////////////////////////////////////////////////////////////////////////////////// // Date : 01/06/2015 // Authors : Alain Greiner // Copyright (c) UPMC-LIP6 ////////////////////////////////////////////////////////////////////////////////// // The fat32.h and fat32.c files define a library of access functions // to a FAT32 disk on a block device. It is intended to be used by both // the boot code and the kernel code. ////////////////////////////////////////////////////////////////////////////////// // Implementation notes: // 1. the "lba" (Logical Block Address) is the physical sector index on // the block device. The physical sector size is supposed to be 512 bytes. // 2. the "cluster" variable is actually a cluster index. A cluster contains // 8 sectors (4K bytes) and the cluster index is a 32 bits word. // 3. Each file or directory referenced by the software is represented // by an "inode". The set of "inodes" is organised as a tree, that is // a sub-tree of the complete file system existing on the block device. // 4. A given file can be referenced by several software tasks, and each task // will use a private handler, called a "file descriptor", allocated by the OS // when the task open the file, that is organised as an indexed array. // 5. This FAT32 library implements (N+1) caches : one private "File_ Cache" // for each referenced file or directory, and a specific "Fat_Cache" for // the FAT itself. Each cache contain a variable number of clusters that are // dynamically allocated when they are accessed, and organised as a 64-Tree. ////////////////////////////////////////////////////////////////////////////////// // General Debug Policy: // The global variable GIET_DEBUG_FAT is defined in the giet_config.h file. // The debug is activated if (proctime > GIET_DEBUG_FAT) && (GIET_DEBUG_FAT != 0) // The GIET_DEBUG_FAT bit 0 defines the level of debug: // if (GIET_DEBUG_FAT & 0x1) => detailed debug // else => external functions only ////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include #include #include #include ////////////////////////////////////////////////////////////////////////////////// // Global variables ////////////////////////////////////////////////////////////////////////////////// // Fat-Descriptor __attribute__((section(".kdata"))) fat_desc_t _fat __attribute__((aligned(64))); // buffer used by boot code as a simple cache when scanning FAT __attribute__((section(".kdata"))) unsigned char _fat_buffer_fat[4096] __attribute__((aligned(64))); // buffer used by boot code as a simple cache when scanning a directory in DATA region __attribute__((section(".kdata"))) unsigned char _fat_buffer_data[4096] __attribute__((aligned(64))); // lba of cluster in fat_buffer_fat __attribute__((section(".kdata"))) unsigned int _fat_buffer_fat_lba; // lba of cluster in fat_buffer_data __attribute__((section(".kdata"))) unsigned int _fat_buffer_data_lba; ////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// // Static functions declaration ////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////// // This debug function displays the content of a 512 bytes buffer "buf", // with an identifier defined by the "string" and "block_id" arguments. /////////////////////////////////////////////////////////////////////////////////// #if GIET_DEBUG_FAT static void _display_one_block( unsigned char* buf, char* string, unsigned int block_id ); #endif ////////////////////////////////////////////////////////////////////////////////// // This debug function displays the FAT descriptor. ////////////////////////////////////////////////////////////////////////////////// #if GIET_DEBUG_FAT static void _display_fat_descriptor(); #endif ///////////////////////////////////////////////////////////////////////////////// // This debug function displays the sequence of clusters allocated to a // file (or directory) identified by the "inode" argument. ///////////////////////////////////////////////////////////////////////////////// #if GIET_DEBUG_FAT static void _display_clusters_list( fat_inode_t* inode ); #endif ///////////////////////////////////////////////////////////////////////////////// // The following function transfers one or several blocks between the device // and a memory buffer identified by a virtual address. // It computes the memory buffer physical address, and calls the proper // IOC driver depending on the subtype (BDV / HBA / SDC / SPI / RDK). // The use_irq argument allows to activate the descheduling mode, // if it supported by the IOC driver subtype // It returns 0 on success. // It returns -1 on error. ///////////////////////////////////////////////////////////////////////////////// static int _fat_ioc_access( unsigned int use_irq, unsigned int to_mem, unsigned int lba, unsigned int buf_vaddr, unsigned int count ); ////////////////////////////////////////////////////////////////////////////////// // The following function returns in the "desc" argument a pointer on a buffer // descriptor contained in a File_Cache, or in the Fat_Cache. // The searched buffer is idenfified by the "inode" and "cluster_id" arguments. // If the "inode" pointer is not NULL, the searched cache is a File-Cache. // If the "inode" pointer is NULL, the searched cache is the Fat-Cache, // The "cluster_id" argument is the buffer index in the file (or in the FAT). // In case of miss, it allocate a 4 Kbytes buffer and a cluster descriptor // from the local kernel heap, and calls the _fat_ioc_access() function to load // the missing cluster from the block device. // It returns 0 on success. // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _get_buffer_from_cache( fat_inode_t* inode, unsigned int cluster_id, fat_cache_desc_t** desc ); //////////////////////////////////////////////////////////////////////////////// // This function extract a (partial) name from a LFN directory entry. //////////////////////////////////////////////////////////////////////////////// static void _get_name_from_long( unsigned char* buffer, char* name ); //////////////////////////////////////////////////////////////////////////////// // The following function extract a name from a NORMAL directory entry. //////////////////////////////////////////////////////////////////////////////// static void _get_name_from_short( unsigned char* buffer, char* name ); ////////////////////////////////////////////////////////////////////////////////// // This function returns the number of levels of a File-Cache (or Fat-Cache) // from the size of the file (or FAT). ////////////////////////////////////////////////////////////////////////////////// static inline unsigned int _get_levels_from_size( unsigned int size ); /////////////////////////////////////////////////////////////////////////////////// // The following function analyses the "pathname" argument, from the character // defined by the "nb_read" argument. // It copies the found name in the "name" buffer (without '/'), // and updates the "nb_read" argument. // It returns 0 on success. // It returns 1 if one name length > NAME_MAX_SIZE characters /////////////////////////////////////////////////////////////////////////////////// static unsigned int _get_name_from_path( char* pathname, char* name, unsigned int* nb_read ); //////////////////////////////////////////////////////////////////////////////// // The following function scan the "pathname" argument, and copies in the // "name" buffer the last name in path (leaf name). // It returns 0 on success. // It returns 1 if one name length > NAME_MAX_SIZE characters //////////////////////////////////////////////////////////////////////////////// static unsigned int _get_last_name( char* pathname, char* name ); ////////////////////////////////////////////////////////////////////////////////// // The following function accesses the Fat-Cache and returns in the "value" // argument the content of the FAT slot identified by the "cluster" argument. // It loads the missing cluster from block device into cache in case of miss. // It returns 0 on success. // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _get_fat_entry( unsigned int cluster, unsigned int* value ); ////////////////////////////////////////////////////////////////////////////////// // The following function writes a new "value" in the Fat-Cache, in the slot // identified by the "cluster" argument. // It loads the missing cluster from block device into cache in case of miss. // It returns 0 on success, // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _set_fat_entry( unsigned int cluster, unsigned int value ); ////////////////////////////////////////////////////////////////////////////////// // The following function introduces the inode identified by the "child" argument, // as a new child of the "parent" inode in the Inode-Tree. // All checking are supposed to be done by the caller. // Nor the File-Cache, neither the block device are modified. ////////////////////////////////////////////////////////////////////////////////// static void _add_inode_in_tree( fat_inode_t* child, fat_inode_t* parent ); ////////////////////////////////////////////////////////////////////////////////// // The following function removes one inode identified by the "inode" argument // from the Inode-Tree. All checking are supposed to be done by the caller. // Nor the File-Cache, neither the block device are modified. ////////////////////////////////////////////////////////////////////////////////// static void _remove_inode_from_tree( fat_inode_t* inode ); ////////////////////////////////////////////////////////////////////////////////// // This recursive function scan one File-Cache (or Fat-Cache) from root to leaves, // to writes all dirty clusters to block device, and reset the dirty bits. // The cache is identified by the "root" an "levels" arguments. // The "string" argument is only used for debug : inode name or Fat. // It returns 0 on success. // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _update_device_from_cache( unsigned int levels, fat_cache_node_t* root, char* string ); ////////////////////////////////////////////////////////////////////////////////// // The following function accesses directly the FS_INFO block on the block device, // to update the "first_free_cluster" and "free_clusters_number" values, // using only the Fat-Descriptor single block buffer. // It return 0 on success. // It return 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _update_fs_info(); ////////////////////////////////////////////////////////////////////////////// // The following function read a data field (from one to four bytes) // from an unsigned char[] buffer, taking endianness into account. // The analysed field is defined by the "offset" and "size" arguments. ////////////////////////////////////////////////////////////////////////////// static unsigned int _read_entry( unsigned int offset, unsigned int size, unsigned char* buffer, unsigned int little_indian ); ////////////////////////////////////////////////////////////////////////////////// // The following function returns the lba of first sector in DATA region // from the cluster index. The cluster index must be larger than 2. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _cluster_to_lba( unsigned int cluster ); ////////////////////////////////////////////////////////////////////////////////// // The following function returns in the "nb_entries" argument the number of files // (or directories) contained in a directory identified by the "inode " pointer. // It returns 0 on success. // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _get_nb_entries( fat_inode_t* inode, unsigned int* nb_entries ); ////////////////////////////////////////////////////////////////////////////////// // The following function search in the directory identified by the "parent" // inode pointer a child (file or directory) identified by its "name". // It returns in the "inode" argument the searched child inode pointer. // If the searched name is not found in the Inode-Tree, the function accesses // the "file_cache" associated to the parent directory. // If the child exists on block device, the Inode-Tree is updated, and // a success code is returned. // If the file/dir does not exist on block device, a error code is returned. // It returns 0 if inode found. // It returns 1 if inode not found. // It returns 2 on error in cache access. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _get_child_from_parent( fat_inode_t* parent, char* name, fat_inode_t** inode ); ///////////////////////////////////////////////////////////////////////////////// // For a file (or a directory) identified by the "pathname" argument, the // following function returns in the "inode" argument the inode pointer // associated to the searched file (or directory), with code (0). // If the searched file (or directory) is not found, but the parent directory // is found, it returns in the "inode" argument the pointer on the parent inode, // with code (1). Finally, code (2) and code (3) are error codes. // Both the Inode-Tree and the involved Cache-Files are updated from the block // device in case of miss on one inode during the search in path. // Neither the Fat-Cache, nor the block device are updated. // It returns 0 if searched inode found // It returns 1 if searched inode not found but parent directory found // It returns 2 if searched inode not found and parent directory not found // It returns 3 if one name too long ///////////////////////////////////////////////////////////////////////////////// static unsigned int _get_inode_from_path( char* pathname, fat_inode_t** inode ); ////////////////////////////////////////////////////////////////////////////////// // The following function checks if node "a" is an ancestor of inode "b". // It returns 0 on failure. // It returns 1 otherwise. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _is_ancestor( fat_inode_t* a, fat_inode_t* b); ////////////////////////////////////////////////////////////////////////////////// // This function computes the length and the number of LFN entries required // to store a node name in the "length" and "nb_lfn" arguments. // Short name (less than 13 characters) require 1 LFN entry. // Medium names (from 14 to 26 characters require 2 LFN entries. // Large names (up to 31 characters) require 3 LFN entries. // It returns 0 on success. // It returns 1 if length larger than 31 characters. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _check_name_length( char* name, unsigned int* length, unsigned int* nb_lfn ); ////////////////////////////////////////////////////////////////////////////////// // For a node identified by the "inode" argument, this function updates the // "size" and "cluster" values in the entry of the parent directory File-Cache. // It set the dirty bit in the modified buffer of the parent directory File-Cache. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _update_dir_entry( fat_inode_t* inode ); ////////////////////////////////////////////////////////////////////////////////// // The following function add new "child" in Cache-File of "parent" directory. // It accesses the File_Cache associated to the parent directory, and scan the // clusters allocated to this directory to find the NO_MORE entry. // This entry will be the first modified entry in the directory. // Regarding the name storage, it uses LFN entries for all names. // Therefore, it writes 1, 2, or 3 LFN entries (depending on the child name // actual length, it writes one NORMAL entry, and writes the new NOMORE entry. // It updates the dentry field in the child inode. // It set the dirty bit for all modified File-Cache buffers. // The block device is not modified by this function. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _add_dir_entry( fat_inode_t* child, fat_inode_t* parent ); ////////////////////////////////////////////////////////////////////////////////// // The following function invalidates all dir_entries associated to the "inode" // argument from its parent directory. // It set the dirty bit for all modified buffers in parent directory Cache-File. // The inode itself is not modified by this function. // The block device is not modified by this function. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _remove_dir_entry( fat_inode_t* inode ); ////////////////////////////////////////////////////////////////////////////////// // The following function add the special entries "." and ".." in the File-Cache // of the directory identified by the "child" argument. // The parent directory is defined by the "parent" argument. // The child directory File-Cache is supposed to be empty. // We use two NORMAL entries for these "." and ".." entries. // The block device is not modified by this function. ////////////////////////////////////////////////////////////////////////////////// static void _add_special_directories( fat_inode_t* child, fat_inode_t* parent ); ////////////////////////////////////////////////////////////////////////////////// // The following function releases all clusters allocated to a file or directory, // from the cluster index defined by the "cluster" argument, until the end // of the FAT linked list. // It calls _get_fat_entry() and _set_fat_entry() functions to scan the FAT, // and to update the clusters chaining. // The FAT region on block device is updated. // It returns 0 on success. // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _clusters_release( unsigned int cluster ); ////////////////////////////////////////////////////////////////////////////////// // This function allocate "nb_clusters_more" new clusters to a file (or directory) // identified by the "inode" pointer. It allocates also the associated buffers // and buffer descriptors in the Cache-File. // It calls _get_fat_entry() and _set_fat_entry() functions to update the // clusters chaining in the Cache-Fat. The FAT region on block device is updated. // It returns 0 on success. // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _clusters_allocate( fat_inode_t* inode, unsigned int nb_clusters_current, unsigned int nb_clusters_more ); ////////////////////////////////////////////////////////////////////////////////// // This recursive function scans one File-Cache (or Fat-Cache) from root to // leaves. All memory allocated for 4KB buffers, and buffer descriptors (in // leaves) is released, along with the 64-Tree structure (root node is kept). // The cache is identified by the "root" and "levels" arguments. // It should not contain any dirty clusters. ////////////////////////////////////////////////////////////////////////////////// static void _release_cache_memory( fat_cache_node_t* root, unsigned int levels ); ////////////////////////////////////////////////////////////////////////////////// // The following function allocates and initializes a new Fat-Cache node. // Its first child can be specified (used when adding a cache level). // The Fat-Cache is initialized as empty: all children set to NULL. // It returns a pointer to a new Fat-Cache node. ////////////////////////////////////////////////////////////////////////////////// static fat_cache_node_t* _allocate_one_cache_node( fat_cache_node_t* first_child ); ////////////////////////////////////////////////////////////////////////////////// // The following function allocates and initializes a new inode, // using the values defined by the arguments. // If the "cache_allocate" argument is true ans empty cache is allocated. // It returns a pointer on the new inode. ////////////////////////////////////////////////////////////////////////////////// static fat_inode_t* _allocate_one_inode( char* name, unsigned int is_dir, unsigned int cluster, unsigned int size, unsigned int count, unsigned int dentry, unsigned int cache_allocate ); ////////////////////////////////////////////////////////////////////////////////// // The following function allocates one 4 Kbytes buffer and associated cluster // descriptor for the file (or directory) identified by the "inode" argument, // and updates the Cache_File slot identified by the "cluster_id" argument. // The File-Cache slot must be empty. // It updates the cluster descriptor, using the "cluster" argument, that is // the cluster index in FAT. The cluster descriptor dirty field is set. // It traverse the 64-tree Cache-file from top to bottom to find the last level. ////////////////////////////////////////////////////////////////////////////////// static void _allocate_one_buffer( fat_inode_t* inode, unsigned int cluster_id, unsigned int cluster ); ////////////////////////////////////////////////////////////////////////////////// // The following function allocates one free cluster from the FAT "heap" of free // clusters, and returns the cluster index in the "cluster" argument. // It updates the FAT slot, and the two FAT global variables: first_free_cluster, // and free_clusters_number. // It returns 0 on success. // It returns 1 on error. ////////////////////////////////////////////////////////////////////////////////// static unsigned int _allocate_one_cluster( unsigned int* cluster ); ///////////////////////////////////////////////////////////////////////////// // This function remove from the file system a file or a directory // identified by the "inode" argument. // The remove condition must be checked by the caller. // The relevant lock(s) must have been taken by te caller. // It returns 0 on success. // It returns 1 on error. ///////////////////////////////////////////////////////////////////////////// static unsigned int _remove_node_from_fs( fat_inode_t* inode ); ///////////////////////////////////////////////////////////////////////////// // This function return the cluster index and the size for a file // identified by the "pathname" argument, scanning directly the block // device DATA region. // It is intended to be called only by the _fat_load_no_cache() function, // it does not use the dynamically allocated File Caches, but uses only // the 4 Kbytes _fat_buffer_data. // It returns 0 on success. // It returns 1 on error. ///////////////////////////////////////////////////////////////////////////// static unsigned int _file_info_no_cache( char* pathname, unsigned int* file_cluster, unsigned int* file_size ); ///////////////////////////////////////////////////////////////////////////// // This function scan directly the FAT region on the block device, // and returns in the "next" argument the value stored in the fat slot // identified by the "cluster" argument. // It is intended to be called only by the _fat_load_no_cache() function, // as it does not use the dynamically allocated Fat-Cache, but uses only // the 4 Kbytes _fat_buffer_fat. // It returns 0 on success. // It returns 1 on error. ///////////////////////////////////////////////////////////////////////////// static unsigned int _next_cluster_no_cache( unsigned int cluster, unsigned int* next ); ////////////////////////////////////////////////////////////////////////////////// // The following functions return the length or the size of a FAT field, // identified by an (offset,length) mnemonic defined in the fat32.h file. ////////////////////////////////////////////////////////////////////////////////// static inline int get_length( int offset , int length ) { return length; } static inline int get_offset( int offset , int length ) { return offset; } ////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// // Static functions definition ////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// #if GIET_DEBUG_FAT /////////////////////////////////////////////////// static void _display_one_block( unsigned char* buf, char* string, unsigned int block_id ) { unsigned int line; unsigned int word; _printf("\n*** <%s> block %x ***********************************\n", string , block_id ); for ( line = 0 ; line < 16 ; line++ ) { // display line index _printf("%x : ", line ); // display 8*4 bytes hexa for ( word=0 ; word<8 ; word++ ) { unsigned int byte = (line<<5) + (word<<2); unsigned int hexa = (buf[byte ]<<24) | (buf[byte+1]<<16) | (buf[byte+2]<< 8) | (buf[byte+3] ); _printf(" %X |", hexa ); } _printf("\n"); } _printf("*******************************************************************\n"); } // end _display_one_block() #endif #if GIET_DEBUG_FAT ///////////////////////////////////// static void _display_fat_descriptor() { _printf("\n############### FAT DESCRIPTOR ################################" "\nFAT initialized %x" "\nBlock Size (bytes) %x" "\nCluster Size (bytes) %x" "\nFAT region first lba %x" "\nFAT region size (blocks) %x" "\nDATA region first lba %x" "\nDATA region size (blocks) %x" "\nNumber of free clusters %x" "\nFirst free cluster index %x" "\nFat_cache_levels %d" "\n#################################################################\n", _fat.initialized, _fat.sector_size, _fat.cluster_size, _fat.fat_lba, _fat.fat_sectors, _fat.data_lba, _fat.data_sectors, _fat.free_clusters_number, _fat.first_free_cluster, _fat.fat_cache_levels ); } // end _display_fat_descriptor() #endif #if GIET_DEBUG_FAT //////////////////////////////////////////////////////// static void _display_clusters_list( fat_inode_t* inode ) { _printf("\n**************** clusters for <%s> ***********************\n", inode->name ); unsigned int next; unsigned int n = 0; unsigned int current = inode->cluster; while( (current < END_OF_CHAIN_CLUSTER_MIN) && (n < 1024) ) { _get_fat_entry( current , &next ); _printf(" > %X", current ); n++; if ( (n & 0x7) == 0 ) _printf("\n"); current = next; } _printf("\n"); } // end _display_clusters_list() #endif ///////////////////////////////////////////////////////////////////////////////// static int _fat_ioc_access( unsigned int use_irq, // descheduling if non zero unsigned int to_mem, // read / write unsigned int lba, // first sector on device unsigned int buf_vaddr, // memory buffer vaddr unsigned int count ) // number of sectors { // compute memory buffer physical address unsigned int flags; // for _v2p_translate unsigned long long buf_paddr; // buffer physical address if ( ((_get_mmu_mode() & 0x4) == 0 ) || USE_IOC_RDK ) // identity { buf_paddr = (unsigned long long)buf_vaddr; } else // V2P translation required { buf_paddr = _v2p_translate( buf_vaddr , &flags ); } #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_ioc_access(): enters at cycle %d\n" " to_mem = %d / vaddr = %x / paddr = %l / sectors = %d / lba = %x\n", _get_proctime(), to_mem, buf_vaddr, buf_paddr, count, lba ); #endif #if GIET_NO_HARD_CC // L1 cache inval (virtual addresses) if ( to_mem ) _dcache_buf_invalidate( buf_vaddr, count<<9 ); #endif #if ( USE_IOC_BDV ) // call the proper driver return( _bdv_access( use_irq , to_mem , lba , buf_paddr , count ) ); #elif ( USE_IOC_HBA ) return( _hba_access( use_irq , to_mem , lba , buf_paddr , count ) ); #elif ( USE_IOC_SDC ) return( _sdc_access( use_irq , to_mem , lba , buf_paddr , count ) ); #elif ( USE_IOC_SPI ) return( _spi_access( use_irq , to_mem , lba , buf_paddr , count ) ); #elif ( USE_IOC_RDK ) return( _rdk_access( use_irq , to_mem , lba , buf_paddr , count ) ); #else _printf("\n[FAT ERROR] _fat_ioc_access(): no IOC driver\n"); _exit(); #endif } // end _fat_ioc_access() ///////////////////////////////////////////////////////////////////// static inline unsigned int _get_levels_from_size( unsigned int size ) { if ( size <= (1<<18) ) return 1; // 64 clusters == 256 Kbytes else if ( size <= (1<<24) ) return 2; // 64 * 64 clusters => 16 Mbytes else if ( size <= (1<<30) ) return 3; // 64 * 64 * 64 cluster => 1 Gbytes else return 4; // 64 * 64 * 64 * 64 clusters } //////////////////////////////////////////////////////// static unsigned int _read_entry( unsigned int offset, unsigned int size, unsigned char* buffer, unsigned int little_endian ) { unsigned int n; unsigned int res = 0; if ( little_endian) { for( n = size ; n > 0 ; n-- ) res = (res<<8) | buffer[offset+n-1]; } else { for( n = 0 ; n < size ; n++ ) res = (res<<8) | buffer[offset+n]; } return res; } // end _read_entry ////////////////////////////////////////////////////////////////// static inline unsigned int _cluster_to_lba( unsigned int cluster ) { if ( cluster < 2 ) { _printf("\n[FAT ERROR] _cluster_to_lba(): cluster smaller than 2\n"); _exit(); } return ((cluster - 2) << 3) + _fat.data_lba; } ////////////////////////////////////////////////////// static inline unsigned char _to_lower(unsigned char c) { if (c >= 'A' && c <= 'Z') return (c | 0x20); else return c; } ////////////////////////////////////////////////////// static inline unsigned char _to_upper(unsigned char c) { if (c >= 'a' && c <= 'z') return (c & ~(0x20)); else return c; } /////////////////////////////////////////////////////////////////////////// static unsigned int _get_name_from_path( char* pathname, // input char* name, // output unsigned int* nb_read ) // input & output { // skip leading "/" character if ( pathname[*nb_read] == '/' ) *nb_read = *nb_read + 1; // initialises current indexes unsigned int i = *nb_read; unsigned int j = 0; while ( (pathname[i] != '/') && (pathname[i] != 0) ) { name[j++] = pathname[i++]; if ( j > NAME_MAX_SIZE ) return 1; } // set end of string name[j] = 0; // skip trailing "/" character if ( pathname[i] == '/' ) *nb_read += j+1; else *nb_read += j; return 0; } //////////////////////////////////////////////////////////////////// static unsigned int _get_last_name( char* pathname, // input char* name ) // output { unsigned int nb_read = 0; while ( pathname[nb_read] != 0 ) { if ( _get_name_from_path( pathname, name, &nb_read ) ) return 1; } return 0; } // end _get_last_name() //////////////////////////////////////////////////////////////////////////////// static void _get_name_from_short( unsigned char* buffer, // input: SFN dir_entry char* name ) // output: name { unsigned int i; unsigned int j = 0; // get name for ( i = 0; i < 8 && buffer[i] != ' '; i++ ) { name[j] = _to_lower( buffer[i] ); j++; } // get extension for ( i = 8; i < 8 + 3 && buffer[i] != ' '; i++ ) { // we entered the loop so there is an extension. add the dot if ( i == 8 ) { name[j] = '.'; j++; } name[j] = _to_lower( buffer[i] ); j++; } name[j] = '\0'; } /////////////////////////////////////////////////////////////////////////////// static void _get_name_from_long( unsigned char* buffer, // input : LFN dir_entry char* name ) // output : name { unsigned int name_offset = 0; unsigned int buffer_offset = get_length(LDIR_ORD); unsigned int l_name_1 = get_length(LDIR_NAME_1); unsigned int l_name_2 = get_length(LDIR_NAME_2); unsigned int l_name_3 = get_length(LDIR_NAME_3); unsigned int l_attr = get_length(LDIR_ATTR); unsigned int l_type = get_length(LDIR_TYPE); unsigned int l_chksum = get_length(LDIR_CHKSUM); unsigned int l_rsvd = get_length(LDIR_RSVD); unsigned int j = 0; unsigned int eof = 0; while ( (buffer_offset != DIR_ENTRY_SIZE) && (!eof) ) { while (j != l_name_1 && !eof ) { if ( (buffer[buffer_offset] == 0x00) || (buffer[buffer_offset] == 0xFF) ) { eof = 1; continue; } name[name_offset] = buffer[buffer_offset]; buffer_offset += 2; j += 2; name_offset++; } buffer_offset += (l_attr + l_type + l_chksum); j = 0; while (j != l_name_2 && !eof ) { if ( (buffer[buffer_offset] == 0x00) || (buffer[buffer_offset] == 0xFF) ) { eof = 1; continue; } name[name_offset] = buffer[buffer_offset]; buffer_offset += 2; j += 2; name_offset++; } buffer_offset += l_rsvd; j = 0; while (j != l_name_3 && !eof ) { if ( (buffer[buffer_offset] == 0x00) || (buffer[buffer_offset] == 0xFF) ) { eof = 1; continue; } name[name_offset] = buffer[buffer_offset]; buffer_offset += 2; j += 2; name_offset++; } } name[name_offset] = 0; } // end get_name_from_long() //////////////////////////////////////////////////////////// static fat_cache_node_t* _allocate_one_cache_node( fat_cache_node_t* first_child ) { fat_cache_node_t* cnode; unsigned int i; cnode = _malloc( sizeof(fat_cache_node_t) ); cnode->children[0] = first_child; for ( i = 1 ; i < 64 ; i++ ) cnode->children[i] = NULL; return cnode; } // end _allocate_one_cache_node() //////////////////////////////////////////////////////////// static fat_inode_t* _allocate_one_inode( char* name, unsigned int is_dir, unsigned int cluster, unsigned int size, unsigned int count, unsigned int dentry, unsigned int cache_allocate ) { fat_inode_t* new_inode = _malloc( sizeof(fat_inode_t) ); new_inode->parent = NULL; // set by _add_inode_in_tree() new_inode->next = NULL; // set by _add_inode_in_tree() new_inode->child = NULL; // set by _add_inode_in_tree() new_inode->cluster = cluster; new_inode->size = size; new_inode->cache = NULL; new_inode->levels = 0; new_inode->count = count; new_inode->is_dir = (is_dir != 0); new_inode->dentry = dentry; _strcpy( new_inode->name , name ); if ( cache_allocate ) { new_inode->cache = _allocate_one_cache_node( NULL ); new_inode->levels = _get_levels_from_size( size ); } return new_inode; } // end _allocate_one_inode() //////////////////////////////////////////////////// static void _add_inode_in_tree( fat_inode_t* child, fat_inode_t* parent ) { child->parent = parent; child->next = parent->child; parent->child = child; } // end _add_inode-in_tree() ////////////////////////////////////////////////////////// static void _remove_inode_from_tree( fat_inode_t* inode ) { fat_inode_t* current; fat_inode_t* prev = inode->parent->child; if ( inode == prev ) // removed inode is first in its linked list { inode->parent->child = inode->next; } else // removed inode is not the first { for( current = prev->next ; current ; current = current->next ) { if ( current == inode ) { prev->next = current->next; } prev = current; } } } // end _delete_one_inode() ////////////////////////////////////////////////////////////////////// static unsigned int _get_buffer_from_cache( fat_inode_t* inode, unsigned int cluster_id, fat_cache_desc_t** desc ) { // get cache pointer and levels fat_cache_node_t* node; // pointer on a 64-tree node unsigned int level; // cache level if ( inode == NULL ) // searched cache is the Fat-Cache { node = _fat.fat_cache_root; level = _fat.fat_cache_levels; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_buffer_from_cache(): enters in FAT-Cache" " for cluster_id = %d\n", cluster_id ); #endif } else // searched cache is a File-Cache { // add cache levels if needed while ( _get_levels_from_size( (cluster_id + 1) * 4096 ) > inode->levels ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_buffer_from_cache(): adding a File-Cache level\n" ); #endif inode->cache = _allocate_one_cache_node( inode->cache ); inode->levels++; } node = inode->cache; level = inode->levels; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_buffer_from_cache(): enters in File-Cache <%s>" " for cluster_id = %d\n", inode->name , cluster_id ); #endif } // search the 64-tree cache from top to bottom while ( level ) { // compute child index at each level unsigned int index = (cluster_id >> (6*(level-1))) & 0x3F; if ( level == 1 ) // last level => children are cluster descriptors { fat_cache_desc_t* pdesc = (fat_cache_desc_t*)node->children[index]; if ( pdesc == NULL ) // miss { // get missing cluster index lba unsigned int lba; unsigned int next; unsigned int current = inode->cluster; unsigned int count = cluster_id; if ( inode == NULL ) // searched cache is the Fat-Cache { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_buffer_from_cache(): miss in FAT-Cache for cluster_id %d\n", cluster_id ); #endif lba = _fat.fat_lba + (cluster_id << 3); } else // searched cache is a File-Cache { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_buffer_from_cache(): miss in File-Cache <%s> " "for cluster_id %d\n", inode->name, cluster_id ); #endif while ( count ) { if ( _get_fat_entry( current , &next ) ) return 1; current = next; count--; } lba = _cluster_to_lba( current ); } // allocate 4K buffer void* buf = _malloc( 4096 ); // load one cluster (8 blocks) from block device if ( _fat_ioc_access( 1, // descheduling 1, // to memory lba, (unsigned int)buf, 8 ) ) { _free( buf ); _printf("\n[FAT ERROR] _get_buffer_from_cache()" ": cannot access block device for lba = %x\n", lba ); return 1; } // allocate buffer descriptor pdesc = _malloc( sizeof(fat_cache_desc_t) ); pdesc->lba = lba; pdesc->buffer = buf; pdesc->dirty = 0; node->children[index] = pdesc; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_buffer_from_cache(): buffer loaded from device" " at vaddr = %x\n", (unsigned int)buf ); #endif } // return pdesc pointer *desc = pdesc; // prepare next iteration level--; } else // not last level => children are 64-tree nodes { fat_cache_node_t* child = (fat_cache_node_t*)node->children[index]; if ( child == NULL ) // miss { // allocate a cache node if miss child = _allocate_one_cache_node( NULL ); node->children[index] = child; } // prepare next iteration node = child; level--; } } // end while return 0; } // end _get_buffer_from_cache() ///////////////////////////////////// static unsigned int _update_fs_info() { // update buffer if miss if ( _fat.fs_info_lba != _fat.block_buffer_lba ) { if ( _fat_ioc_access( 1, // descheduling 1, // read _fat.fs_info_lba, (unsigned int)_fat.block_buffer, 1 ) ) // one block { _printf("\n[FAT_ERROR] _update_fs_info(): cannot read block\n"); return 1; } _fat.block_buffer_lba = _fat.fs_info_lba; } // update FAT buffer unsigned int* ptr; ptr = (unsigned int*)(_fat.block_buffer + get_offset(FS_FREE_CLUSTERS) ); *ptr = _fat.free_clusters_number; ptr = (unsigned int*)(_fat.block_buffer + get_offset(FS_FREE_CLUSTER_HINT) ); *ptr = _fat.first_free_cluster; // write bloc to FAT if ( _fat_ioc_access( 1, // descheduling 0, // write _fat.fs_info_lba, (unsigned int)_fat.block_buffer, 1 ) ) // one block { _printf("\n[FAT_ERROR] _update_fs_info(): cannot write block\n"); return 1; } #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _update_fs_info(): nb_free = %x / first_free = %x\n", _fat.free_clusters_number , _fat.first_free_cluster ); #endif return 0; } // end _update_fs_info() ///////////////////////////////////////////////////////////////// static inline unsigned int _get_fat_entry( unsigned int cluster, unsigned int* value ) { // compute cluster_id & entry_id in FAT // a FAT cluster is an array of 1024 unsigned int entries unsigned int cluster_id = cluster >> 10; unsigned int entry_id = cluster & 0x3FF; // get pointer on the relevant cluster descriptor in FAT cache fat_cache_desc_t* pdesc; unsigned int* buffer; if ( _get_buffer_from_cache( NULL, // Fat-Cache cluster_id, &pdesc ) ) return 1; // get value from FAT slot buffer = (unsigned int*)pdesc->buffer; *value = buffer[entry_id]; return 0; } // end _get_fat_entry() //////////////////////////////////////////////////////////////// static inline unsigned int _set_fat_entry( unsigned int cluster, unsigned int value ) { // compute cluster_id & entry_id in FAT // a FAT cluster is an array of 1024 unsigned int entries unsigned int cluster_id = cluster >> 10; unsigned int entry_id = cluster & 0x3FF; // get pointer on the relevant cluster descriptor in FAT cache fat_cache_desc_t* pdesc; unsigned int* buffer; if ( _get_buffer_from_cache( NULL, // Fat-Cache cluster_id, &pdesc ) ) return 1; // set value into FAT slot buffer = (unsigned int*)pdesc->buffer; buffer[entry_id] = value; pdesc->dirty = 1; return 0; } // end _set_fat_entry() ////////////////////////////////////////////////////// static void _allocate_one_buffer( fat_inode_t* inode, unsigned int cluster_id, unsigned int cluster ) { // add cache levels if needed while ( _get_levels_from_size( (cluster_id + 1) * 4096 ) > inode->levels ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _allocate_one_buffer(): adding a cache level\n" ); #endif inode->cache = _allocate_one_cache_node( inode->cache ); inode->levels++; } // search the 64-tree cache from top to bottom fat_cache_node_t* node = inode->cache; unsigned int level; for ( level = inode->levels; level != 0; level-- ) { // compute child index unsigned int index = (cluster_id >> (6*(level-1))) & 0x3F; if ( level == 1 ) // last level => children are cluster descriptors { fat_cache_desc_t* pdesc = (fat_cache_desc_t*)node->children[index]; if ( pdesc != NULL ) // slot not empty!!! { _printf("\n[FAT ERROR] allocate_one buffer(): slot not empty " "in File-Cache <%s> / cluster_id = %d\n", inode->name , cluster_id ); _exit(); } #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _allocate_one_buffer(): buffer allocated to <%s> for cluster_id %d\n", inode->name, cluster_id ); #endif // allocate buffer descriptor pdesc = _malloc( sizeof(fat_cache_desc_t) ); pdesc->lba = _cluster_to_lba( cluster ); pdesc->buffer = _malloc( 4096 ); pdesc->dirty = 1; node->children[index] = pdesc; } else // not last level => children are 64-tree nodes { fat_cache_node_t* child = (fat_cache_node_t*)node->children[index]; if ( child == NULL ) // miss { // allocate a cache node if miss child = _allocate_one_cache_node( NULL ); node->children[index] = child; } // prepare next iteration node = child; } } // end for } // end _allocate_one_buffer /////////////////////////////////////////////////////////////////// static unsigned int _allocate_one_cluster( unsigned int* cluster ) { unsigned int nb_free = _fat.free_clusters_number; unsigned int free = _fat.first_free_cluster; // scan FAT to get next free cluster index unsigned int current = free; unsigned int found = 0; unsigned int max = (_fat.data_sectors >> 3); unsigned int value; do { // increment current current++; // get FAT entry indexed by current if ( _get_fat_entry( current , &value ) ) return 1; // test if free if ( value == FREE_CLUSTER ) found = 1; } while ( (current < max) && (found == 0) ); // check found if ( found == 0 ) { _printf("\n[FAT_ERROR] _allocate_one_cluster(): unconsistent FAT state"); return 1; } // update allocated FAT slot if ( _set_fat_entry( free , END_OF_CHAIN_CLUSTER_MAX ) ) return 1; // update FAT descriptor global variables _fat.free_clusters_number = nb_free - 1; _fat.first_free_cluster = current; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _allocate_one_cluster(): cluster = %x / first_free = %x\n", free , current ); #endif // returns free cluster index *cluster = free; return 0; } // end _allocate_one_cluster() ////////////////////////////////////////////////////////////////////////// static unsigned int _update_device_from_cache( unsigned int levels, fat_cache_node_t* root, char* string ) { unsigned int index; unsigned int ret = 0; if ( levels == 1 ) // last level => children are cluster descriptors { for( index = 0 ; index < 64 ; index++ ) { fat_cache_desc_t* pdesc = root->children[index]; if ( pdesc != NULL ) { // update cluster on device if dirty if ( pdesc->dirty ) { if ( _fat_ioc_access( 1, // descheduling 0, // to block device pdesc->lba, (unsigned int)pdesc->buffer, 8 ) ) { _printf("\n[FAT_ERROR] _update_device from_cache(): " " cannot access lba = %x\n", pdesc->lba ); ret = 1; } else { pdesc->dirty = 0; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _update_device_from_cache(): cluster_id = %d for <%s>\n", index , string ); #endif } } } } } else // not the last level = recursive call on each children { for( index = 0 ; index < 64 ; index++ ) { fat_cache_node_t* pnode = root->children[index]; if ( pnode != NULL ) { if ( _update_device_from_cache( levels - 1, root->children[index], string ) ) ret = 1; } } } return ret; } // end _update_device_from_cache() /////////////////////////////////////////////////////////////////// static void _release_cache_memory( fat_cache_node_t* root, unsigned int levels ) { unsigned int i; if ( levels == 1 ) // last level => children are cluster descriptors { for( i = 0 ; i < 64 ; i++ ) { fat_cache_desc_t* pdesc = root->children[i]; if ( pdesc != NULL ) { // check dirty if ( pdesc->dirty ) _printf("\n[FAT ERROR] _release_cache_memory(): dirty cluster\n"); _free( pdesc->buffer ); _free( pdesc ); root->children[i] = NULL; } } } else // not the last level = recursive call on each children { for( i = 0 ; i < 64 ; i++ ) { fat_cache_node_t* cnode = root->children[i]; if ( cnode != NULL ) { _release_cache_memory( cnode, levels - 1 ); _free( cnode ); root->children[i] = NULL; } } } } // end _release_cache_memory() ///////////////////////////////////////////////////////////// static unsigned int _clusters_allocate( fat_inode_t* inode, unsigned int nb_current_clusters, unsigned int nb_required_clusters ) { // Check if FAT contains enough free clusters if ( nb_required_clusters > _fat.free_clusters_number ) { _printf("\n[FAT ERROR] _clusters_allocate(): required_clusters = %d" " / free_clusters = %d\n", nb_required_clusters , _fat.free_clusters_number ); return 1; } #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _clusters_allocate(): enters for <%s> / nb_current_clusters = %d " "/ nb_required_clusters = %d\n", inode->name , nb_current_clusters , nb_required_clusters ); #endif // compute last allocated cluster index when (nb_current_clusters > 0) unsigned int current = inode->cluster; unsigned int next; unsigned int last; if ( nb_current_clusters ) // clusters allocated => search last { while ( current < END_OF_CHAIN_CLUSTER_MIN ) { // get next cluster if ( _get_fat_entry( current , &next ) ) return 1; last = current; current = next; } } // Loop on the new clusters to be allocated // if (nb_current_clusters == 0) the first new cluster index must // be written in inode->cluster field // if (nb_current_clusters > 0) the first new cluster index must // be written in FAT[last] unsigned int cluster_id; unsigned int new; for ( cluster_id = nb_current_clusters ; cluster_id < (nb_current_clusters + nb_required_clusters) ; cluster_id ++ ) { // allocate one cluster on block device if ( _allocate_one_cluster( &new ) ) return 1; // allocate one 4K buffer to File-Cache _allocate_one_buffer( inode, cluster_id, new ); if ( cluster_id == 0 ) // update inode { inode->cluster = new; } else // update FAT { if ( _set_fat_entry( last , new ) ) return 1; } #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _clusters_allocate(): done for cluster_id = %d / cluster = %x\n", cluster_id , new ); #endif // update loop variables last = new; } // end for loop // update FAT : last slot should contain END_OF_CHAIN_CLUSTER_MAX if ( _set_fat_entry( last , END_OF_CHAIN_CLUSTER_MAX ) ) return 1; // update the FAT on block device if ( _update_device_from_cache( _fat.fat_cache_levels, _fat.fat_cache_root, "FAT" ) ) return 1; return 0; } // end _clusters_allocate() ////////////////////////////////////////////////////////////// static unsigned int _clusters_release( unsigned int cluster ) { // scan the FAT unsigned int current = cluster; unsigned int next; do { // get next_cluster index if ( _get_fat_entry( current , &next ) ) return 1; // release current_cluster if ( _set_fat_entry( current , FREE_CLUSTER ) ) return 1; // update first_free_cluster and free_clusters_number in FAT descriptor _fat.free_clusters_number = _fat.free_clusters_number + 1; if ( _fat.first_free_cluster > current ) _fat.first_free_cluster = current; // update loop variable current = next; } while ( next < END_OF_CHAIN_CLUSTER_MIN ); // update the FAT on block device if ( _update_device_from_cache( _fat.fat_cache_levels, _fat.fat_cache_root, "FAT" ) ) return 1; return 0; } // end _clusters_release() /////////////////////////////////////////////////////////// static void _add_special_directories( fat_inode_t* child, fat_inode_t* parent ) { // get first File-Cache buffer for child fat_cache_desc_t* pdesc = (fat_cache_desc_t*)child->cache->children[0]; unsigned char* entry; unsigned int i; unsigned int cluster; unsigned int size; // set "." entry (32 bytes) cluster = child->cluster; size = child->size; entry = pdesc->buffer; for ( i = 0 ; i < 32 ; i++ ) { if (i == 0 ) entry[i] = 0x2E; // SFN else if (i < 11) entry[i] = 0x20; // SFN else if (i == 11) entry[i] = 0x10; // ATTR == dir else if (i == 20) entry[i] = cluster>>16; // cluster.B2 else if (i == 21) entry[i] = cluster>>24; // cluster.B3 else if (i == 26) entry[i] = cluster>>0; // cluster.B0 else if (i == 27) entry[i] = cluster>>8; // cluster.B1 else if (i == 28) entry[i] = size>>0; // size.B0 else if (i == 29) entry[i] = size>>8; // size.B1 else if (i == 30) entry[i] = size>>16; // size.B2 else if (i == 31) entry[i] = size>>24; // size.B3 else entry[i] = 0x00; } // set ".." entry (32 bytes) cluster = parent->cluster; size = parent->size; entry = pdesc->buffer + 32; for ( i = 0 ; i < 32 ; i++ ) { if (i < 2 ) entry[i] = 0x2E; // SFN else if (i < 11) entry[i] = 0x20; // SFN else if (i == 11) entry[i] = 0x10; // ATTR == dir else if (i == 20) entry[i] = cluster>>16; // cluster.B2 else if (i == 21) entry[i] = cluster>>24; // cluster.B3 else if (i == 26) entry[i] = cluster>>0; // cluster.B0 else if (i == 27) entry[i] = cluster>>8; // cluster.B1 else if (i == 28) entry[i] = size>>0; // size.B0 else if (i == 29) entry[i] = size>>8; // size.B1 else if (i == 30) entry[i] = size>>16; // size.B2 else if (i == 31) entry[i] = size>>24; // size.B3 else entry[i] = 0x00; } } // end _add_special_directories //////////////////////////////////////////////////////////// static unsigned int _is_ancestor( fat_inode_t* a, fat_inode_t* b ) { while ( b ) { if ( a == b ) return 1; b = b->parent; } return 0; } // _is_ancestor() //////////////////////////////////////////////////////////// static unsigned int _check_name_length( char* name, unsigned int* length, unsigned int* nb_lfn ) { unsigned int len = _strlen( name ); if ( len <= 13 ) { *length = len; *nb_lfn = 1; return 0; } else if ( len <= 26 ) { *length = len; *nb_lfn = 2; return 0; } else if ( len <= 31 ) { *length = len; *nb_lfn = 3; return 0; } else { return 1; } } // _check_name_length() /////////////////////////////////////////////////////////// static unsigned int _get_nb_entries( fat_inode_t* inode, unsigned int* nb_entries ) { // scan directory until "end of directory" with two embedded loops: // - scan the clusters allocated to this directory // - scan the entries to find NO_MORE_ENTRY fat_cache_desc_t* pdesc; // pointer on buffer descriptor unsigned char* buffer; // 4 Kbytes buffer (one cluster) unsigned int ord; // ORD field in directory entry unsigned int attr; // ATTR field in directory entry unsigned int cluster_id = 0; // cluster index in directory unsigned int offset = 0; // position in scanned buffer unsigned int found = 0; // NO_MORE_ENTRY found unsigned int count = 0; // number of valid NORMAL entries // loop on clusters allocated to directory while ( found == 0 ) { // get one 4 Kytes buffer from File_Cache if ( _get_buffer_from_cache( inode, cluster_id, &pdesc ) ) return 1; buffer = pdesc->buffer; // loop on directory entries in buffer while ( (offset < 4096) && (found == 0) ) { attr = _read_entry( DIR_ATTR , buffer + offset , 0 ); ord = _read_entry( LDIR_ORD , buffer + offset , 0 ); if ( ord == NO_MORE_ENTRY ) { found = 1; } else if ( ord == FREE_ENTRY ) // free entry => skip { offset = offset + 32; } else if ( attr == ATTR_LONG_NAME_MASK ) // LFN entry => skip { offset = offset + 32; } else // NORMAL entry { offset = offset + 32; count++; } } // end loop on directory entries cluster_id++; offset = 0; } // end loop on clusters // return nb_entries *nb_entries = count; return 0; } // end dir_not_empty() /////////////////////////////////////////////////////////// static unsigned int _add_dir_entry( fat_inode_t* child, fat_inode_t* parent ) { // get child attributes unsigned int is_dir = child->is_dir; unsigned int size = child->size; unsigned int cluster = child->cluster; // compute number of required entries to store child->name // - Short name (less than 13 characters) require 3 entries: // one LFN entry / one NORMAL entry / one NO_MORE_ENTRY entry. // - Longer names (up to 31 characters) can require 4 or 5 entries: // 2 or 3 LFN entries / one NORMAL entry / one NO_MORE entry. unsigned int length; unsigned int nb_lfn; if ( _check_name_length( child->name, &length, &nb_lfn ) ) return 1; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _add_dir_entry(): try to add <%s> in <%s> / nb_lfn = %d\n", child->name , parent->name, nb_lfn ); #endif // Find end of directory : two embedded loops: // - scan the clusters allocated to this directory // - scan the entries to find NO_MORE_ENTRY fat_cache_desc_t* pdesc; // pointer on buffer descriptor unsigned char* buffer; // 4 Kbytes buffer (one cluster) unsigned int cluster_id = 0; // cluster index in directory unsigned int offset = 0; // position in scanned buffer unsigned int found = 0; // NO_MORE_ENTRY found // loop on clusters allocated to directory while ( found == 0 ) { // get one 4 Kytes buffer from File_Cache if ( _get_buffer_from_cache( parent, cluster_id, &pdesc ) ) return 1; buffer = pdesc->buffer; // loop on directory entries in buffer while ( (offset < 4096) && (found == 0) ) { if ( _read_entry( LDIR_ORD , buffer + offset , 0 ) == NO_MORE_ENTRY ) { found = 1; pdesc->dirty = 1; } else { offset = offset + 32; } } // end loop on entries if ( found == 0 ) { cluster_id++; offset = 0; } } // end loop on clusters #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _add_dir_entry(): get NO_MORE directory entry : " " buffer = %x / offset = %x / cluster_id = %d\n", (unsigned int)buffer , offset , cluster_id ); #endif // enter FSM : // The new child requires to write 3, 4, or 5 directory entries. // To actually register the new child, we use a 5 steps FSM // (one state per entry to be written), that is traversed as: // LFN3 -> LFN2 -> LFN1 -> NORMAL -> NOMORE // The buffer and first directory entry to be written are identified // by the variables : buffer / cluster_id / offset unsigned char* name = (unsigned char*)child->name; unsigned int step; // FSM state if ( nb_lfn == 1 ) step = 3; else if ( nb_lfn == 2 ) step = 4; else if ( nb_lfn == 3 ) step = 5; unsigned int i; // byte index in 32 bytes directory unsigned int c; // character index in name unsigned char* entry; // buffer + offset; while ( step ) { // get another buffer if required if ( offset >= 4096 ) // new buffer required { if ( _get_buffer_from_cache( parent, cluster_id + 1, &pdesc ) ) return 1; buffer = pdesc->buffer; pdesc->dirty = 1; offset = 0; } // compute directory entry address entry = buffer + offset; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _add_dir_entry(): FSM step = %d /" " offset = %x / nb_lfn = %d\n", step, offset, nb_lfn ); #endif // write one 32 bytes directory entry per iteration switch ( step ) { case 5: // write LFN3 entry { c = 26; // scan the 32 bytes in dir_entry for ( i = 0 ; i < 32 ; i++ ) { if (i == 0) { if ( nb_lfn == 3) entry[i] = 0x43; else entry[i] = 0x03; } else if ( ( ((i >= 1 ) && (i<=10) && ((i&1)==1)) || ((i >= 14) && (i<=25) && ((i&1)==0)) || ((i >= 28) && (i<=31) && ((i&1)==0)) ) && ( c < length ) ) { entry[i] = name[c]; c++; } else if (i == 11) entry[i] = 0x0F; else if (i == 12) entry[i] = 0xCA; else entry[i] = 0x00; } step--; break; } case 4: // write LFN2 entry { c = 13; // scan the 32 bytes in dir_entry for ( i = 0 ; i < 32 ; i++ ) { if (i == 0) { if ( nb_lfn == 2) entry[i] = 0x42; else entry[i] = 0x02; } else if ( ( ((i >= 1 ) && (i<=10) && ((i&1)==1)) || ((i >= 14) && (i<=25) && ((i&1)==0)) || ((i >= 28) && (i<=31) && ((i&1)==0)) ) && ( c < length ) ) { entry[i] = name[c]; c++; } else if (i == 11) entry[i] = 0x0F; else if (i == 12) entry[i] = 0xCA; else entry[i] = 0x00; } step--; break; } case 3: // Write LFN1 entry { c = 0; // scan the 32 bytes in dir_entry for ( i = 0 ; i < 32 ; i++ ) { if (i == 0) { if ( nb_lfn == 1) entry[i] = 0x41; else entry[i] = 0x01; } else if ( ( ((i >= 1 ) && (i<=10) && ((i&1)==1)) || ((i >= 14) && (i<=25) && ((i&1)==0)) || ((i >= 28) && (i<=31) && ((i&1)==0)) ) && ( c < length ) ) { entry[i] = name[c]; c++; } else if (i == 11) entry[i] = 0x0F; else if (i == 12) entry[i] = 0xCA; else entry[i] = 0x00; } step--; break; } case 2: // write NORMAL entry { c = 0; // scan the 32 bytes in dir_entry for ( i = 0 ; i < 32 ; i++ ) { if ( (i < 8) && (c < length) ) // SFN { entry[i] = _to_upper( name[c] ); c++; } else if (i < 11) entry[i] = 0x20; // EXT else if (i == 11) // ATTR { if (is_dir) entry[i] = 0x10; else entry[i] = 0x20; } else if (i == 20) entry[i] = cluster>>16; // cluster.B2 else if (i == 21) entry[i] = cluster>>24; // cluster.B3 else if (i == 26) entry[i] = cluster>>0; // cluster.B0 else if (i == 27) entry[i] = cluster>>8; // cluster.B1 else if (i == 28) entry[i] = size>>0; // size.B0 else if (i == 29) entry[i] = size>>8; // size.B1 else if (i == 30) entry[i] = size>>16; // size.B2 else if (i == 31) entry[i] = size>>24; // size.B3 else entry[i] = 0x00; } // update the dentry field in child inode child->dentry = ((cluster_id<<12) + offset)>>5; step--; break; } case 1: // write NOMORE entry { step--; entry [0] = 0x00; break; } } // end switch step offset += 32; } // exit while => exit FSM #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) { _printf("\n[DEBUG FAT] _add_dir_entry(): <%s> successfully added in <%s>\n", child->name , parent->name ); } #endif return 0; } // end _add_dir_entry //////////////////////////////////////////////////////////// static unsigned int _remove_dir_entry( fat_inode_t* inode ) { // compute number of LFN entries unsigned int length; unsigned int nb_lfn; if ( _check_name_length( inode->name, &length, &nb_lfn ) ) return 1; // get cluster_id and offset in parent directory cache unsigned int dentry = inode->dentry; unsigned int cluster_id = dentry >> 7; unsigned int offset = (dentry & 0x7F)<<5; // get buffer from parent directory cache unsigned char* buffer; fat_cache_desc_t* pdesc; if ( _get_buffer_from_cache( inode->parent, cluster_id, &pdesc ) ) return 1; buffer = pdesc->buffer; pdesc->dirty = 1; // invalidate NORMAL entry in directory cache buffer[offset] = 0xE5; // invalidate LFN entries while ( nb_lfn ) { if (offset == 0) // we must load buffer for (cluster_id - 1) { if ( cluster_id == 0 ) break; if ( _get_buffer_from_cache( inode->parent, cluster_id - 1, &pdesc ) ) return 1; buffer = pdesc->buffer; pdesc->dirty = 1; offset = 4096; } offset = offset - 32; // check for LFN entry if ( _read_entry( DIR_ATTR , buffer + offset , 0 ) != ATTR_LONG_NAME_MASK ) break; // invalidate LFN entry buffer[offset] = 0xE5; nb_lfn--; } return 0; } // end _remove_dir_entry //////////////////////////////////////////////////////////// static unsigned int _update_dir_entry( fat_inode_t* inode ) { // get Cache-File buffer containing the parent directory entry // 128 directories entries in one 4 Kbytes buffer fat_cache_desc_t* pdesc; unsigned char* buffer; unsigned int cluster_id = inode->dentry>>7; unsigned int offset = (inode->dentry & 0x7F)<<5; if ( _get_buffer_from_cache( inode->parent, cluster_id, &pdesc ) ) return 1; buffer = pdesc->buffer; pdesc->dirty = 1; // update size field buffer[offset + 28] = inode->size>>0; // size.B0 buffer[offset + 29] = inode->size>>8; // size.B1 buffer[offset + 30] = inode->size>>16; // size.B2 buffer[offset + 31] = inode->size>>24; // size.B3 // update cluster field buffer[offset + 26] = inode->cluster>>0; // cluster.B0 buffer[offset + 27] = inode->cluster>>8; // cluster.B1 buffer[offset + 20] = inode->cluster>>16; // cluster.B2 buffer[offset + 21] = inode->cluster>>24; // cluster.B3 return 0; } // end _update_dir_entry() ////////////////////////////////////////////////////////////////// static unsigned int _get_child_from_parent( fat_inode_t* parent, char* name, fat_inode_t** inode ) { fat_inode_t* current; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_child_from_parent(): search <%s> in directory <%s>\n", name , parent->name ); #endif // scan inodes in the parent directory for ( current = parent->child ; current ; current = current->next ) { if ( _strcmp( name , current->name ) == 0 ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_child_from_parent(): found inode <%s> in directory <%s>\n", name , parent->name ); #endif *inode = current; return 0; // name found } } // not found in Inode-Tree => access the parent directory // file_cache. Two embedded loops: // - scan the clusters allocated to this directory // - scan the directory entries in each 4 Kbytes buffer unsigned char* buffer; // pointer on one cache buffer char cname[32]; // buffer for one full entry name char lfn1[16]; // buffer for one partial name char lfn2[16]; // buffer for one partial name char lfn3[16]; // buffer for one partial name unsigned int size; // searched file/dir size (bytes) unsigned int cluster; // searched file/dir cluster index unsigned int is_dir; // searched file/dir type unsigned int attr; // directory entry ATTR field unsigned int ord; // directory entry ORD field unsigned int lfn = 0; // LFN entries number unsigned int dentry; // directory entry index unsigned int offset = 0; // byte offset in buffer unsigned int cluster_id = 0; // cluster index in directory int found = 0; // not found (0) / name found (1) / end of dir (-1) #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_child_from_parent(): does not found inode <%s>" " in directory <%s> => search in cache\n", name , parent->name ); #endif // scan the clusters allocated to parent directory while ( found == 0 ) { // get one 4 Kytes buffer from parent File_Cache fat_cache_desc_t* pdesc; if ( _get_buffer_from_cache( parent, cluster_id, &pdesc ) ) return 2; buffer = pdesc->buffer; // scan this buffer until end of directory, end of buffer, or name found while( (offset < 4096) && (found == 0) ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_child_from_parent(): scan buffer %d for <%s>\n", cluster_id , name ); #endif attr = _read_entry( DIR_ATTR , buffer + offset , 0 ); ord = _read_entry( LDIR_ORD , buffer + offset , 0 ); if (ord == NO_MORE_ENTRY) // no more entry in directory => break { found = -1; } else if ( ord == FREE_ENTRY ) // free entry => skip { offset = offset + 32; } else if ( attr == ATTR_LONG_NAME_MASK ) // LFN entry => get partial name { unsigned int seq = ord & 0x3; lfn = (seq > lfn) ? seq : lfn; if ( seq == 1 ) _get_name_from_long( buffer + offset, lfn1 ); else if ( seq == 2 ) _get_name_from_long( buffer + offset, lfn2 ); else if ( seq == 3 ) _get_name_from_long( buffer + offset, lfn3 ); offset = offset + 32; } else // NORMAL entry { // build the extracted name if ( lfn == 0 ) { _get_name_from_short( buffer + offset , cname ); } else if ( lfn == 1 ) { _strcpy( cname , lfn1 ); } else if ( lfn == 2 ) { _strcpy( cname , lfn1 ); _strcpy( cname + 13 , lfn2 ); } else if ( lfn == 3 ) { _strcpy( cname , lfn1 ); _strcpy( cname + 13 , lfn2 ); _strcpy( cname + 26 , lfn3 ); } // test if extracted name == searched name if ( _strcmp( name , cname ) == 0 ) { cluster = (_read_entry( DIR_FST_CLUS_HI , buffer + offset , 1 ) << 16) | (_read_entry( DIR_FST_CLUS_LO , buffer + offset , 1 ) ) ; dentry = ((cluster_id<<12) + offset)>>5; is_dir = ((attr & ATTR_DIRECTORY) == ATTR_DIRECTORY); size = _read_entry( DIR_FILE_SIZE , buffer + offset , 1 ); found = 1; } offset = offset + 32; lfn = 0; } } // end loop on directory entries cluster_id++; offset = 0; } // end loop on buffers if ( found == -1 ) // found end of directory in parent directory { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_child_from_parent(): found end of directory in <%s>\n", parent->name ); #endif *inode = NULL; return 1; } else // found searched name in parent directory { // allocate a new inode and an empty Cache-File *inode = _allocate_one_inode( name, is_dir, cluster, size, 0, // count dentry, 1 ); // cache_allocate // introduce it in Inode-Tree _add_inode_in_tree( *inode , parent ); #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_child_from_parent(): found <%s> on device\n", name ); #endif return 0; } } // end _get_child_from_parent() ////////////////////////////////////////////////////////////////// static unsigned int _get_inode_from_path( char* pathname, fat_inode_t** inode ) { char name[32]; // buffer for one name in pathname unsigned int nb_read; // number of characters written in name[] fat_inode_t* parent; // parent inode fat_inode_t* child; // child inode unsigned int last; // while exit condition unsigned int code; // return value #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_inode_from_path(): enters for path <%s>\n", pathname ); #endif // handle root directory case if ( _strcmp( pathname , "/" ) == 0 ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_inode_from_path(): found root inode for <%s>\n", pathname ); #endif *inode = _fat.inode_tree_root; return 0; } // If the pathname is not "/", we traverse the inode tree from the root. // We use _get_name_from_path() to scan pathname and extract inode names. // We use _get_child_from_parent() to scan each directory in the path. last = 0; nb_read = 0; // number of characters analysed in path parent = _fat.inode_tree_root; // Inode-Tree root while ( !last ) { // get searched file/dir name if ( _get_name_from_path( pathname, name, &nb_read ) ) { return 3; // error : name too long } // compute last iteration condition last = (pathname[nb_read] == 0); #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_inode_from_path(): got name <%s>\n", name ); #endif if ( _strcmp( name, ".." ) == 0) { // found special name "..", try to go up code = 0; if ( parent->parent ) child = parent->parent; else child = parent; } else if ( _strcmp( name, "." ) == 0 ) { // found special name ".", stay on the same level code = 0; child = parent; } else { // get child inode from parent directory code = _get_child_from_parent( parent, name, &child ); // we need to find the child inode for all non terminal names if ( (code == 2) || ((code == 1 ) && !last) ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_inode_from_path(): neither parent, nor child found for <%s>\n", pathname ); #endif return 2; // error : parent inode not found } } // update parent if not the last iteration if ( !last ) parent = child; } // end while // returns inode pointer if (code == 0 ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_inode_from_path(): found inode for <%s>\n", pathname ); #endif *inode = child; } else { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _get_inode_from_path(): found only parent inode for <%s>\n", pathname ); #endif *inode = parent; } return code; // can be 0 (found) or 1 (not found) } // end _get_inode_from_path() ////////////////////////////////////////////////////////////// static unsigned int _remove_node_from_fs( fat_inode_t* inode ) { // check for root node if ( !inode->parent ) return 1; // remove entry in parent directory if ( _remove_dir_entry( inode ) ) return 1; // update parent directory on device if ( _update_device_from_cache( inode->parent->levels, inode->parent->cache, inode->parent->name ) ) return 1; // release clusters allocated to file/dir in DATA region if ( _clusters_release( inode->cluster ) ) return 1; // release File-Cache _release_cache_memory( inode->cache, inode->levels ); _free ( inode->cache ); // remove inode from Inode-Tree _remove_inode_from_tree( inode ); // release inode _free ( inode ); return 0; } // end _remove_node_from_fs() ////////////////////////////////////////////////////////////////// static unsigned int _next_cluster_no_cache( unsigned int cluster, unsigned int* next ) { // compute cluster_id and slot_id // each cluster contains 1024 slots (4 bytes per slot) unsigned int cluster_id = cluster >> 10; unsigned int slot_id = cluster & 0x3FF; // compute lba of cluster identified by cluster_id unsigned int lba = _fat.fat_lba + (cluster_id << 3); // get cluster containing the adressed FAT slot in FAT buffer if ( _fat_buffer_fat_lba != lba ) { if ( _fat_ioc_access( 0, // no descheduling 1, // read lba, (unsigned int)_fat_buffer_fat, 8 ) ) { _printf("\n[FAT ERROR] _next_cluster_no_cache(): " "cannot load lba = %x into fat_buffer\n", lba ); return 1; } _fat_buffer_fat_lba = lba; } // return next cluster index unsigned int* buf = (unsigned int*)_fat_buffer_fat; *next = buf[slot_id]; return 0; } // end _next_cluster_no_cache() ///////////////////////////////////////////////////////////////// static unsigned int _file_info_no_cache( char* pathname, unsigned int* file_cluster, unsigned int* file_size ) { #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _file_info_no_cache(): enters for path <%s>\n", pathname ); #endif char name[32]; // buffer for one name in the analysed pathname char lfn1[16]; // buffer for a partial name in LFN entry char lfn2[16]; // buffer for a partial name in LFN entry char lfn3[16]; // buffer for a partial name in LFN entry char cname[32]; // buffer for a full name in a directory entry unsigned int nb_read; // number of characters analysed in path unsigned int parent_cluster; // cluster index for the parent directory unsigned int child_cluster = 0; // cluster index for the searched file/dir unsigned int child_size = 0; // size of the searched file/dir unsigned int child_is_dir; // type of the searched file/dir unsigned int offset; // offset in a 4 Kbytes buffer unsigned int ord; // ORD field in a directory entry unsigned int attr; // ATTR field in a directory entry unsigned int lfn = 0; // number of lfn entries unsigned char* buf; // pointer on a 4 Kbytes buffer unsigned int found; // name found in current directory entry // Three embedded loops: // - scan pathname to extract file/dir names, // - for each name, scan the clusters of the parent directory // - for each cluster, scan the 4 Kbytes buffer to find the file/dir name // The starting point is the root directory (cluster 2) nb_read = 0; parent_cluster = 2; // scan pathname while ( pathname[nb_read] != 0 ) { // get searched file/dir name if ( _get_name_from_path( pathname, name, &nb_read ) ) return 1; #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _file_info_no_cache(): search name <%s>" " in cluster %x\n", name , parent_cluster ); #endif found = 0; // scan clusters containing the parent directory while ( found == 0 ) { // compute lba unsigned int lba = _cluster_to_lba( parent_cluster ); // load one cluster of the parent directory into data_buffer if ( _fat_buffer_data_lba != lba ) { if ( _fat_ioc_access( 0, // no descheduling 1, // read lba, (unsigned int)_fat_buffer_data, 8 ) ) { _printf("\n[FAT ERROR] _file_info_no_cache(): " "cannot load lba = %x into data_buffer\n", lba ); return 1; } _fat_buffer_data_lba = lba; } offset = 0; // scan this 4 Kbytes buffer while ( (offset < 4096) && (found == 0) ) { buf = _fat_buffer_data + offset; attr = _read_entry( DIR_ATTR , buf , 0 ); ord = _read_entry( LDIR_ORD , buf , 0 ); if (ord == NO_MORE_ENTRY) // no more entry => break { found = 2; } else if ( ord == FREE_ENTRY ) // free entry => skip { offset = offset + 32; } else if ( attr == ATTR_LONG_NAME_MASK ) // LFN entry => get partial name { unsigned int seq = ord & 0x3; lfn = (seq > lfn) ? seq : lfn; if ( seq == 1 ) _get_name_from_long( buf, lfn1 ); else if ( seq == 2 ) _get_name_from_long( buf, lfn2 ); else if ( seq == 3 ) _get_name_from_long( buf, lfn3 ); offset = offset + 32; } else // NORMAL entry { // build the full mame for current directory entry if ( lfn == 0 ) { _get_name_from_short( buf , cname ); } else if ( lfn == 1 ) { _strcpy( cname , lfn1 ); } else if ( lfn == 2 ) { _strcpy( cname , lfn1 ); _strcpy( cname + 13 , lfn2 ); } else if ( lfn == 3 ) { _strcpy( cname , lfn1 ); _strcpy( cname + 13 , lfn2 ); _strcpy( cname + 26 , lfn3 ); } // test if extracted name == searched name if ( _strcmp( name , cname ) == 0 ) { child_cluster = (_read_entry( DIR_FST_CLUS_HI , buf , 1 ) << 16) | (_read_entry( DIR_FST_CLUS_LO , buf , 1 ) ) ; child_is_dir = ((attr & ATTR_DIRECTORY) == ATTR_DIRECTORY); child_size = _read_entry( DIR_FILE_SIZE , buf , 1 ); found = 1; } offset = offset + 32; lfn = 0; } } // en loop on directory entries // compute next cluster index unsigned int next; if ( _next_cluster_no_cache ( parent_cluster , &next ) ) return 1; parent_cluster = next; } // end loop on clusters if ( found == 2 ) // found end of directory => error { _printf("\n[FAT ERROR] _file_info_no_cache(): <%s> not found\n", name ); return 1; } // check type if ( ((pathname[nb_read] == 0) && (child_is_dir != 0)) || ((pathname[nb_read] != 0) && (child_is_dir == 0)) ) { _printf("\n[FAT ERROR] _file_info_no_cache(): illegal type for <%s>\n", name ); return 1; } // update parent_cluster for next name parent_cluster = child_cluster; } // end loop on names #if (GIET_DEBUG_FAT & 1) if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _file_info_no_cache(): success for <%s> / " "file_size = %x / file_cluster = %x\n", pathname, child_size, child_cluster ); #endif // return file cluster and size *file_size = child_size; *file_cluster = child_cluster; return 0; } // end _file_info_no_cache() ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Extern functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // This function initializes the FAT structures. // - The Fat-Descriptor is always initialized. // - The dynamically allocated structures (the Inode-Tre, the Fat_Cache, // and the File-Cache for the root directory) are only allocated // and initialized if the "kernel_mode" argument is set. ///////////////////////////////////////////////////////////////////////////// // Implementation note: // This function is called twice, by the boot-loader, and by the kernel_init. // It does not use dynamic memory allocation from the distributed heap. // It use informations found in the boot sector and FS-INFO sector. // that are loaded in the Fat-Descriptor temporary block_buffer. ///////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_IO_ERROR, // GIET_FAT32_INVALID_BOOT_SECTOR ///////////////////////////////////////////////////////////////////////////// int _fat_init( unsigned int kernel_mode ) { #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_init(): enters at cycle %d\n", _get_proctime() ); #endif // FAT initialisation should be done only once if ( _fat.initialized == FAT_INITIALIZED ) { _printf("\n[FAT WARNING] _fat_init(): FAT already initialized\n"); return GIET_FAT32_OK; } // load Boot sector (VBR) into FAT buffer if ( _fat_ioc_access( 0, // no descheduling 1, // read 0, // block index (unsigned int)_fat.block_buffer, 1 ) ) // one block { _printf("\n[FAT ERROR] _fat_init(): cannot load VBR\n"); return GIET_FAT32_IO_ERROR; } _fat.block_buffer_lba = 0; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) { _printf("\n[DEBUG FAT] _fat_init(): Boot sector loaded\n"); _display_one_block( _fat.block_buffer, "block device", _fat.block_buffer_lba ); } #endif // checking various FAT32 assuptions from boot sector if( _read_entry( BPB_BYTSPERSEC, _fat.block_buffer, 1 ) != 512 ) { _printf("\n[FAT ERROR] _fat_init(): The sector size must be 512 bytes\n"); return GIET_FAT32_INVALID_BOOT_SECTOR; } if( _read_entry( BPB_SECPERCLUS, _fat.block_buffer, 1 ) != 8 ) { _printf("\n[FAT ERROR] _fat_init(): The cluster size must be 8 blocks\n"); return GIET_FAT32_INVALID_BOOT_SECTOR; } if( _read_entry( BPB_NUMFATS, _fat.block_buffer, 1 ) != 1 ) { _printf("\n[FAT ERROR] _fat_init(): The number of FAT copies in FAT region must be 1\n"); return GIET_FAT32_INVALID_BOOT_SECTOR; } if( (_read_entry( BPB_FAT32_FATSZ32, _fat.block_buffer, 1 ) & 0xF) != 0 ) { _printf("\n[FAT ERROR] _fat_init(): The FAT region must be multiple of 16 sectors\n"); return GIET_FAT32_INVALID_BOOT_SECTOR; } if( _read_entry( BPB_FAT32_ROOTCLUS, _fat.block_buffer, 1 ) != 2 ) { _printf("\n[FAT ERROR] _fat_init(): The root directory must be at cluster 2\n"); return GIET_FAT32_INVALID_BOOT_SECTOR; } // initialise Fat-Descriptor from VBR _fat.sector_size = 512; _fat.cluster_size = 4096; _fat.fat_sectors = _read_entry( BPB_FAT32_FATSZ32 , _fat.block_buffer , 1 ); _fat.fat_lba = _read_entry( BPB_RSVDSECCNT , _fat.block_buffer , 1 ); _fat.data_sectors = _fat.fat_sectors << 10; _fat.data_lba = _fat.fat_lba + _fat.fat_sectors; _fat.fs_info_lba = _read_entry( BPB_FAT32_FSINFO , _fat.block_buffer , 1 ); _fat_buffer_fat_lba = 0xFFFFFFFF; _fat_buffer_data_lba = 0xFFFFFFFF; _fat.initialized = FAT_INITIALIZED; // load FS_INFO sector into FAT buffer if ( _fat_ioc_access( 0, // no descheduling 1, // read _fat.fs_info_lba, // lba (unsigned int)_fat.block_buffer, 1 ) ) // one block { _printf("\n[FAT ERROR] _fat_init(): cannot load FS_INFO Sector\n"); return GIET_FAT32_IO_ERROR; } _fat.block_buffer_lba = _fat.fs_info_lba; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) { _printf("\n[DEBUG FAT] _fat_init(): FS-INFO sector loaded\n"); _display_one_block( _fat.block_buffer, "block device", _fat.block_buffer_lba ); } #endif // initialise Fat-Descriptor from FS_INFO _fat.free_clusters_number = _read_entry( FS_FREE_CLUSTERS , _fat.block_buffer, 1); _fat.first_free_cluster = _read_entry( FS_FREE_CLUSTER_HINT, _fat.block_buffer, 1); // This is done only when the _fat_init() is called in kernel mode if ( kernel_mode ) { unsigned int i; // create Inode-Tree root _fat.inode_tree_root = _allocate_one_inode("/", // dir name 1, // directory 2, // cluster id 0, // no size 0, // no children 0, // no dentry 1); // allocate cache // initialize lock _spin_lock_init( &_fat.fat_lock ); // initialize File Descriptor Array for( i = 0 ; i < GIET_OPEN_FILES_MAX ; i++ ) _fat.fd[i].allocated = 0; // initialize fat_cache root _fat.fat_cache_root = _allocate_one_cache_node( NULL ); _fat.fat_cache_levels = _get_levels_from_size( _fat.fat_sectors << 9 ); } // end if kernel_mode #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _display_fat_descriptor(); #endif return GIET_FAT32_OK; } // end _fat_init() /////////////////////////////////////////////////////////////////////////////// // This function implements the giet_fat_open() system call. // The semantic is similar to the UNIX open() function, but only the O_CREATE // and O_RDONLY flags are supported. The UNIX access rights are not supported. // If the file does not exist in the specified directory, it is created. // If the specified directory does not exist, an error is returned. // It allocates a file descriptor to the calling task, for the file identified // by "pathname". If several tasks try to open the same file, each task // obtains a private file descriptor. // A node name (file or directory) cannot be larger than 31 characters. /////////////////////////////////////////////////////////////////////////////// // Returns a file descriptor index on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_FILE_NOT_FOUND, // GIET_FAT32_NAME_TOO_LONG, // GIET_FAT32_IO_ERROR, // GIET_FAT32_TOO_MANY_OPEN_FILES /////////////////////////////////////////////////////////////////////////////// int _fat_open( char* pathname, // absolute path from root unsigned int flags ) // O_CREATE and O_RDONLY { unsigned int fd_id; // index in File-Descriptor-Array unsigned int code; // error code fat_inode_t* inode; // anonymous inode pointer fat_inode_t* child; // pointer on searched file inode fat_inode_t* parent; // pointer on parent directory inode // get flags unsigned int create = ((flags & O_CREATE) != 0); unsigned int read_only = ((flags & O_RDONLY) != 0); unsigned int truncate = ((flags & O_TRUNC) != 0); #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_open(): P[%d,%d,%d] enters for path <%s> / " " create = %d / read_only = %d\n", x, y, p, pathname , create , read_only ); #endif // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_open(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } // takes the lock _spin_lock_acquire( &_fat.fat_lock ); // get inode pointer code = _get_inode_from_path( pathname , &inode ); if ( code == 2 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): path to parent not found" " for file <%s>\n", pathname ); return GIET_FAT32_FILE_NOT_FOUND; } else if ( code == 3 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): one name in path too long" " for file <%s>\n", pathname ); return GIET_FAT32_NAME_TOO_LONG; } else if ( (code == 1) && (create == 0) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): file not found" " for file <%s>\n", pathname ); return GIET_FAT32_FILE_NOT_FOUND; } else if ( (code == 1) && (create != 0) ) // file name not found => create { // set parent inode pointer parent = inode; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_open(): P[%d,%d,%d] create a new file <%s>\n", x , y , p , pathname ); #endif // get new file name / error check already done by _get_inode_from_path() char name[32]; _get_last_name( pathname , name ); // allocate a new inode and an empty Cache-File child = _allocate_one_inode( name, 0, // not a directory END_OF_CHAIN_CLUSTER_MAX, // no cluster allocated 0, // size : new file is empty 0, // count incremented later 0, // dentry set by add_dir_entry 1 ); // cache_allocate // introduce inode into Inode-Tree _add_inode_in_tree( child , parent ); // add an entry in the parent directory Cache_file if ( _add_dir_entry( child , parent ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): cannot update parent directory" " for file <%s>\n" , pathname ); return GIET_FAT32_IO_ERROR; } // update DATA region on block device for parent directory if ( _update_device_from_cache( parent->levels, parent->cache, parent->name ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): cannot update DATA region " " for parent of file <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } // update FAT region on block device if ( _update_device_from_cache( _fat.fat_cache_levels, _fat.fat_cache_root, "FAT" ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): cannot update FAT region" " for file <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } // update FS_INFO sector if ( _update_fs_info() ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): cannot update FS-INFO" " for file <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } // no need to truncate a new file truncate = 0; } else // code == 0 { // set searched file inode pointer child = inode; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_open(): P[%d,%d,%d] found file <%s> on device : inode = %x\n", x , y , p , pathname , child ); #endif } // Search an empty slot in file descriptors array fd_id = 0; while ( (_fat.fd[fd_id].allocated) != 0 && (fd_id < GIET_OPEN_FILES_MAX) ) { fd_id++; } // set file descriptor if an empty slot has been found if ( fd_id >= GIET_OPEN_FILES_MAX ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): File-Descriptors-Array full\n"); return GIET_FAT32_TOO_MANY_OPEN_FILES; } // update file descriptor _fat.fd[fd_id].allocated = 1; _fat.fd[fd_id].seek = 0; _fat.fd[fd_id].read_only = read_only; _fat.fd[fd_id].inode = child; // increment the refcount child->count = child->count + 1; // truncate the file if requested if ( truncate && !read_only && !child->is_dir ) { // empty file child->size = 0; child->levels = _get_levels_from_size( child->size ); // release File-Cache (keep root node) _release_cache_memory( child->cache, child->levels ); // release clusters allocated to file/dir in DATA region if ( _clusters_release( child->cluster ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): can't truncate file\n"); return GIET_FAT32_IO_ERROR; } // update parent directory entry (size and cluster index) if ( _update_dir_entry( child ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_open(): can't truncate file\n"); return GIET_FAT32_IO_ERROR; } } // releases the lock _spin_lock_release( &_fat.fat_lock ); #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_open(): P[%d,%d,%d] got fd = %d for <%s> / " "read_only = %d\n", x , y , p , fd_id , pathname , read_only ); #endif return fd_id; } // end _fat_open() ///////////////////////////////////////////////////////////////////////////////// // This function implements the "giet_fat_close()" system call. // It decrements the inode reference count, and release the fd_id entry // in the file descriptors array. // If the reference count is zero, it writes all dirty clusters on block device, // and releases the memory allocated to the File_Cache. ///////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_INVALID_FD, // GIET_FAT32_NOT_OPEN, // GIET_FAT32_IO_ERROR ///////////////////////////////////////////////////////////////////////////////// int _fat_close( unsigned int fd_id ) { // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_close(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } if( (fd_id >= GIET_OPEN_FILES_MAX) ) { _printf("\n[FAT ERROR] _fat_close(): illegal file descriptor index\n"); return GIET_FAT32_INVALID_FD; } // takes lock _spin_lock_acquire( &_fat.fat_lock ); if( _fat.fd[fd_id].allocated == 0 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_close(): file not open\n"); return GIET_FAT32_NOT_OPEN; } // get the inode pointer fat_inode_t* inode = _fat.fd[fd_id].inode; // decrement reference count inode->count = inode->count - 1; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[FAT DEBUG] _fat_close() for file <%s> : refcount = %d\n", inode->name , inode->count ); #endif // update block device and release File-Cache if no more references if ( inode->count == 0 ) { // update all dirty clusters for closed file if ( _update_device_from_cache( inode->levels, inode->cache, inode->name ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_close(): cannot write dirty clusters " "for file <%s>\n", inode->name ); return GIET_FAT32_IO_ERROR; } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[FAT DEBUG] _fat_close() update device for file <%s>\n", inode->name ); #endif // update directory dirty clusters for parent directory if ( inode->parent && _update_device_from_cache( inode->parent->levels, inode->parent->cache, inode->parent->name ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_close(): cannot write dirty clusters " "for directory <%s>\n", inode->parent->name ); return GIET_FAT32_IO_ERROR; } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[FAT DEBUG] _fat_close() update device for parent directory <%s>\n", inode->parent->name ); #endif // release memory allocated to File-Cache (keep cache root node) _release_cache_memory( inode->cache, inode->levels ); #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[FAT DEBUG] _fat_close() release memory for File-Cache <%s>\n", inode->name ); #endif } // release fd_id entry in file descriptor array _fat.fd[fd_id].allocated = 0; // release lock _spin_lock_release( &_fat.fat_lock ); return GIET_FAT32_OK; } // end fat_close() ///////////////////////////////////////////////////////////////////////////////// // This function implements the giet_fat_file_info() system call. // It returns the size, the current offset and the directory info for a file // identified by the "fd_id" argument. ///////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_INVALID_FD, // GIET_FAT32_NOT_OPEN ///////////////////////////////////////////////////////////////////////////////// int _fat_file_info( unsigned int fd_id, fat_file_info_t* info ) { if ( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_file_info(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } if ( fd_id >= GIET_OPEN_FILES_MAX ) { _printf("\n[FAT ERROR] _fat_file_info(): illegal file descriptor index\n"); return GIET_FAT32_INVALID_FD; } if ( _fat.fd[fd_id].allocated == 0 ) { _printf("\n[FAT ERROR] _fat_file_info(): file not open\n"); return GIET_FAT32_NOT_OPEN; } info->size = _fat.fd[fd_id].inode->size; info->offset = _fat.fd[fd_id].seek; info->is_dir = _fat.fd[fd_id].inode->is_dir; return GIET_FAT32_OK; } // end _fat_file_info() ///////////////////////////////////////////////////////////////////////////////// // The following function implements the "giet_fat_read()" system call. // It transfers "count" bytes from the File_Cache associated to the file // identified by "fd_id", to the user "buffer", from the current file offset. // In case of miss in the File_Cache, it loads all involved clusters into cache. ///////////////////////////////////////////////////////////////////////////////// // Returns the number of bytes actually transfered on success. // Returns 0 if EOF is encountered (offset + count > file_size). // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_INVALID_FD, // GIET_FAT32_NOT_OPEN, // GIET_FAT32_IO_ERROR ///////////////////////////////////////////////////////////////////////////////// int _fat_read( unsigned int fd_id, // file descriptor index paddr_t buffer, // destination buffer unsigned int count, // number of bytes to read unsigned int phys ) // use physical_memcpy { // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_write(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } // check fd_id overflow if ( fd_id >= GIET_OPEN_FILES_MAX ) { _printf("\n[FAT ERROR] _fat_read(): illegal file descriptor\n"); return GIET_FAT32_INVALID_FD; } // check file is open if ( _fat.fd[fd_id].allocated == 0 ) { _printf("\n[FAT ERROR] _fat_read(): file not open\n"); return GIET_FAT32_NOT_OPEN; } // takes lock _spin_lock_acquire( &_fat.fat_lock ); // get file inode pointer and offset fat_inode_t* inode = _fat.fd[fd_id].inode; unsigned int seek = _fat.fd[fd_id].seek; // check count & seek versus file size if ( count + seek > inode->size && !inode->is_dir ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_read(): file too small" " / seek = %x / count = %x / file_size = %x\n", seek , count , inode->size ); return 0; } // compute first_cluster_id and first_byte_to_move unsigned int first_cluster_id = seek >> 12; unsigned int first_byte_to_move = seek & 0xFFF; // compute last_cluster and last_byte_to_move unsigned int last_cluster_id = (seek + count - 1) >> 12; unsigned int last_byte_to_move = (seek + count - 1) & 0xFFF; #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_read(): P[%d,%d,%d] enters for file <%s> " " / bytes = %x / offset = %x\n" "first_cluster_id = %x / first_byte_to_move = %x" " / last_cluster_id = %x / last_byte_to_move = %x\n", x , y , p , inode->name , count , seek , first_cluster_id , first_byte_to_move , last_cluster_id , last_byte_to_move ); #endif // loop on all cluster covering the requested transfer unsigned int cluster_id; unsigned int done = 0; for ( cluster_id = first_cluster_id ; cluster_id <= last_cluster_id ; cluster_id++ ) { // get pointer on the cluster_id buffer in cache unsigned char* cbuf; fat_cache_desc_t* pdesc; if ( _get_buffer_from_cache( inode, cluster_id, &pdesc ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_read(): cannot load file <%s>\n", inode->name ); return GIET_FAT32_IO_ERROR; } cbuf = pdesc->buffer; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_read(): P[%d,%d,%d] moves cluster_id %d from Cache-File <%s>\n", x , y , p , cluster_id, inode->name ); #endif // compute memcpy arguments unsigned char* source; unsigned int nbytes; if ( (cluster_id == first_cluster_id) && (cluster_id == last_cluster_id) ) { source = cbuf + first_byte_to_move; nbytes = last_byte_to_move - first_byte_to_move + 1; } else if ( cluster_id == first_cluster_id ) { source = cbuf + first_byte_to_move; nbytes = 4096 - first_byte_to_move; } else if ( cluster_id == last_cluster_id ) { source = cbuf; nbytes = last_byte_to_move + 1; } else // not first / not last { source = cbuf; nbytes = 4096; } // move data if ( !phys ) { void* dest = (void*)(unsigned int)buffer + done; memcpy( dest, source, nbytes ); } else { unsigned int flags; paddr_t pdest = buffer + done; paddr_t psource = _v2p_translate( (unsigned int)source, &flags ); _physical_memcpy( pdest, psource, nbytes ); } done = done + nbytes; } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_read(): P[%d,%d,%d] loaded file <%s> from Cache-File\n", x , y , p , inode->name ); #endif // update seek _fat.fd[fd_id].seek += done; // release lock _spin_lock_release( &_fat.fat_lock ); return done; } // end _fat_read() ///////////////////////////////////////////////////////////////////////////////// // The following function implements the "giet_fat_write()" system call. // It transfers "count" bytes to the fat_cache associated to the file // identified by "fd_id", from the user "buffer", using the current file offset. // It increases the file size and allocate new clusters if (count + offset) // is larger than the current file size. Then it loads and updates all // involved clusters in the cache. ///////////////////////////////////////////////////////////////////////////////// // Returns number of bytes actually written on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_INVALID_FD, // GIET_FAT32_NOT_OPEN, // GIET_FAT32_READ_ONLY, // GIET_FAT32_NO_FREE_SPACE, // GIET_FAT32_IO_ERROR ///////////////////////////////////////////////////////////////////////////////// int _fat_write( unsigned int fd_id, // file descriptor index void* buffer, // source buffer unsigned int count ) // number of bytes to write { // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_write(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } // takes lock _spin_lock_acquire( &_fat.fat_lock ); // check fd_id overflow if ( fd_id >= GIET_OPEN_FILES_MAX ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_write(): illegal file descriptor\n"); return GIET_FAT32_INVALID_FD; } // check file open if ( _fat.fd[fd_id].allocated == 0 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_write(): file not open\n" ); return GIET_FAT32_NOT_OPEN; } // check file writable if ( _fat.fd[fd_id].read_only ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_write(): file <%s> is read-only\n", _fat.fd[fd_id].inode->name ); return GIET_FAT32_READ_ONLY; } // get file inode pointer and seek fat_inode_t* inode = _fat.fd[fd_id].inode; unsigned int seek = _fat.fd[fd_id].seek; #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_write(): P[%d,%d,%d] enters for file <%s> " " / bytes = %x / seek = %x\n", x , y , p , inode->name , count , seek ); #endif // chek if file size must be incremented // and allocate new clusters from FAT if required unsigned int old_size = inode->size; unsigned int new_size = seek + count; if ( new_size > old_size ) { // update size in inode inode->size = new_size; // compute current and required numbers of clusters unsigned old_clusters = old_size >> 12; if ( old_size & 0xFFF ) old_clusters++; unsigned new_clusters = new_size >> 12; if ( new_size & 0xFFF ) new_clusters++; // allocate new clusters from FAT if required if ( new_clusters > old_clusters ) { #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_write(): P[%d,%d,%d] allocates new clusters for file <%s>" " / current = %d / required = %d\n", x , y , p , inode->name , old_clusters , new_clusters ); #endif // allocate missing clusters if ( _clusters_allocate( inode, old_clusters, new_clusters - old_clusters ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_write(): no free clusters" " for file <%s>\n", _fat.fd[fd_id].inode->name ); return GIET_FAT32_NO_FREE_SPACE; } } // update parent directory entry (size and cluster index) if ( _update_dir_entry( inode ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_write(): cannot update parent directory entry" " for file <%s>\n", _fat.fd[fd_id].inode->name ); return GIET_FAT32_IO_ERROR; } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_write(): P[%d,%d,%d] updates size for file <%s> / size = %x\n", x , y , p , inode->name , (new_size - old_size) ); #endif } // compute first_cluster_id and first_byte_to_move unsigned int first_cluster_id = seek >> 12; unsigned int first_byte_to_move = seek & 0xFFF; // compute last_cluster and last_byte_to_move unsigned int last_cluster_id = (seek + count - 1) >> 12; unsigned int last_byte_to_move = (seek + count - 1) & 0xFFF; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_write(): P[%d,%d,%d] starts loop on clusters for file <%s>\n" " first_cluster_id = %d / first_byte_to_move = %x" " / last_cluster_id = %d / last_byte_to_move = %x\n", x , y , p , inode->name , first_cluster_id , first_byte_to_move , last_cluster_id , last_byte_to_move ); #endif // loop on all clusters covering the requested transfer unsigned int cluster_id; unsigned int done = 0; for ( cluster_id = first_cluster_id ; cluster_id <= last_cluster_id ; cluster_id++ ) { // get pointer on one 4K buffer in File-Cache unsigned char* cbuf; fat_cache_desc_t* pdesc; if ( _get_buffer_from_cache( inode, cluster_id, &pdesc ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_write(): cannot load file <%s>\n", inode->name ); return GIET_FAT32_IO_ERROR; } cbuf = pdesc->buffer; pdesc->dirty = 1; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_write(): P[%d,%d,%d] move cluster_id %d to Cache-file <%s>\n", x , y , p , cluster_id, inode->name ); #endif // compute memcpy arguments unsigned char* source = (unsigned char*)buffer + done; unsigned char* dest; unsigned int nbytes; if ( (cluster_id == first_cluster_id) && (cluster_id == last_cluster_id) ) { dest = cbuf + first_byte_to_move; nbytes = last_byte_to_move - first_byte_to_move + 1; } else if ( cluster_id == first_cluster_id ) { dest = cbuf + first_byte_to_move; nbytes = 4096 - first_byte_to_move; } else if ( cluster_id == last_cluster_id ) { dest = cbuf; nbytes = last_byte_to_move + 1; } else { dest = cbuf; nbytes = 4096; } //move date memcpy( dest , source , nbytes ); done = done + nbytes; } // end for clusters // update seek _fat.fd[fd_id].seek += done; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_write(): P[%d,%d,%d] store file <%s> into Cache-File\n", x , y , p , inode->name ); #endif // release lock _spin_lock_release( &_fat.fat_lock ); return done; } // end _fat_write() ///////////////////////////////////////////////////////////////////////////////// // The following function implements the "giet_fat_lseek()" system call. // It repositions the seek in the file descriptor "fd_id", according to // the "seek" and "whence" arguments. // It has the same semantic as the UNIX lseek() function. // Accepted values for whence are SEEK_SET and SEEK_CUR. ///////////////////////////////////////////////////////////////////////////////// // Returns new seek value (in bytes) on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_INVALID_FD, // GIET_FAT32_NOT_OPEN, // GIET_FAT32_INVALID_ARG ///////////////////////////////////////////////////////////////////////////////// int _fat_lseek( unsigned int fd_id, unsigned int seek, unsigned int whence ) { // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_lseek(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } // check fd_id overflow if ( fd_id >= GIET_OPEN_FILES_MAX ) { _printf("\n[FAT ERROR] _fat_lseek(): illegal file descriptor\n"); return GIET_FAT32_INVALID_FD; } // takes lock _spin_lock_acquire( &_fat.fat_lock ); // check file open if ( _fat.fd[fd_id].allocated == 0 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_lseek(): file not open\n"); return GIET_FAT32_NOT_OPEN; } unsigned int new_seek; // compute new seek if ( whence == SEEK_CUR ) new_seek = _fat.fd[fd_id].seek + seek; else if ( whence == SEEK_SET ) new_seek = seek; else { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_lseek(): illegal whence value\n"); return GIET_FAT32_INVALID_ARG; } // update file descriptor offset _fat.fd[fd_id].seek = new_seek; #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_lseek(): P[%d,%d,%d] set seek = %x for file <%s>\n", x , y , p , new_seek , _fat.fd[fd_id].inode->name ); #endif // release lock _spin_lock_release( &_fat.fat_lock ); return new_seek; } // end _fat_lseek() ///////////////////////////////////////////////////////////////////////////////// // The following function implements the giet_fat_remove() system call. // It deletes the file/directory identified by the "pathname" argument from // the file system, if the remove condition is fulfilled (directory empty, // or file not referenced). // All clusters allocated in the block device DATA region are released. // The FAT region is updated on the block device. // The Inode-Tree is updated. // The associated File_Cache is released. // The Fat_Cache is updated. ///////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_FILE_NOT_FOUND, // GIET_FAT32_NAME_TOO_LONG, // GIET_FAT32_IS_DIRECTORY, // GIET_FAT32_NOT_A_DIRECTORY, // GIET_FAT32_IS_OPEN, // GIET_FAT32_IO_ERROR, // GIET_FAT32_DIRECTORY_NOT_EMPTY ///////////////////////////////////////////////////////////////////////////////// int _fat_remove( char* pathname, unsigned int should_be_dir ) { fat_inode_t* inode; // searched file inode pointer #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_remove(): P[%d,%d,%d] enters for path <%s>\n", x, y, p, pathname ); #endif // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_remove(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } // take the lock _spin_lock_acquire( &_fat.fat_lock ); // get searched file inode unsigned int code = _get_inode_from_path( pathname , &inode ); #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_remove(): P[%d,%d,%d] found inode %x for <%s> / code = %d\n", x , y , p , (unsigned int)inode , pathname , code ); #endif if ( (code == 1) || (code == 2) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): file <%s> not found\n", pathname ); return GIET_FAT32_FILE_NOT_FOUND; } else if ( code == 3 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): name too long in <%s>\n", pathname ); return GIET_FAT32_NAME_TOO_LONG; } // check inode type if ( (inode->is_dir != 0) && (should_be_dir == 0) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): <%s> is a directory\n", pathname ); return GIET_FAT32_IS_DIRECTORY; } if ( (inode->is_dir == 0) && (should_be_dir != 0) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): <%s> is not a directory\n", pathname ); return GIET_FAT32_NOT_A_DIRECTORY; } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_remove(): P[%d,%d,%d] checked inode type for <%s>\n", x , y , p , pathname ); #endif // check references count for a file if ( (inode->is_dir == 0) && (inode->count != 0) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): file <%s> still referenced\n", pathname ); return GIET_FAT32_IS_OPEN; } // check empty for a directory if ( inode->is_dir ) { unsigned int entries; if ( _get_nb_entries( inode , &entries ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): cannot scan directory <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } else if ( entries > 2 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): directory <%s> not empty\n", pathname ); return GIET_FAT32_DIRECTORY_NOT_EMPTY; } } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_remove(): P[%d,%d,%d] checked remove condition OK for <%s>\n", x , y , p , pathname ); #endif // remove the file or directory from the file system if ( _remove_node_from_fs( inode ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_remove(): cannot remove <%s> from FS\n", pathname ); return GIET_FAT32_IO_ERROR; } // release lock and return success _spin_lock_release( &_fat.fat_lock ); #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_remove(): P[%d,%d,%d] removed <%s> from FS\n", x, y, p, pathname ); #endif return GIET_FAT32_OK; } // end _fat_remove() ///////////////////////////////////////////////////////////////////////////////// // This function implements the giet_fat_rename() system call. // It moves an existing file or directory from one node (defined by "old_path" // argument) to another node (defined by "new_path" argument) in the FS tree. // The type (file/directory) and content are not modified. // If the new_path file/dir exist, it is removed from the file system, but only // if the remove condition is respected (directory empty / file not referenced). // The removed entry is only removed after the new entry is actually created. ///////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_FILE_NOT_FOUND, // GIET_FAT32_MOVE_INTO_SUBDIR, // GIET_FAT32_IO_ERROR, // GIET_FAT32_DIRECTORY_NOT_EMPTY, // GIET_FAT32_IS_OPEN ///////////////////////////////////////////////////////////////////////////////// int _fat_rename( char* old_path, char* new_path ) { fat_inode_t* inode; // anonymous inode pointer fat_inode_t* old; // inode identified by old_path => to be deleted fat_inode_t* new; // inode identified by new_path => to be created fat_inode_t* old_parent; // parent inode in old_path => to be modified fat_inode_t* new_parent; // parent inode in new_path => to be modified fat_inode_t* to_remove; // previouly identified by new_path => to be removed unsigned int code; #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_rename(): P[%d,%d,%d] enters to move <%s> to <%s>\n", x , y , p , old_path , new_path ); #endif // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_rename(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } // take the lock _spin_lock_acquire( &_fat.fat_lock ); // get "old" and "old_parent" inode pointers if ( _get_inode_from_path( old_path , &inode ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): <%s> not found\n", old_path ); return GIET_FAT32_FILE_NOT_FOUND; } else { old = inode; old_parent = inode->parent; } // get "to_removed" and "new_parent" inode pointers code = _get_inode_from_path( new_path , &inode ); if ( code == 0 ) // new_path inode already exist { if ( inode == old ) // the file will replace itself, do nothing { _spin_lock_release( &_fat.fat_lock ); return GIET_FAT32_OK; } to_remove = inode; new_parent = inode->parent; } else if ( code == 1 ) // to_remove does not exist but parent exist { to_remove = NULL; new_parent = inode; } else // parent directory in new_path not found { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): <%s> not found\n", new_path ); return GIET_FAT32_FILE_NOT_FOUND; } // check for move into own subdirectory if ( _is_ancestor( old, new_parent ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): can't move %s into its own subdirectory\n", old_path ); return GIET_FAT32_MOVE_INTO_SUBDIR; } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) { if ( to_remove ) _printf("\n[DEBUG FAT] _fat_rename(): old_parent = %s / old = %s / new_parent = %s " "/ to_remove = %s\n", old_parent->name , old->name , new_parent->name , to_remove->name ); else _printf("\n[DEBUG FAT] _fat_rename(): old_parent = %s / old = %s / new_parent = %s " "/ no remove\n", old_parent->name , old->name , new_parent->name ); } #endif // check remove condition for "to_remove" inode if ( to_remove ) { if ( to_remove->is_dir ) // it's a directory { unsigned int entries; if ( _get_nb_entries( to_remove , &entries ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): cannot scan directory <%s>\n", to_remove->name ); return GIET_FAT32_IO_ERROR; } else if ( entries > 2 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): directory <%s> not empty\n", to_remove->name ); return GIET_FAT32_DIRECTORY_NOT_EMPTY; } } else // it's a file { if ( to_remove->count ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): file <%s> still referenced\n", to_remove->name ); return GIET_FAT32_IS_OPEN; } } } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[FAT DEBUG] _fat_rename(): P[%d,%d,%d] checked remove condition OK\n", x , y , p ); #endif // get new last name / error checking already done by _get_inode_from_path() char new_name[32]; _get_last_name( new_path , new_name ); // allocate "new" inode new = _allocate_one_inode( new_name, old->is_dir, old->cluster, old->size, 0, // count 0, // dentry 0 ); // no cache_allocate // give the "old" File-Cache to the "new inode new->levels = old->levels; new->cache = old->cache; // add "new" to "new_parent" directory File-Cache if ( _add_dir_entry( new , new_parent ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): cannot add <%s> into <%s>\n", new->name , new_parent->name ); return GIET_FAT32_IO_ERROR; } // add "new" to "new_parent" directory in Inode-Tree _add_inode_in_tree( new , new_parent ); // updates "new_parent" directory on device if ( _update_device_from_cache( new_parent->levels, new_parent->cache, new_parent->name ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): cannot update <%s> on device\n", new_parent->name ); return GIET_FAT32_IO_ERROR; } // remove "old" from "old_parent" File-Cache if ( _remove_dir_entry( old ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): cannot remove <%s> from <%s>\n", old->name , old_parent->name ); return GIET_FAT32_IO_ERROR; } // remove "old" inode from Inode-Tree _remove_inode_from_tree( old ); // release "old" inode _free( old ); // updates "old_parent" directory on device if ( _update_device_from_cache( old_parent->levels, old_parent->cache, old_parent->name ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): cannot update <%s> on device\n", old_parent->name ); return GIET_FAT32_IO_ERROR; } // remove "to_remove" from File System (if required) if ( to_remove ) { if ( _remove_node_from_fs( to_remove ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_rename(): cannot remove <%s> from FS\n", to_remove->name ); return GIET_FAT32_IO_ERROR; } } // release lock _spin_lock_release( &_fat.fat_lock ); return GIET_FAT32_OK; } // end _fat_rename() ///////////////////////////////////////////////////////////////////////////////// // The following function implements the giet_fat_mkdir() system call. // It creates in file system the directory specified by the "pathname" argument. // The Inode-Tree is updated. // One cluster is allocated to the new directory. // The associated File-Cache is created. // The FAT region on block device is updated. // The DATA region on block device is updated. ///////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_FILE_NOT_FOUND, // GIET_FAT32_NAME_TOO_LONG, // GIET_FAT32_FILE_EXISTS, // GIET_FAT32_NO_FREE_SPACE, // GIET_FAT32_IO_ERROR ///////////////////////////////////////////////////////////////////////////////// int _fat_mkdir( char* pathname ) { fat_inode_t* inode; // anonymous inode pointer fat_inode_t* child; // searched directory inode pointer fat_inode_t* parent; // parent directory inode pointer #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_mkdir(): P[%d,%d,%d] enters for path <%s>\n", x, y, p, pathname ); #endif // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_mkdir(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } // takes the lock _spin_lock_acquire( &_fat.fat_lock ); // get inode unsigned int code = _get_inode_from_path( pathname , &inode ); if ( code == 2 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): path to parent not found" " for directory <%s>\n", pathname ); return GIET_FAT32_FILE_NOT_FOUND; } else if ( code == 3 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): one name in path too long" " for directory <%s>\n", pathname ); return GIET_FAT32_NAME_TOO_LONG; } else if ( code == 0 ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): directory <%s> already exist\n", pathname ); return GIET_FAT32_FILE_EXISTS; } else if ( code == 1 ) // directory not found => create { parent = inode; #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_mkdir(): P[%d,%d,%d] create new directory <%s>\n", x , y , p , pathname ); #endif // get directory name / error check already done by _get_inode_from_path() char name[32]; _get_last_name( pathname , name ); // allocate one cluster from FAT for the new directory unsigned int cluster; if ( _allocate_one_cluster( &cluster ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): no free cluster" " for directory <%s>\n" , pathname ); return GIET_FAT32_NO_FREE_SPACE; } // allocate a new inode and an empty Cache-File child = _allocate_one_inode( name, 1, // it's a directory cluster, 0, // size not defined 0, // count 0, // dentry set by _add_dir_entry() 1 ); // cache_allocate // introduce inode in Inode-Tree _add_inode_in_tree( child , parent ); // allocate and initialise one 4 Kbytes buffer and associated descriptor _allocate_one_buffer( child, 0, // cluster_id, cluster ); _add_special_directories( child, parent ); // add an entry in the parent directory Cache_file if ( _add_dir_entry( child , parent ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): cannot update parent directory" " for directory <%s>\n" , pathname ); return GIET_FAT32_IO_ERROR; } // update DATA region on block device for parent directory if ( _update_device_from_cache( parent->levels, parent->cache, parent->name ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): cannot update DATA region " " for parent of directory <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } // update FAT region on block device if ( _update_device_from_cache( _fat.fat_cache_levels, _fat.fat_cache_root, "FAT" ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): cannot update FAT region" " for directory <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } // update FS_INFO sector if ( _update_fs_info() ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): cannot update FS-INFO" " for directory <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } // update DATA region on block device for the new directory if ( _update_device_from_cache( child->levels, child->cache, child->name ) ) { _spin_lock_release( &_fat.fat_lock ); _printf("\n[FAT ERROR] _fat_mkdir(): cannot update DATA region" " for directory <%s>\n", pathname ); return GIET_FAT32_IO_ERROR; } } // end create directory // release lock _spin_lock_release( &_fat.fat_lock ); return GIET_FAT32_OK; } // end _fat_mkdir() /////////////////////////////////////////////////////////////////////////////// // This function implements the giet_fat_opendir() system call. // The semantic is similar to the UNIX opendir() function. // If the specified directory does not exist, an error is returned. // It allocates a file descriptor to the calling task, for the directory // identified by "pathname". If several tasks try to open the same directory, // each task obtains a private file descriptor. // A node name cannot be larger than 31 characters. /////////////////////////////////////////////////////////////////////////////// // Returns a file descriptor for the directory index on success // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_NAME_TOO_LONG, // GIET_FAT32_FILE_NOT_FOUND, // GIET_FAT32_TOO_MANY_OPEN_FILES, // GIET_FAT32_NOT_A_DIRECTORY /////////////////////////////////////////////////////////////////////////////// extern int _fat_opendir( char* pathname ) { int fd_id = _fat_open( pathname, O_RDONLY ); if ( fd_id < 0 ) return fd_id; if ( !_fat.fd[fd_id].inode->is_dir ) { _printf("\n[FAT ERROR] _fat_opendir(): <%s> is not a directory\n", pathname ); return GIET_FAT32_NOT_A_DIRECTORY; } return fd_id; } ///////////////////////////////////////////////////////////////////////////////// // This function implements the "giet_fat_closedir()" system call. // Same behavior as _fat_close(), no check for directory. ///////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_INVALID_FD, // GIET_FAT32_NOT_OPEN, // GIET_FAT32_IO_ERROR ///////////////////////////////////////////////////////////////////////////////// extern int _fat_closedir( unsigned int fd_id ) { return _fat_close( fd_id ); } ///////////////////////////////////////////////////////////////////////////////// // This function implements the "giet_fat_readdir()" system call. // It reads one directory entry from the file descriptor opened by // "giet_fat_opendir()" and writes its info to the "entry" argument. // This includes the cluster, size, is_dir and name info for each entry. ///////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns a negative value on error: // GIET_FAT32_NOT_INITIALIZED, // GIET_FAT32_INVALID_FD, // GIET_FAT32_NOT_OPEN, // GIET_FAT32_NOT_A_DIRECTORY, // GIET_FAT32_IO_ERROR, // GIET_FAT32_NO_MORE_ENTRIES ///////////////////////////////////////////////////////////////////////////////// extern int _fat_readdir( unsigned int fd_id, fat_dirent_t* entry ) { unsigned int lfn = 0; // lfn entries count unsigned int attr; // ATTR field value unsigned int ord; // ORD field value char lfn1[16]; // temporary buffer for string in LFN1 char lfn2[16]; // temporary buffer for string in LFN2 char lfn3[16]; // temporary buffer for string in LFN3 unsigned char buf[DIR_ENTRY_SIZE]; // raw entry buffer fat_file_info_t info; // check for directory int ret = _fat_file_info( fd_id, &info ); if (ret < 0) { return ret; } else if ( !info.is_dir ) { _printf("\n[FAT ERROR] _fat_readdir(): not a directory\n" ); return GIET_FAT32_NOT_A_DIRECTORY; } while ( 1 ) { if ( _fat_read( fd_id, (unsigned int)&buf, sizeof(buf), 0 ) != sizeof(buf) ) { _printf("\n[FAT ERROR] _fat_readdir(): can't read entry\n" ); return GIET_FAT32_IO_ERROR; } attr = _read_entry( DIR_ATTR, buf, 0 ); ord = _read_entry( LDIR_ORD, buf, 0 ); if (ord == NO_MORE_ENTRY) // no more entry in directory => stop { // seek back to this entry _spin_lock_acquire( &_fat.fat_lock ); _fat.fd[fd_id].seek -= DIR_ENTRY_SIZE; _spin_lock_release( &_fat.fat_lock ); return GIET_FAT32_NO_MORE_ENTRIES; } else if ( ord == FREE_ENTRY ) // free entry => skip { continue; } else if ( attr == ATTR_LONG_NAME_MASK ) // LFN entry => get partial names { unsigned int seq = ord & 0x3; lfn = (seq > lfn) ? seq : lfn; if ( seq == 1 ) _get_name_from_long( buf, lfn1 ); else if ( seq == 2 ) _get_name_from_long( buf, lfn2 ); else if ( seq == 3 ) _get_name_from_long( buf, lfn3 ); continue; } else // NORMAL entry => stop { break; } } // TODO handle is_vid entry->cluster = (_read_entry( DIR_FST_CLUS_HI, buf, 1 ) << 16) | (_read_entry( DIR_FST_CLUS_LO, buf, 1 ) ) ; entry->size = (_read_entry( DIR_FILE_SIZE , buf, 1 ) ) ; entry->is_dir = ((attr & ATTR_DIRECTORY) == ATTR_DIRECTORY); if ( lfn == 0 ) { _get_name_from_short( buf, entry->name ); } else if ( lfn == 1 ) { _strcpy( entry->name , lfn1 ); } else if ( lfn == 2 ) { _strcpy( entry->name , lfn1 ); _strcpy( entry->name + 13, lfn2 ); } else if ( lfn == 3 ) { _strcpy( entry->name , lfn1 ); _strcpy( entry->name + 13, lfn2 ); _strcpy( entry->name + 26, lfn3 ); } return GIET_FAT32_OK; } /////////////////////////////////////////////////////////////////////////////// // This function loads a file identified by the "pathname" argument into the // memory buffer defined by the "buffer_vbase" and "buffer_size" arguments. // It is intended to be called by the boot-loader, as it does not use the // dynamically allocated FAT structures (Inode-Tree, Fat_Cache or File-Cache, // File-Descriptor-Array). // It uses only the 512 bytes buffer defined in the FAT descriptor. /////////////////////////////////////////////////////////////////////////////// // Returns GIET_FAT32_OK on success. // Returns negative value on error: // GIET_FAT32_NOT_INITIALIZED // GIET_FAT32_FILE_NOT_FOUND // GIET_FAT32_BUFFER_TOO_SMALL // GIET_FAT32_IO_ERROR /////////////////////////////////////////////////////////////////////////////// int _fat_load_no_cache( char* pathname, unsigned int buffer_vbase, unsigned int buffer_size ) { // checking FAT initialized if( _fat.initialized != FAT_INITIALIZED ) { _printf("\n[FAT ERROR] _fat_load_no_cache(): FAT not initialized\n"); return GIET_FAT32_NOT_INITIALIZED; } unsigned int file_size; unsigned int cluster; #if GIET_DEBUG_FAT unsigned int procid = _get_procid(); unsigned int x = procid >> (Y_WIDTH + P_WIDTH); unsigned int y = (procid >> P_WIDTH) & ((1< GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_load_no_cache(): P[%d,%d,%d] enters for file <%s>\n", x , y , p , pathname ); #endif // get file size, and cluster index in FAT if ( _file_info_no_cache( pathname, &cluster, &file_size ) ) { _printf("\n[FAT ERROR] _fat_load_no_cache(): file <%s> not found\n", pathname ); return GIET_FAT32_FILE_NOT_FOUND; } // check buffer size if ( file_size > buffer_size ) { _printf("\n[FAT ERROR] _fat_load_no_cache(): buffer too small : " "file_size = %x / buffer_size = %x", file_size , buffer_size ); return GIET_FAT32_BUFFER_TOO_SMALL; } // compute total number of clusters to read unsigned int nb_clusters = file_size >> 12; if ( file_size & 0xFFF ) nb_clusters++; // initialise buffer address unsigned int dst = buffer_vbase; // loop on the clusters containing the file while ( nb_clusters > 0 ) { unsigned int lba = _cluster_to_lba( cluster ); if( _fat_ioc_access( 0, // no descheduling 1, // read lba, dst, 8 ) ) // 8 blocks { _printf("\n[FAT ERROR] _fat_load_no_cache(): cannot load lba %x", lba ); return GIET_FAT32_IO_ERROR; } // compute next cluster index unsigned int next; if ( _next_cluster_no_cache( cluster , &next ) ) { _printf("\n[FAT ERROR] _fat_load_no_cache(): cannot get next cluster " " for cluster = %x\n", cluster ); return GIET_FAT32_IO_ERROR; } // update variables for next iteration nb_clusters = nb_clusters - 1; dst = dst + 4096; cluster = next; } #if GIET_DEBUG_FAT if ( _get_proctime() > GIET_DEBUG_FAT ) _printf("\n[DEBUG FAT] _fat_load_no_cache(): P[%d,%d,%d] loaded <%s> at vaddr = %x" " / size = %x\n", x , y , p , pathname , buffer_vbase , file_size ); #endif return GIET_FAT32_OK; } // end _fat_load_no_cache() // Local Variables: // tab-width: 4 // c-basic-offset: 4 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4