source: soft/giet_vm/giet_libs/math/e_sqrt.c @ 650

Last change on this file since 650 was 581, checked in by laurent, 10 years ago

Adding ocean application, some mathematics functions and distributed locks

File size: 13.9 KB
Line 
1/*
2 * ====================================================
3 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4 *
5 * Developed at SunPro, a Sun Microsystems, Inc. business.
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12/* Modified for GIET-VM static OS at UPMC, France 2015.
13 */
14
15/* __ieee754_sqrt(x)
16 * Return correctly rounded sqrt.
17 *           ------------------------------------------
18 *           |  Use the hardware sqrt if you have one |
19 *           ------------------------------------------
20 * Method:
21 *   Bit by bit method using integer arithmetic. (Slow, but portable)
22 *   1. Normalization
23 *      Scale x to y in [1,4) with even powers of 2:
24 *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
25 *              sqrt(x) = 2^k * sqrt(y)
26 *   2. Bit by bit computation
27 *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
28 *           i                                                   0
29 *                                     i+1         2
30 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
31 *           i      i            i                 i
32 *
33 *      To compute q    from q , one checks whether
34 *                  i+1       i
35 *
36 *                            -(i+1) 2
37 *                      (q + 2      ) <= y.                     (2)
38 *                        i
39 *                                                            -(i+1)
40 *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
41 *                             i+1   i             i+1   i
42 *
43 *      With some algebric manipulation, it is not difficult to see
44 *      that (2) is equivalent to
45 *                             -(i+1)
46 *                      s  +  2       <= y                      (3)
47 *                       i                i
48 *
49 *      The advantage of (3) is that s  and y  can be computed by
50 *                                    i      i
51 *      the following recurrence formula:
52 *          if (3) is false
53 *
54 *          s     =  s  ,       y    = y   ;                    (4)
55 *           i+1      i          i+1    i
56 *
57 *          otherwise,
58 *                         -i                     -(i+1)
59 *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
60 *           i+1      i          i+1    i     i
61 *
62 *      One may easily use induction to prove (4) and (5).
63 *      Note. Since the left hand side of (3) contain only i+2 bits,
64 *            it does not necessary to do a full (53-bit) comparison
65 *            in (3).
66 *   3. Final rounding
67 *      After generating the 53 bits result, we compute one more bit.
68 *      Together with the remainder, we can decide whether the
69 *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
70 *      (it will never equal to 1/2ulp).
71 *      The rounding mode can be detected by checking whether
72 *      huge + tiny is equal to huge, and whether huge - tiny is
73 *      equal to huge for some floating point number "huge" and "tiny".
74 *
75 * Special cases:
76 *      sqrt(+-0) = +-0         ... exact
77 *      sqrt(inf) = inf
78 *      sqrt(-ve) = NaN         ... with invalid signal
79 *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
80 *
81 * Other methods : see the appended file at the end of the program below.
82 *---------------
83 */
84
85#include "../math.h"
86#include "math_private.h"
87
88static const double one = 1.0, tiny = 1.0e-300;
89
90double __ieee754_sqrt(double x)
91{
92        double z;
93        int32_t sign = (int)0x80000000;
94        int32_t ix0,s0,q,m,t,i;
95        u_int32_t r,t1,s1,ix1,q1;
96
97        EXTRACT_WORDS(ix0,ix1,x);
98
99    /* take care of Inf and NaN */
100        if((ix0&0x7ff00000)==0x7ff00000) {
101            return x*x+x;               /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
102                                           sqrt(-inf)=sNaN */
103        }
104    /* take care of zero */
105        if(ix0<=0) {
106            if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
107            else if(ix0<0)
108                return (x-x)/(x-x);             /* sqrt(-ve) = sNaN */
109        }
110    /* normalize x */
111        m = (ix0>>20);
112        if(m==0) {                              /* subnormal x */
113            while(ix0==0) {
114                m -= 21;
115                ix0 |= (ix1>>11); ix1 <<= 21;
116            }
117            for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
118            m -= i-1;
119            ix0 |= (ix1>>(32-i));
120            ix1 <<= i;
121        }
122        m -= 1023;      /* unbias exponent */
123        ix0 = (ix0&0x000fffff)|0x00100000;
124        if(m&1){        /* odd m, double x to make it even */
125            ix0 += ix0 + ((ix1&sign)>>31);
126            ix1 += ix1;
127        }
128        m >>= 1;        /* m = [m/2] */
129
130    /* generate sqrt(x) bit by bit */
131        ix0 += ix0 + ((ix1&sign)>>31);
132        ix1 += ix1;
133        q = q1 = s0 = s1 = 0;   /* [q,q1] = sqrt(x) */
134        r = 0x00200000;         /* r = moving bit from right to left */
135
136        while(r!=0) {
137            t = s0+r;
138            if(t<=ix0) {
139                s0   = t+r;
140                ix0 -= t;
141                q   += r;
142            }
143            ix0 += ix0 + ((ix1&sign)>>31);
144            ix1 += ix1;
145            r>>=1;
146        }
147
148        r = sign;
149        while(r!=0) {
150            t1 = s1+r;
151            t  = s0;
152            if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
153                s1  = t1+r;
154                if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
155                ix0 -= t;
156                if (ix1 < t1) ix0 -= 1;
157                ix1 -= t1;
158                q1  += r;
159            }
160            ix0 += ix0 + ((ix1&sign)>>31);
161            ix1 += ix1;
162            r>>=1;
163        }
164
165    /* use floating add to find out rounding direction */
166        if((ix0|ix1)!=0) {
167            z = one-tiny; /* trigger inexact flag */
168            if (z>=one) {
169                z = one+tiny;
170                if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
171                else if (z>one) {
172                    if (q1==(u_int32_t)0xfffffffe) q+=1;
173                    q1+=2;
174                } else
175                    q1 += (q1&1);
176            }
177        }
178        ix0 = (q>>1)+0x3fe00000;
179        ix1 =  q1>>1;
180        if ((q&1)==1) ix1 |= sign;
181        ix0 += (m <<20);
182        INSERT_WORDS(z,ix0,ix1);
183        return z;
184}
185
186
187
188/*
189Other methods  (use floating-point arithmetic)
190-------------
191(This is a copy of a drafted paper by Prof W. Kahan
192and K.C. Ng, written in May, 1986)
193
194        Two algorithms are given here to implement sqrt(x)
195        (IEEE double precision arithmetic) in software.
196        Both supply sqrt(x) correctly rounded. The first algorithm (in
197        Section A) uses newton iterations and involves four divisions.
198        The second one uses reciproot iterations to avoid division, but
199        requires more multiplications. Both algorithms need the ability
200        to chop results of arithmetic operations instead of round them,
201        and the INEXACT flag to indicate when an arithmetic operation
202        is executed exactly with no roundoff error, all part of the
203        standard (IEEE 754-1985). The ability to perform shift, add,
204        subtract and logical AND operations upon 32-bit words is needed
205        too, though not part of the standard.
206
207A.  sqrt(x) by Newton Iteration
208
209   (1)  Initial approximation
210
211        Let x0 and x1 be the leading and the trailing 32-bit words of
212        a floating point number x (in IEEE double format) respectively
213
214            1    11                  52                           ...widths
215           ------------------------------------------------------
216        x: |s|    e     |             f                         |
217           ------------------------------------------------------
218              msb    lsb  msb                                 lsb ...order
219
220
221             ------------------------        ------------------------
222        x0:  |s|   e    |    f1     |    x1: |          f2           |
223             ------------------------        ------------------------
224
225        By performing shifts and subtracts on x0 and x1 (both regarded
226        as integers), we obtain an 8-bit approximation of sqrt(x) as
227        follows.
228
229                k  := (x0>>1) + 0x1ff80000;
230                y0 := k - T1[31&(k>>15)].       ... y ~ sqrt(x) to 8 bits
231        Here k is a 32-bit integer and T1[] is an integer array containing
232        correction terms. Now magically the floating value of y (y's
233        leading 32-bit word is y0, the value of its trailing word is 0)
234        approximates sqrt(x) to almost 8-bit.
235
236        Value of T1:
237        static int T1[32]= {
238        0,      1024,   3062,   5746,   9193,   13348,  18162,  23592,
239        29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
240        83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
241        16499,  12183,  8588,   5674,   3403,   1742,   661,    130,};
242
243    (2) Iterative refinement
244
245        Apply Heron's rule three times to y, we have y approximates
246        sqrt(x) to within 1 ulp (Unit in the Last Place):
247
248                y := (y+x/y)/2          ... almost 17 sig. bits
249                y := (y+x/y)/2          ... almost 35 sig. bits
250                y := y-(y-x/y)/2        ... within 1 ulp
251
252
253        Remark 1.
254            Another way to improve y to within 1 ulp is:
255
256                y := (y+x/y)            ... almost 17 sig. bits to 2*sqrt(x)
257                y := y - 0x00100006     ... almost 18 sig. bits to sqrt(x)
258
259                                2
260                            (x-y )*y
261                y := y + 2* ----------  ...within 1 ulp
262                               2
263                             3y  + x
264
265
266        This formula has one division fewer than the one above; however,
267        it requires more multiplications and additions. Also x must be
268        scaled in advance to avoid spurious overflow in evaluating the
269        expression 3y*y+x. Hence it is not recommended uless division
270        is slow. If division is very slow, then one should use the
271        reciproot algorithm given in section B.
272
273    (3) Final adjustment
274
275        By twiddling y's last bit it is possible to force y to be
276        correctly rounded according to the prevailing rounding mode
277        as follows. Let r and i be copies of the rounding mode and
278        inexact flag before entering the square root program. Also we
279        use the expression y+-ulp for the next representable floating
280        numbers (up and down) of y. Note that y+-ulp = either fixed
281        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
282        mode.
283
284                I := FALSE;     ... reset INEXACT flag I
285                R := RZ;        ... set rounding mode to round-toward-zero
286                z := x/y;       ... chopped quotient, possibly inexact
287                If(not I) then {        ... if the quotient is exact
288                    if(z=y) {
289                        I := i;  ... restore inexact flag
290                        R := r;  ... restore rounded mode
291                        return sqrt(x):=y.
292                    } else {
293                        z := z - ulp;   ... special rounding
294                    }
295                }
296                i := TRUE;              ... sqrt(x) is inexact
297                If (r=RN) then z=z+ulp  ... rounded-to-nearest
298                If (r=RP) then {        ... round-toward-+inf
299                    y = y+ulp; z=z+ulp;
300                }
301                y := y+z;               ... chopped sum
302                y0:=y0-0x00100000;      ... y := y/2 is correctly rounded.
303                I := i;                 ... restore inexact flag
304                R := r;                 ... restore rounded mode
305                return sqrt(x):=y.
306
307    (4) Special cases
308
309        Square root of +inf, +-0, or NaN is itself;
310        Square root of a negative number is NaN with invalid signal.
311
312
313B.  sqrt(x) by Reciproot Iteration
314
315   (1)  Initial approximation
316
317        Let x0 and x1 be the leading and the trailing 32-bit words of
318        a floating point number x (in IEEE double format) respectively
319        (see section A). By performing shifs and subtracts on x0 and y0,
320        we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
321
322            k := 0x5fe80000 - (x0>>1);
323            y0:= k - T2[63&(k>>14)].    ... y ~ 1/sqrt(x) to 7.8 bits
324
325        Here k is a 32-bit integer and T2[] is an integer array
326        containing correction terms. Now magically the floating
327        value of y (y's leading 32-bit word is y0, the value of
328        its trailing word y1 is set to zero) approximates 1/sqrt(x)
329        to almost 7.8-bit.
330
331        Value of T2:
332        static int T2[64]= {
333        0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
334        0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
335        0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
336        0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
337        0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
338        0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
339        0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
340        0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
341
342    (2) Iterative refinement
343
344        Apply Reciproot iteration three times to y and multiply the
345        result by x to get an approximation z that matches sqrt(x)
346        to about 1 ulp. To be exact, we will have
347                -1ulp < sqrt(x)-z<1.0625ulp.
348
349        ... set rounding mode to Round-to-nearest
350           y := y*(1.5-0.5*x*y*y)       ... almost 15 sig. bits to 1/sqrt(x)
351           y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
352        ... special arrangement for better accuracy
353           z := x*y                     ... 29 bits to sqrt(x), with z*y<1
354           z := z + 0.5*z*(1-z*y)       ... about 1 ulp to sqrt(x)
355
356        Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
357        (a) the term z*y in the final iteration is always less than 1;
358        (b) the error in the final result is biased upward so that
359                -1 ulp < sqrt(x) - z < 1.0625 ulp
360            instead of |sqrt(x)-z|<1.03125ulp.
361
362    (3) Final adjustment
363
364        By twiddling y's last bit it is possible to force y to be
365        correctly rounded according to the prevailing rounding mode
366        as follows. Let r and i be copies of the rounding mode and
367        inexact flag before entering the square root program. Also we
368        use the expression y+-ulp for the next representable floating
369        numbers (up and down) of y. Note that y+-ulp = either fixed
370        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
371        mode.
372
373        R := RZ;                ... set rounding mode to round-toward-zero
374        switch(r) {
375            case RN:            ... round-to-nearest
376               if(x<= z*(z-ulp)...chopped) z = z - ulp; else
377               if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
378               break;
379            case RZ:case RM:    ... round-to-zero or round-to--inf
380               R:=RP;           ... reset rounding mod to round-to-+inf
381               if(x<z*z ... rounded up) z = z - ulp; else
382               if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
383               break;
384            case RP:            ... round-to-+inf
385               if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
386               if(x>z*z ...chopped) z = z+ulp;
387               break;
388        }
389
390        Remark 3. The above comparisons can be done in fixed point. For
391        example, to compare x and w=z*z chopped, it suffices to compare
392        x1 and w1 (the trailing parts of x and w), regarding them as
393        two's complement integers.
394
395        ...Is z an exact square root?
396        To determine whether z is an exact square root of x, let z1 be the
397        trailing part of z, and also let x0 and x1 be the leading and
398        trailing parts of x.
399
400        If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
401            I := 1;             ... Raise Inexact flag: z is not exact
402        else {
403            j := 1 - [(x0>>20)&1]       ... j = logb(x) mod 2
404            k := z1 >> 26;              ... get z's 25-th and 26-th
405                                            fraction bits
406            I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
407        }
408        R:= r           ... restore rounded mode
409        return sqrt(x):=z.
410
411        If multiplication is cheaper then the foregoing red tape, the
412        Inexact flag can be evaluated by
413
414            I := i;
415            I := (z*z!=x) or I.
416
417        Note that z*z can overwrite I; this value must be sensed if it is
418        True.
419
420        Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
421        zero.
422
423                    --------------------
424                z1: |        f2        |
425                    --------------------
426                bit 31             bit 0
427
428        Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
429        or even of logb(x) have the following relations:
430
431        -------------------------------------------------
432        bit 27,26 of z1         bit 1,0 of x1   logb(x)
433        -------------------------------------------------
434        00                      00              odd and even
435        01                      01              even
436        10                      10              odd
437        10                      00              even
438        11                      01              even
439        -------------------------------------------------
440
441    (4) Special cases (see (4) of Section A).
442
443 */
Note: See TracBrowser for help on using the repository browser.