using physical addresses, after a temporary DTLB de-activation. // source and destination buffers must be word aligned, and size must be // multiple of 4 bytes. /////////////////////////////////////////////////////////////////////////////////// void _physical_memcpy( unsigned long long dst_paddr, // dest buffer paddr unsigned long long src_paddr, // source buffer paddr unsigned int size ) // bytes { // check alignment constraints if ( (dst_paddr & 3) || (src_paddr & 3) || (size & 3) ) { _printf("\n[GIET ERROR] in _physical_memcpy() : buffer unaligned\n"); _exit(); } unsigned int src_lsb = (unsigned int)src_paddr; unsigned int src_msb = (unsigned int)(src_paddr >> 32); unsigned int dst_lsb = (unsigned int)dst_paddr; unsigned int dst_msb = (unsigned int)(dst_paddr >> 32); unsigned int iter = size>>2; unsigned int data; unsigned int sr; _it_disable(&sr); asm volatile( "mfc2 $2, $1 \n" /* $2 <= current MMU_MODE */ "andi $3, $2, 0xb \n" /* $3 <= new MMU_MODE */ "mtc2 $3, $1 \n" /* DTLB off */ "move $4, %5 \n" /* $4 < iter */ "move $5, %1 \n" /* $5 < src_lsb */ "move $6, %3 \n" /* $6 < src_lsb */ "ph_memcpy_loop: \n" "mtc2 %2, $24 \n" /* PADDR_EXT <= src_msb */ "lw %0, 0($5) \n" /* data <= *src_paddr */ "mtc2 %4, $24 \n" /* PADDR_EXT <= dst_msb */ "sw %0, 0($6) \n" /* *dst_paddr <= data */ "addi $4, $4, -1 \n" /* iter = iter - 1 */ "addi $5, $5, 4 \n" /* src_lsb += 4 */ "addi $6, $6, 4 \n" /* dst_lsb += 4 */ "bne $4, $0, ph_memcpy_loop \n" "nop \n" "mtc2 $0, $24 \n" /* PADDR_EXT <= 0 */ "mtc2 $2, $1 \n" /* restore MMU_MODE */ : "=r" (data) : "r" (src_lsb), "r" (src_msb), "r" (dst_lsb), "r"(dst_msb), "r"(iter) : "$2", "$3", "$4", "$5", "$6" ); _it_restore(&sr); } /////////////////////////////////////////////////////////////////////////////////// // This function is used by several drivers (_xxx_set_register() function) // If the MMU is not activated, the virtual address is extended using // X_IO and Y_IO to reach the cluster_io. /////////////////////////////////////////////////////////////////////////////////// void _io_extended_write( unsigned int* vaddr, unsigned int value ) { unsigned long long paddr; if ( _get_mmu_mode() & 0x4 ) // MMU activated : use virtual address { *vaddr = value; } else // use paddr extension for IO { paddr = (unsigned long long)(unsigned int)vaddr + (((unsigned long long)((X_IO<value); #if NO_HARD_CC register unsigned int delay = (_get_proctime() ^ _get_procid() << 4) & 0xFF; if (delay == 0) delay = 0x80; asm volatile ( "_lock_llsc: \n" " ll $2, 0(%0) \n" /* $2 <= lock current value */ " bnez $2, _lock_delay \n" /* delay if lock already taken */ " li $3, 1 \n" /* $3 <= argument for sc */ " sc $3, 0(%0) \n" /* try to set lock */ " bnez $3, _lock_ok \n" /* exit if atomic */ " _lock_delay: \n" " move $4, %1 \n" /* $4 <= delay */ " _lock_loop: \n" " addi $4, $4, -1 \n" /* $4 <= $4 - 1 */ " bnez $4, _lock_loop \n" /* test end delay */ " nop \n" " j _lock_llsc \n" /* retry */ " nop \n" " _lock_ok: \n" : :"r"(plock), "r"(delay) :"$2", "$3", "$4", "memory"); #else asm volatile ( "_lock_llsc: \n" " lw $2, 0(%0) \n" /* $2 <= lock current value */ " bnez $2, _lock_llsc \n" /* retry if lock already taken */ " nop \n" " ll $2, 0(%0) \n" /* ll_buffer <= lock current value */ " bnez $2, _lock_llsc \n" /* retry if lock already taken */ " li $3, 1 \n" /* $3 <= argument for sc */ " sc $3, 0(%0) \n" /* try to set lock */ " beqz $3, _lock_llsc \n" /* retry if sc failure */ " nop \n" : :"r"(plock) :"$2", "$3", "memory"); #endif } /////////////////////////////////////////////////////////////////////////////////// // Release a previouly taken lock. /////////////////////////////////////////////////////////////////////////////////// void _release_lock(giet_lock_t* lock) { asm volatile ( "sync\n" ::: "memory" ); // sync is necessary because of the TSAR consistency model lock->value = 0; } /////////////////////////////////////////////////////////////////////////////////// // Access functions to system terminal TTY0 /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// // Display "string" argument on TTY0. // It uses the low level access functions from TTY driver, using a busy waiting // policy if TTY buffer is full. // The exclusive access lock should be taken by the caller. /////////////////////////////////////////////////////////////////////////////////// void _puts( char* string ) { unsigned int n = 0; while ( string[n] > 0 ) { // test status register while ( (_tty_get_register( 0, TTY_STATUS ) & 0x2) ); // write one byte if ( string[n] == '\n') { _tty_set_register( 0, TTY_WRITE, (unsigned int)'\r' ); } _tty_set_register( 0, TTY_WRITE, (unsigned int)string[n] ); n++; } } /////////////////////////////////////////////////////////////////////////////////// // Display a 32 bits unsigned int as an hexadecimal string on TTY0. /////////////////////////////////////////////////////////////////////////////////// void _putx( unsigned int val ) { static const char HexaTab[] = "0123456789ABCDEF"; char buf[11]; unsigned int c; buf[0] = '0'; buf[1] = 'x'; buf[10] = 0; for (c = 0; c < 8; c++) { buf[9 - c] = HexaTab[val & 0xF]; val = val >> 4; } _puts( buf ); } /////////////////////////////////////////////////////////////////////////////////// // Display a 64 bits unsigned long as an hexadecimal string on TTY0. /////////////////////////////////////////////////////////////////////////////////// void _putl( unsigned long long val ) { static const char HexaTab[] = "0123456789ABCDEF"; char buf[19]; unsigned int c; buf[0] = '0'; buf[1] = 'x'; buf[18] = 0; for (c = 0; c < 16; c++) { buf[17 - c] = HexaTab[(unsigned int)val & 0xF]; val = val >> 4; } _puts( buf ); } /////////////////////////////////////////////////////////////////////////////////// // Display a 32 bits unsigned int as a decimal string on TTY0. /////////////////////////////////////////////////////////////////////////////////// void _putd( unsigned int val ) { static const char DecTab[] = "0123456789"; char buf[11]; unsigned int i; unsigned int first = 0; buf[10] = 0; for (i = 0; i < 10; i++) { if ((val != 0) || (i == 0)) { buf[9 - i] = DecTab[val % 10]; first = 9 - i; } else { break; } val /= 10; } _puts( &buf[first] ); } /////////////////////////////////////////////////////////////////////////////////// // Display a format on TTY0. // To provide an atomic display, this function takes the lock protecting // exclusive access to TTY0, entering a critical section until the lock // is released. // Only a limited number of formats are supported: // - %d : 32 bits signed decimal // - %u : 32 bits unsigned decimal // - %x : 32 bits unsigned hexa // - %l : 64 bits unsigned hexa // - %c : char // - %s : string /////////////////////////////////////////////////////////////////////////////////// void _printf( char * format, ... ) { va_list ap; va_start(ap, format); unsigned int save_sr; // to save SR value in critical section // get TTY0 lock _tty_get_lock( 0, &save_sr ); printf_text: while (*format) { unsigned int i; for (i = 0 ; format[i] && (format[i] != '%') ; i++); if (i) { if ( _tty_write( format, i, 0 ) != i ) goto return_error; format += i; } if (*format == '%') { format++; goto printf_arguments; } } // release TTY0 lock _tty_release_lock( 0, &save_sr ); va_end(ap); return; printf_arguments: { char buf[20]; char * pbuf; unsigned int len = 0; static const char HexaTab[] = "0123456789ABCDEF"; unsigned int i; switch (*format++) { case ('c'): /* char conversion */ { int val = va_arg( ap, int ); len = 1; buf[0] = val; pbuf = &buf[0]; break; } case ('d'): /* 32 bits decimal signed */ { int val = va_arg( ap, int ); if (val < 0) { val = -val; if ( _tty_write( "-" , 1, 0 ) != 1 ) goto return_error; } for(i = 0; i < 10; i++) { buf[9 - i] = HexaTab[val % 10]; if (!(val /= 10)) break; } len = i + 1; pbuf = &buf[9 - i]; break; } case ('u'): /* 32 bits decimal unsigned */ { unsigned int val = va_arg( ap, unsigned int ); for(i = 0; i < 10; i++) { buf[9 - i] = HexaTab[val % 10]; if (!(val /= 10)) break; } len = i + 1; pbuf = &buf[9 - i]; break; } case ('x'): /* 32 bits hexadecimal unsigned */ { unsigned int val = va_arg( ap, unsigned int ); if ( _tty_write( "0x" , 2, 0 ) != 2 ) goto return_error; for(i = 0; i < 8; i++) { buf[7 - i] = HexaTab[val % 16]; if (!(val /= 16)) break; } len = i + 1; pbuf = &buf[7 - i]; break; } case ('l'): /* 64 bits hexadecimal unsigned */ { unsigned long long val = va_arg( ap, unsigned long long ); if ( _tty_write( "0x" , 2, 0 ) != 2 ) goto return_error; for(i = 0; i < 16; i++) { buf[15 - i] = HexaTab[val % 16]; if (!(val /= 16)) break; } len = i + 1; pbuf = &buf[15 - i]; break; } case ('s'): /* string */ { char* str = va_arg( ap, char* ); while (str[len]) { len++; } pbuf = str; break; } default: goto return_error; } if ( _tty_write( pbuf, len, 0 ) != len ) goto return_error; goto printf_text; } return_error: { unsigned int procid = _get_procid(); unsigned int lpid = procid % NB_PROCS_MAX; unsigned int cluster_xy = procid / NB_PROCS_MAX; unsigned int x = cluster_xy >> Y_WIDTH; unsigned int y = cluster_xy & ((1<current); } //////////////////////////////////////////////////////////////////////////////////// // This function returns the content of a context slot // for a task identified by the ltid argument (local task index), // and the gpid argument (global processor index) //////////////////////////////////////////////////////////////////////////////////// unsigned int _get_task_slot( unsigned int gpid, unsigned int ltid, unsigned int slot ) { static_scheduler_t* psched = (static_scheduler_t*)_schedulers[gpid]; return psched->context[ltid][slot]; } //////////////////////////////////////////////////////////////////////////////////// // This function updates the content of a context slot // for any task identified by the ltid argument (local task index), // and the gpid argument (global processor index) //////////////////////////////////////////////////////////////////////////////////// void _set_task_slot( unsigned int gpid, unsigned int ltid, unsigned int slot, unsigned int value ) { static_scheduler_t* psched = (static_scheduler_t*)_schedulers[gpid]; psched->context[ltid][slot] = value; } //////////////////////////////////////////////////////////////////////////////////// // This function returns the content of a context slot // for the running task (defined by the scheduler current field). //////////////////////////////////////////////////////////////////////////////////// unsigned int _get_context_slot( unsigned int slot ) { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); unsigned int task_id = psched->current; return psched->context[task_id][slot]; } //////////////////////////////////////////////////////////////////////////////////// // This function updates the content of a context slot for the running task. //////////////////////////////////////////////////////////////////////////////////// void _set_context_slot( unsigned int slot, unsigned int value ) { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); unsigned int task_id = psched->current; psched->context[task_id][slot] = value; } ///////////////////////////////////////////////////////////////////////////// // Access functions to mapping_info data structure ///////////////////////////////////////////////////////////////////////////// mapping_cluster_t * _get_cluster_base(mapping_header_t * header) { return (mapping_cluster_t *) ((char *) header + MAPPING_HEADER_SIZE); } ///////////////////////////////////////////////////////////////////////////// mapping_pseg_t * _get_pseg_base(mapping_header_t * header) { return (mapping_pseg_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE); } ///////////////////////////////////////////////////////////////////////////// mapping_vspace_t * _get_vspace_base(mapping_header_t * header) { return (mapping_vspace_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs); } ///////////////////////////////////////////////////////////////////////////// mapping_vseg_t * _get_vseg_base(mapping_header_t * header) { return (mapping_vseg_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces); } ///////////////////////////////////////////////////////////////////////////// mapping_vobj_t * _get_vobj_base(mapping_header_t * header) { return (mapping_vobj_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces + MAPPING_VSEG_SIZE * header->vsegs ); } ///////////////////////////////////////////////////////////////////////////// mapping_task_t * _get_task_base(mapping_header_t * header) { return (mapping_task_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces + MAPPING_VOBJ_SIZE * header->vobjs + MAPPING_VSEG_SIZE * header->vsegs); } ///////////////////////////////////////////////////////////////////////////// mapping_proc_t *_get_proc_base(mapping_header_t * header) { return (mapping_proc_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces + MAPPING_VSEG_SIZE * header->vsegs + MAPPING_VOBJ_SIZE * header->vobjs + MAPPING_TASK_SIZE * header->tasks); } ///////////////////////////////////////////////////////////////////////////// mapping_irq_t *_get_irq_base(mapping_header_t * header) { return (mapping_irq_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces + MAPPING_VSEG_SIZE * header->vsegs + MAPPING_VOBJ_SIZE * header->vobjs + MAPPING_TASK_SIZE * header->tasks + MAPPING_PROC_SIZE * header->procs); } ///////////////////////////////////////////////////////////////////////////// mapping_coproc_t *_get_coproc_base(mapping_header_t * header) { return (mapping_coproc_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces + MAPPING_VOBJ_SIZE * header->vobjs + MAPPING_VSEG_SIZE * header->vsegs + MAPPING_TASK_SIZE * header->tasks + MAPPING_PROC_SIZE * header->procs + MAPPING_IRQ_SIZE * header->irqs); } /////////////////////////////////////////////////////////////////////////////////// mapping_cp_port_t *_get_cp_port_base(mapping_header_t * header) { return (mapping_cp_port_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces + MAPPING_VOBJ_SIZE * header->vobjs + MAPPING_VSEG_SIZE * header->vsegs + MAPPING_TASK_SIZE * header->tasks + MAPPING_PROC_SIZE * header->procs + MAPPING_IRQ_SIZE * header->irqs + MAPPING_COPROC_SIZE * header->coprocs); } /////////////////////////////////////////////////////////////////////////////////// mapping_periph_t *_get_periph_base(mapping_header_t * header) { return (mapping_periph_t *) ((char *) header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE * X_SIZE * Y_SIZE + MAPPING_PSEG_SIZE * header->psegs + MAPPING_VSPACE_SIZE * header->vspaces + MAPPING_VOBJ_SIZE * header->vobjs + MAPPING_VSEG_SIZE * header->vsegs + MAPPING_TASK_SIZE * header->tasks + MAPPING_PROC_SIZE * header->procs + MAPPING_IRQ_SIZE * header->irqs + MAPPING_COPROC_SIZE * header->coprocs + MAPPING_CP_PORT_SIZE * header->cp_ports); } /////////////////////////////////////////////////////////////////////////////////// // Miscelaneous functions /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// // This function implements a pseudo-random delay. // The val argument define approximately an exponentially increasing mean delay, // and should not be larger than 32. /////////////////////////////////////////////////////////////////////////////////// void _random_wait( unsigned int val ) { unsigned int mask = (1<<(val&0x1F))-1; unsigned int delay = (_get_proctime() ^ (_get_procid()<<4)) & mask; asm volatile( "move $3, %0 \n" "loop_nic_completed: \n" "addi $3, $3, -1 \n" "bnez $3, loop_nic_completed \n" "nop \n" : : "r" (delay) : "$3" ); } ////////////////////////////////////////////////////////////////////////////////// // This function implements an interactive break for debug. // Execution continue when typing any character on TTY0. // The "str" argument is supposed to indicate the break location. ////////////////////////////////////////////////////////////////////////////////// void _break( char* string ) { char byte; _printf("\n[GIET DEBUG] break from %s / continue ?\n", string ); _getc( &byte ); } ////////////////////////////////////////////////////////////////////////////////// // Processor suicide: infinite loop ////////////////////////////////////////////////////////////////////////////////// __attribute__((noreturn)) void _exit() { unsigned int procid = _get_procid(); unsigned int lpid = procid % NB_PROCS_MAX; unsigned int cluster_xy = procid / NB_PROCS_MAX; unsigned int x = cluster_xy >> Y_WIDTH; unsigned int y = cluster_xy & ((1<> 10) & 0x7); line_size = 2 << tmp; // iterate on cache lines for (i = 0; i < size; i += line_size) { asm volatile( " cache %0, %1" : :"i" (0x11), "R" (*((unsigned char *) buffer + i)) ); } } /////////////////////////////////////////////////////////////////////////////////// // This function returns the information associated to a heap : vaddr and length. // - If (x < X_SIZE) and (y < Y_SIZE), it return the heap associated to any task // running in cluster(x,y). // - Else, it return the heap associated to the calling task. // It uses the global task index (CTX_GTID_ID, unique for each giet task) and the // vspace index (CTX_VSID_ID), that are defined in the calling task context // to find the vobj_id containing the heap. // Return 0 if success. Return non zero if not found. /////////////////////////////////////////////////////////////////////////////////// unsigned int _heap_info( unsigned int* vaddr, unsigned int* length, unsigned int x, unsigned int y ) { mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; mapping_task_t * tasks = _get_task_base(header); mapping_vobj_t * vobjs = _get_vobj_base(header); mapping_vspace_t * vspaces = _get_vspace_base(header); unsigned int task_id; unsigned int vspace_id; unsigned int vobj_id = 0xFFFFFFFF; // searching the heap vobj_id if ( (x < X_SIZE) && (y < Y_SIZE) ) // searching a task in cluster(x,y) { // get vspace global index vspace_id = _get_context_slot(CTX_VSID_ID); // scan all tasks in vspace unsigned int min = vspaces[vspace_id].task_offset ; unsigned int max = min + vspaces[vspace_id].tasks ; for ( task_id = min ; task_id < max ; task_id++ ) { if ( tasks[task_id].clusterid == (x * Y_SIZE + y) ) { vobj_id = tasks[task_id].heap_vobj_id; if ( vobj_id != 0xFFFFFFFF ) break; } } } else // searching in the calling task { task_id = _get_context_slot(CTX_GTID_ID); vobj_id = tasks[task_id].heap_vobj_id; } // analysing the vobj_id if ( vobj_id != 0xFFFFFFFF ) { *vaddr = vobjs[vobj_id].vaddr; *length = vobjs[vobj_id].length; return 0; } else { *vaddr = 0; *length = 0; return 1; } } // end _heap_info() /////////////////////////////////////////////////////////////////////////////////// // Required by GCC /////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// // Copy a source memory buffer content to a dest memory buffer (size bytes) // Code taken from MutekH. /////////////////////////////////////////////////////////////////////////////////// void* memcpy( void* dest, // dest buffer vbase const void* source, // source buffer vbase unsigned int size ) // bytes { unsigned int* idst = (unsigned int*)dest; unsigned int* isrc = (unsigned int*)source; // word-by-word copy if (!((unsigned int) idst & 3) && !((unsigned int) isrc & 3)) { while (size > 3) { *idst++ = *isrc++; size -= 4; } } unsigned char* cdst = (unsigned char*)dest; unsigned char* csrc = (unsigned char*)source; /* byte-by-byte copy */ while (size--) { *cdst++ = *csrc++; } return dest; } ////////////////////////////////////////////////////////////////////////////////// // Fill a byte string with a byte value. ////////////////////////////////////////////////////////////////////////////////// void * memset( void* dest, int value, unsigned int count ) { // word-by-word copy unsigned int* idst = dest; unsigned int data = (((unsigned char)value) ) | (((unsigned char)value) << 8) | (((unsigned char)value) << 16) | (((unsigned char)value) << 24) ; if ( ! ((unsigned int)idst & 3) ) { while ( count > 3 ) { *idst++ = data; count -= 4; } } // byte-by-byte copy unsigned char* cdst = dest; while (count--) { *cdst++ = (unsigned char)value; } return dest; } // Local Variables: // tab-width: 4 // c-basic-offset: 4 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4