1 | #include "../math.h" |
---|
2 | #include "math_private.h" |
---|
3 | |
---|
4 | static const double one = 1.0, tiny = 1.0e-300; |
---|
5 | |
---|
6 | /* this function was taken from the uCLibc library |
---|
7 | * Return correctly rounded sqrt. |
---|
8 | * Method: |
---|
9 | * Bit by bit method using integer arithmetic. (Slow, but portable) |
---|
10 | * 1. Normalization |
---|
11 | * Scale x to y in [1,4) with even powers of 2: |
---|
12 | * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
---|
13 | * sqrt(x) = 2^k * sqrt(y) |
---|
14 | * 2. Bit by bit computation |
---|
15 | * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
---|
16 | * i 0 |
---|
17 | * i+1 2 |
---|
18 | * s = 2*q , and y = 2 * ( y - q ). (1) |
---|
19 | * i i i i |
---|
20 | * |
---|
21 | * To compute q from q , one checks whether |
---|
22 | * i+1 i |
---|
23 | * |
---|
24 | * -(i+1) 2 |
---|
25 | * (q + 2 ) <= y. (2) |
---|
26 | * i |
---|
27 | * -(i+1) |
---|
28 | * If (2) is false, then q = q ; otherwise q = q + 2 . |
---|
29 | * i+1 i i+1 i |
---|
30 | * |
---|
31 | * With some algebric manipulation, it is not difficult to see |
---|
32 | * that (2) is equivalent to |
---|
33 | * -(i+1) |
---|
34 | * s + 2 <= y (3) |
---|
35 | * i i |
---|
36 | * |
---|
37 | * The advantage of (3) is that s and y can be computed by |
---|
38 | * i i |
---|
39 | * the following recurrence formula: |
---|
40 | * if (3) is false |
---|
41 | * |
---|
42 | * s = s , y = y ; (4) |
---|
43 | * i+1 i i+1 i |
---|
44 | * |
---|
45 | * otherwise, |
---|
46 | * -i -(i+1) |
---|
47 | * s = s + 2 , y = y - s - 2 (5) |
---|
48 | * i+1 i i+1 i i |
---|
49 | * |
---|
50 | * One may easily use induction to prove (4) and (5). |
---|
51 | * Note. Since the left hand side of (3) contain only i+2 bits, |
---|
52 | * it does not necessary to do a full (53-bit) comparison |
---|
53 | * in (3). |
---|
54 | * 3. Final rounding |
---|
55 | * After generating the 53 bits result, we compute one more bit. |
---|
56 | * Together with the remainder, we can decide whether the |
---|
57 | * result is exact, bigger than 1/2ulp, or less than 1/2ulp |
---|
58 | * (it will never equal to 1/2ulp). |
---|
59 | * The rounding mode can be detected by checking whether |
---|
60 | * huge + tiny is equal to huge, and whether huge - tiny is |
---|
61 | * equal to huge for some floating point number "huge" and "tiny". |
---|
62 | * |
---|
63 | * Special cases: |
---|
64 | * sqrt(+-0) = +-0 ... exact |
---|
65 | * sqrt(inf) = inf |
---|
66 | * sqrt(-ve) = NaN ... with invalid signal |
---|
67 | * sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
---|
68 | * |
---|
69 | * Other methods : see the appended file at the end of the program below. |
---|
70 | *--------------- |
---|
71 | */ |
---|
72 | static double __ieee754_sqrt(double x) |
---|
73 | { |
---|
74 | double z; |
---|
75 | int32_t sign = (int)0x80000000; |
---|
76 | int32_t ix0,s0,q,m,t,i; |
---|
77 | uint32_t r,t1,s1,ix1,q1; |
---|
78 | |
---|
79 | EXTRACT_WORDS(ix0,ix1,x); |
---|
80 | |
---|
81 | /* take care of Inf and NaN */ |
---|
82 | if((ix0&0x7ff00000)==0x7ff00000) { |
---|
83 | return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf |
---|
84 | sqrt(-inf)=sNaN */ |
---|
85 | } |
---|
86 | /* take care of zero */ |
---|
87 | if(ix0<=0) { |
---|
88 | if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ |
---|
89 | else if(ix0<0) |
---|
90 | return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ |
---|
91 | } |
---|
92 | /* normalize x */ |
---|
93 | m = (ix0>>20); |
---|
94 | if(m==0) { /* subnormal x */ |
---|
95 | while(ix0==0) { |
---|
96 | m -= 21; |
---|
97 | ix0 |= (ix1>>11); ix1 <<= 21; |
---|
98 | } |
---|
99 | for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; |
---|
100 | m -= i-1; |
---|
101 | ix0 |= (ix1>>(32-i)); |
---|
102 | ix1 <<= i; |
---|
103 | } |
---|
104 | m -= 1023; /* unbias exponent */ |
---|
105 | ix0 = (ix0&0x000fffff)|0x00100000; |
---|
106 | if(m&1){ /* odd m, double x to make it even */ |
---|
107 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
108 | ix1 += ix1; |
---|
109 | } |
---|
110 | m >>= 1; /* m = [m/2] */ |
---|
111 | |
---|
112 | /* generate sqrt(x) bit by bit */ |
---|
113 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
114 | ix1 += ix1; |
---|
115 | q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ |
---|
116 | r = 0x00200000; /* r = moving bit from right to left */ |
---|
117 | |
---|
118 | while(r!=0) { |
---|
119 | t = s0+r; |
---|
120 | if(t<=ix0) { |
---|
121 | s0 = t+r; |
---|
122 | ix0 -= t; |
---|
123 | q += r; |
---|
124 | } |
---|
125 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
126 | ix1 += ix1; |
---|
127 | r>>=1; |
---|
128 | } |
---|
129 | |
---|
130 | r = sign; |
---|
131 | while(r!=0) { |
---|
132 | t1 = s1+r; |
---|
133 | t = s0; |
---|
134 | if((t<ix0)||((t==ix0)&&(t1<=ix1))) { |
---|
135 | s1 = t1+r; |
---|
136 | if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; |
---|
137 | ix0 -= t; |
---|
138 | if (ix1 < t1) ix0 -= 1; |
---|
139 | ix1 -= t1; |
---|
140 | q1 += r; |
---|
141 | } |
---|
142 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
143 | ix1 += ix1; |
---|
144 | r>>=1; |
---|
145 | } |
---|
146 | |
---|
147 | /* use floating add to find out rounding direction */ |
---|
148 | if((ix0|ix1)!=0) { |
---|
149 | z = one-tiny; /* trigger inexact flag */ |
---|
150 | if (z>=one) { |
---|
151 | z = one+tiny; |
---|
152 | if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;} |
---|
153 | else if (z>one) { |
---|
154 | if (q1==(uint32_t)0xfffffffe) q+=1; |
---|
155 | q1+=2; |
---|
156 | } else |
---|
157 | q1 += (q1&1); |
---|
158 | } |
---|
159 | } |
---|
160 | ix0 = (q>>1)+0x3fe00000; |
---|
161 | ix1 = q1>>1; |
---|
162 | if ((q&1)==1) ix1 |= sign; |
---|
163 | ix0 += (m <<20); |
---|
164 | INSERT_WORDS(z,ix0,ix1); |
---|
165 | return z; |
---|
166 | } |
---|
167 | |
---|
168 | double sqrt(double x) |
---|
169 | { |
---|
170 | #if GIET_USE_HARD_FLOAT |
---|
171 | double z; |
---|
172 | __asm__ ("sqrt.d %0,%1" : "=f" (z) : "f" (x)); |
---|
173 | return z; |
---|
174 | #else |
---|
175 | return __ieee754_sqrt(x); |
---|
176 | #endif |
---|
177 | } |
---|
178 | |
---|
179 | /* |
---|
180 | * vim: ts=4 : sts=4 : sw=4 : et |
---|
181 | */ |
---|