/////////////////////////////////////////////////////////////////////////////////// // File : common.c // Date : 01/04/2012 // Author : alain greiner and joel porquet // Copyright (c) UPMC-LIP6 /////////////////////////////////////////////////////////////////////////////////// // The common.c and common.h files are part of the GIET nano-kernel. // They contains various utilities functions. /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include /////////////////////////////////////////////////////////////////////////////////// // Global variables /////////////////////////////////////////////////////////////////////////////////// // current context cache TODO // SR save (used by _it_mask() / it_restore() unsigned int _status_register_save; /////////////////////////////////////////////////////////////////////////////////// // _get_sched() // Access CP0 and returns scheduler physical address. /////////////////////////////////////////////////////////////////////////////////// inline unsigned int _get_sched() { unsigned int ret; asm volatile ( "mfc0 %0, $22" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // _get_ptpr() // Access CP2 and returns PTPR register. /////////////////////////////////////////////////////////////////////////////////// inline unsigned int _get_ptpr() { unsigned int ret; asm volatile ( "mfc2 %0, $0" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // _get_epc() // Access CP0 and returns EPC register. /////////////////////////////////////////////////////////////////////////////////// inline unsigned int _get_epc() { unsigned int ret; asm volatile ( "mfc0 %0, $14" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // _get_bar() // Access CP0 and returns BAR register. /////////////////////////////////////////////////////////////////////////////////// inline unsigned int _get_bvar() { unsigned int ret; asm volatile ( "mfc0 %0, $8" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // _get_cr() // Access CP0 and returns CR register. /////////////////////////////////////////////////////////////////////////////////// inline unsigned int _get_cause() { unsigned int ret; asm volatile ( "mfc0 %0, $13" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // _get_sr() // Access CP0 and returns SR register. /////////////////////////////////////////////////////////////////////////////////// inline unsigned int _get_sr() { unsigned int ret; asm volatile ( "mfc0 %0, $12" : "=r"(ret) ); return ret; } /////////////////////////////////////////////////////////////////////////////////// // _it_mask() // Access CP0 and mask IRQs /////////////////////////////////////////////////////////////////////////////////// inline void _it_mask() { unsigned int sr_value; asm volatile( "li $3, 0xFFFFFFFE \n" "mfc0 %0, $12 \n" "and $3, $3, %0 \n" "mtc0 $3, $12 \n" : "=r"(sr_value) : : "$3" ); _status_register_save = sr_value; } /////////////////////////////////////////////////////////////////////////////////// // _it_enable() // Access CP0 and enable IRQs /////////////////////////////////////////////////////////////////////////////////// inline void _it_restore() { unsigned int sr_value = _status_register_save; asm volatile( "mtc0 %0, $12 \n" : : "r"(sr_value) ); } //////////////////////////////////////////////////////////////////////////// // _get_lock() // Takes a lock with an ll/sc atomic access. // A pseudo random delay is introduced before retry in case of miss // (delay average value = 100 cycles) //////////////////////////////////////////////////////////////////////////// inline void _get_lock( unsigned int* plock ) { register unsigned int delay = ( _proctime() ^ _procid()<<4 ) & 0xFF; asm volatile ( "_lock_llsc: \n" "ll $2, 0(%0) \n" /* $2 <= _ioc_lock current value */ "bnez $2, _lock_delay \n" /* delay if _ioc_lock already taken */ "li $3, 1 \n" /* $3 <= argument for sc */ "sc $3, 0(%0) \n" /* try to set _ioc_lock */ "bnez $3, _lock_ok \n" /* exit if atomic */ "_lock_delay: \n" "move $4, %1 \n" /* $4 <= delay */ "_lock_loop: \n" "addi $4, $4, -1 \n" /* $4 <= $4 - 1 */ "beqz $4, _lock_loop \n" /* test end delay */ "j _lock_llsc \n" /* retry */ "_lock_ok: \n" : :"r"(plock), "r"(delay) :"$2", "$3", "$4"); } //////////////////////////////////////////////////////////////////////////// // _release_lock() //////////////////////////////////////////////////////////////////////////// inline void _release_lock( unsigned int* plock ) { *plock = 0; } //////////////////////////////////////////////////////////////////////////// // _puts() // display a string on TTY0 / used for system code debugand log //////////////////////////////////////////////////////////////////////////// void _puts(char *buffer) { unsigned int* tty_address = (unsigned int*)&seg_tty_base; unsigned int n; for ( n=0; n<100; n++) { if (buffer[n] == 0) break; tty_address[0] = (unsigned int)buffer[n]; } } //////////////////////////////////////////////////////////////////////////// // _putw() // display an int (hexa) on TTY0 / used for system code debug and log //////////////////////////////////////////////////////////////////////////// void _putw(unsigned int val) { static const char HexaTab[] = "0123456789ABCDEF"; char buf[11]; unsigned int c; buf[0] = '0'; buf[1] = 'x'; buf[10] = 0; for ( c = 0 ; c < 8 ; c++ ) { buf[9-c] = HexaTab[val&0xF]; val = val >> 4; } _puts(buf); } //////////////////////////////////////////////////////////////////////////// // _putd() // display an int (decimal) on TTY0 / used for system code debug and log //////////////////////////////////////////////////////////////////////////// void _putd(unsigned int val) { static const char DecTab[] = "0123456789"; char buf[11]; unsigned int i; unsigned int first; buf[10] = 0; for (i = 0; i < 10; i++) { if ((val != 0) || (i == 0)) { buf[9-i] = DecTab[val % 10]; first = 9-i; } else { break; } val /= 10; } _puts( &buf[first] ); } //////////////////////////////////////////////////////////////////////////// // _strncmp() // compare two strings s1 & s2 (no more than n characters) //////////////////////////////////////////////////////////////////////////// unsigned int _strncmp(const char* s1, const char* s2, unsigned int n) { unsigned int i; for ( i=0 ; i>10) & 0x7); line_size = 2 << tmp; // iterate on cache lines for (i = 0; i < size; i += line_size) { asm volatile( " cache %0, %1" ::"i" (0x11), "R" (*((unsigned char*)buffer+i)) ); } } //////////////////////////////////////////////////////////////////////////// // _physical_read_access() // This function makes a physical read access to a 32 bits word in memory, // after a temporary DTLB desactivation. //////////////////////////////////////////////////////////////////////////// unsigned int _physical_read_access(unsigned int* paddr) { unsigned int value; asm volatile( "li $3, 0xFFFFFFFE \n" "mfc0 $2, $12 \n" /* $2 <= SR */ "and $3, $3, $2 \n" "mtc0 $3, $12 \n" /* interrupt masked */ "li $3, 0xB \n" "mtc2 $3, $1 \n" /* DTLB off */ "lw %0, 0(%1) \n" /* entry <= *pslot */ "li $3, 0xF \n" "mtc2 $3, $1 \n" /* DTLB on */ "mtc0 $2, $12 \n" /* restore SR */ : "=r"(value) : "r"(paddr) : "$2", "$3" ); return value; } //////////////////////////////////////////////////////////////////////////// // _physical_write_access() // This function makes a physical write access to a 32 bits word in memory, // after a temporary DTLB desactivation. //////////////////////////////////////////////////////////////////////////// void _physical_write_access(unsigned int* paddr, unsigned int value) { asm volatile( "li $3, 0xFFFFFFFE \n" "mfc0 $2, $12 \n" /* $26 <= SR */ "and $3, $3, $2 \n" "mtc0 $3, $12 \n" /* interrupt masked */ "li $3, 0xB \n" "mtc2 $3, $1 \n" /* DTLB off */ "sw %0, 0(%1) \n" /* entry <= *pslot */ "li $3, 0xF \n" "mtc2 $3, $1 \n" /* DTLB on */ "mtc0 $2, $12 \n" /* restore SR */ : : "r"(value), "r"(paddr) : "$2", "$3" ); } //////////////////////////////////////////////////////////////////////////// // _get_tasks_number() // This function returns the number of tasks allocated to processor. //////////////////////////////////////////////////////////////////////////// unsigned int _get_tasks_number() { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); return _physical_read_access( &(psched->tasks) ); } //////////////////////////////////////////////////////////////////////////// // _get_current_task_id() // This function returns the index of the currently running task. //////////////////////////////////////////////////////////////////////////// unsigned int _get_current_task_id() { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); return _physical_read_access( &(psched->current) ); } //////////////////////////////////////////////////////////////////////////// // _set_current_task_id() // This function returns the index of the currently running task. //////////////////////////////////////////////////////////////////////////// void _set_current_task_id( unsigned int value ) { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); _physical_write_access( &(psched->current), value ); } /////////////////////////////////////////////////////////////////////////////// // _get_context_slot() // This function returns a slot content for the task defined by task_id. /////////////////////////////////////////////////////////////////////////////// unsigned int _get_context_slot( unsigned int task_id, unsigned int slot_id ) { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); return _physical_read_access( &(psched->context[task_id][slot_id]) ); } /////////////////////////////////////////////////////////////////////////////// // _set_context_slot() // This function returns a slot content for the task defined by task_id. /////////////////////////////////////////////////////////////////////////////// void _set_context_slot( unsigned int task_id, unsigned int slot_id, unsigned int value ) { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); _physical_write_access( &(psched->context[task_id][slot_id]), value ); } //////////////////////////////////////////////////////////////////////////////// // _get_interrupt_vector_entry() // This function returns the interrupt_vector entry defined by argument index. //////////////////////////////////////////////////////////////////////////////// unsigned int _get_interrupt_vector_entry( unsigned int index ) { static_scheduler_t* psched = (static_scheduler_t*)_get_sched(); return _physical_read_access( &(psched->interrupt_vector[index]) ); } ///////////////////////////////////////////////////////////////////////////// // access functions to mapping_info data structure ///////////////////////////////////////////////////////////////////////////// mapping_cluster_t* _get_cluster_base( mapping_header_t* header ) { return (mapping_cluster_t*) ((char*)header + MAPPING_HEADER_SIZE); } ///////////////////////////////////////////////////////////////////////////// mapping_pseg_t* _get_pseg_base( mapping_header_t* header ) { return (mapping_pseg_t*) ((char*)header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE*header->clusters); } ///////////////////////////////////////////////////////////////////////////// mapping_vspace_t* _get_vspace_base( mapping_header_t* header ) { return (mapping_vspace_t*) ((char*)header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE*header->clusters + MAPPING_PSEG_SIZE*header->psegs); } ///////////////////////////////////////////////////////////////////////////// mapping_vseg_t* _get_vseg_base( mapping_header_t* header ) { return (mapping_vseg_t*) ((char*)header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE*header->clusters + MAPPING_PSEG_SIZE*header->psegs + MAPPING_VSPACE_SIZE*header->vspaces); } ///////////////////////////////////////////////////////////////////////////// mapping_vobj_t* _get_vobj_base( mapping_header_t* header ) { return (mapping_vobj_t*) ((char*)header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE*header->clusters + MAPPING_PSEG_SIZE*header->psegs + MAPPING_VSPACE_SIZE*header->vspaces + MAPPING_VSEG_SIZE*header->vsegs ); } ///////////////////////////////////////////////////////////////////////////// mapping_task_t* _get_task_base( mapping_header_t* header ) { return (mapping_task_t*) ((char*)header + MAPPING_HEADER_SIZE + MAPPING_CLUSTER_SIZE*header->clusters + MAPPING_PSEG_SIZE*header->psegs + MAPPING_VSPACE_SIZE*header->vspaces + MAPPING_VOBJ_SIZE*header->vobjs + MAPPING_VSEG_SIZE*header->vsegs); }