[158] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // File : drivers.c |
---|
| 3 | // Date : 01/04/2012 |
---|
| 4 | // Author : alain greiner |
---|
| 5 | // Copyright (c) UPMC-LIP6 |
---|
| 6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[160] | 7 | // The drivers.c and drivers.h files are part ot the GIET nano kernel. |
---|
[158] | 8 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
| 9 | // - vci_multi_tty |
---|
| 10 | // - vci_multi_timer |
---|
| 11 | // - vci_multi_dma |
---|
| 12 | // - vci_multi_icu |
---|
| 13 | // - vci_gcd |
---|
| 14 | // - vci_frame_buffer |
---|
| 15 | // - vci_block_device |
---|
| 16 | // |
---|
| 17 | // The following global parameters must be defined in the giet_config.h file: |
---|
[165] | 18 | // - NB_CLUSTERS : number of clusters |
---|
| 19 | // - NB_PROCS : number of PROCS per cluster |
---|
| 20 | // - NB_TIMERS : number of TIMERS per cluster |
---|
| 21 | // - NB_DMAS : number of DMA channels |
---|
| 22 | // - NB_TTYS : number of TTY terminals |
---|
| 23 | // - NB_TIMERS : number of TIMERS per cluster |
---|
| 24 | // - CLUSTER_SPAN : address increment between clusters |
---|
[158] | 25 | // |
---|
| 26 | // The following base addresses must be defined in the sys.ld file: |
---|
| 27 | // - seg_icu_base |
---|
| 28 | // - seg_timer_base |
---|
| 29 | // - seg_tty_base |
---|
| 30 | // - seg_gcd_base |
---|
| 31 | // - seg_dma_base |
---|
| 32 | // - seg_fb_base |
---|
| 33 | // - seg_ioc_base |
---|
| 34 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 35 | |
---|
[166] | 36 | #include <vm_handler.h> |
---|
[158] | 37 | #include <sys_handler.h> |
---|
| 38 | #include <giet_config.h> |
---|
| 39 | #include <drivers.h> |
---|
| 40 | #include <common.h> |
---|
| 41 | #include <hwr_mapping.h> |
---|
| 42 | #include <mips32_registers.h> |
---|
| 43 | #include <ctx_handler.h> |
---|
| 44 | |
---|
| 45 | #if !defined(NB_PROCS) |
---|
| 46 | # error: You must define NB_PROCS in 'giet_config.h' file! |
---|
| 47 | #endif |
---|
| 48 | #if !defined(NB_CLUSTERS) |
---|
| 49 | # error: You must define NB_CLUSTERS in 'giet_config.h' file! |
---|
| 50 | #endif |
---|
| 51 | #if !defined(CLUSTER_SPAN) |
---|
| 52 | # error: You must define CLUSTER_SPAN in 'giet_config.h' file! |
---|
| 53 | #endif |
---|
| 54 | #if !defined(NB_TTYS) |
---|
| 55 | # error: You must define NB_TTYS in 'giet_config.h' file! |
---|
| 56 | #endif |
---|
| 57 | #if !defined(NB_DMAS) |
---|
| 58 | # error: You must define NB_DMAS in 'giet_config.h' file! |
---|
| 59 | #endif |
---|
| 60 | #if !defined(NB_TIMERS) |
---|
| 61 | # error: You must define NB_TIMERS in 'giet_config.h' file! |
---|
| 62 | #endif |
---|
| 63 | |
---|
[165] | 64 | #if (NB_TTYS < 1) |
---|
| 65 | # error: NB_TTYS cannot be smaller than 1! |
---|
| 66 | #endif |
---|
| 67 | |
---|
| 68 | #if (NB_TIMERS < NB_PROCS) |
---|
| 69 | # error: NB_TIMERS must be larger or equal to NB_PROCS! |
---|
| 70 | #endif |
---|
| 71 | |
---|
| 72 | #if (NB_PROCS > 8) |
---|
| 73 | # error: NB_PROCS cannot be larger than 8! |
---|
| 74 | #endif |
---|
| 75 | |
---|
| 76 | #if (NB_DMAS < 1) |
---|
| 77 | # error: NB_DMAS cannot be 0! |
---|
| 78 | #endif |
---|
| 79 | |
---|
| 80 | |
---|
[158] | 81 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 82 | // Global (uncachable) variables |
---|
| 83 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 84 | |
---|
| 85 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
| 86 | |
---|
| 87 | in_unckdata volatile unsigned int _dma_status[NB_DMAS]; |
---|
| 88 | in_unckdata volatile unsigned char _dma_busy[NB_DMAS] = { [0 ... NB_DMAS-1] = 0 }; |
---|
| 89 | |
---|
[166] | 90 | in_unckdata volatile unsigned char _ioc_status = 0; |
---|
| 91 | in_unckdata volatile unsigned char _ioc_done = 0; |
---|
| 92 | in_unckdata unsigned int _ioc_lock = 0; |
---|
| 93 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
| 94 | in_unckdata unsigned int _ioc_iommu_npages = 0; |
---|
[158] | 95 | |
---|
| 96 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
---|
| 97 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS-1] = 0 }; |
---|
[165] | 98 | in_unckdata unsigned int _tty_put_lock; |
---|
[158] | 99 | |
---|
| 100 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 101 | // VciMultiTimer driver |
---|
| 102 | ////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 103 | // There is one MULTI-TIMER component per cluster. |
---|
| 104 | // The number of timers per cluster must be larger or equal to the number |
---|
| 105 | // processors (NB_TIMERS >= NB_PROCS), because each processor uses a private |
---|
| 106 | // yimer for context switch. |
---|
[158] | 107 | // The total number of timers is NB_CLUSTERS * NB_TIMERS |
---|
[165] | 108 | // The global timer index = cluster_id*NB_TIMERS + timer_id |
---|
[158] | 109 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 110 | |
---|
| 111 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 112 | // _timer_write() |
---|
| 113 | // |
---|
[165] | 114 | // Write a 32-bit word in a memory mapped register of a timer device, |
---|
| 115 | // identified by the cluster index and the local timer index. |
---|
[158] | 116 | // Returns 0 if success, > 0 if error. |
---|
| 117 | ////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 118 | unsigned int _timer_write( unsigned int cluster_index, |
---|
| 119 | unsigned int timer_index, |
---|
[158] | 120 | unsigned int register_index, |
---|
| 121 | unsigned int value ) |
---|
| 122 | { |
---|
[165] | 123 | unsigned int* timer_address; |
---|
[158] | 124 | |
---|
[165] | 125 | // parameters checking |
---|
| 126 | if ( register_index >= TIMER_SPAN) return 1; |
---|
| 127 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
| 128 | if ( timer_index >= NB_TIMERS ) return 1; |
---|
[158] | 129 | |
---|
| 130 | timer_address = (unsigned int*)&seg_timer_base + |
---|
[165] | 131 | ( cluster_index * CLUSTER_SPAN ) + |
---|
| 132 | ( timer_index * TIMER_SPAN ); |
---|
[158] | 133 | |
---|
[165] | 134 | timer_address[register_index] = value; // write word |
---|
[158] | 135 | |
---|
| 136 | return 0; |
---|
| 137 | } |
---|
| 138 | |
---|
| 139 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 140 | // _timer_read() |
---|
| 141 | // |
---|
[165] | 142 | // Read a 32-bit word in a memory mapped register of a timer device, |
---|
| 143 | // identified by the cluster index and the local timer index. |
---|
[158] | 144 | // Returns 0 if success, > 0 if error. |
---|
| 145 | ////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 146 | unsigned int _timer_read(unsigned int cluster_index, |
---|
| 147 | unsigned int timer_index, |
---|
[158] | 148 | unsigned int register_index, |
---|
| 149 | unsigned int *buffer) |
---|
| 150 | { |
---|
[165] | 151 | unsigned int *timer_address; |
---|
[158] | 152 | |
---|
[165] | 153 | // parameters checking |
---|
| 154 | if ( register_index >= TIMER_SPAN) return 1; |
---|
| 155 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
| 156 | if ( timer_index >= NB_TIMERS ) return 1; |
---|
[158] | 157 | |
---|
| 158 | timer_address = (unsigned int*)&seg_timer_base + |
---|
[165] | 159 | ( cluster_index * CLUSTER_SPAN ) + |
---|
| 160 | ( timer_index * TIMER_SPAN ); |
---|
[158] | 161 | |
---|
[165] | 162 | *buffer = timer_address[register_index]; // read word |
---|
[158] | 163 | |
---|
| 164 | return 0; |
---|
| 165 | } |
---|
| 166 | |
---|
| 167 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 168 | // VciMultiTty driver |
---|
| 169 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 170 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
---|
| 171 | // The system terminal is TTY[0]. |
---|
| 172 | // The TTYs are allocated to applications by the GIET in the boot phase. |
---|
[165] | 173 | // The nummber of TTYs allocated to each application, and used by each |
---|
[158] | 174 | // task can be defined in the mapping_info data structure. |
---|
| 175 | // For each user task, the tty_id is stored in the context of the task (slot 34), |
---|
| 176 | // and must be explicitely defined in the boot code. |
---|
| 177 | // The TTY address is always computed as : seg_tty_base + tty_id*TTY_SPAN |
---|
| 178 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 179 | |
---|
| 180 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 181 | // _tty_write() |
---|
| 182 | // |
---|
| 183 | // Write one or several characters directly from a fixed-length user buffer to |
---|
| 184 | // the TTY_WRITE register of the TTY controler. |
---|
| 185 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
| 186 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
| 187 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
| 188 | // The function returns the number of characters that have been written. |
---|
| 189 | ////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 190 | unsigned int _tty_write( const char *buffer, |
---|
| 191 | unsigned int length) |
---|
[158] | 192 | { |
---|
| 193 | volatile unsigned int *tty_address; |
---|
| 194 | |
---|
| 195 | unsigned int proc_id; |
---|
| 196 | unsigned int task_id; |
---|
| 197 | unsigned int tty_id; |
---|
| 198 | unsigned int nwritten; |
---|
| 199 | |
---|
| 200 | proc_id = _procid(); |
---|
[160] | 201 | |
---|
[158] | 202 | task_id = _scheduler[proc_id].current; |
---|
| 203 | tty_id = _scheduler[proc_id].context[task_id][CTX_TTY_ID]; |
---|
| 204 | |
---|
| 205 | tty_address = (unsigned int*)&seg_tty_base + tty_id*TTY_SPAN; |
---|
| 206 | |
---|
| 207 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
| 208 | { |
---|
[165] | 209 | // check tty's status |
---|
[158] | 210 | if ((tty_address[TTY_STATUS] & 0x2) == 0x2) |
---|
| 211 | break; |
---|
| 212 | else |
---|
[165] | 213 | // write character |
---|
[158] | 214 | tty_address[TTY_WRITE] = (unsigned int)buffer[nwritten]; |
---|
| 215 | } |
---|
| 216 | return nwritten; |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 220 | // _tty_read_irq() |
---|
| 221 | // |
---|
| 222 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
[165] | 223 | // the associated kernel buffer, that has been written by the ISR. |
---|
[158] | 224 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
| 225 | // buffer, writes this character to the user buffer, and resets the |
---|
| 226 | // _tty_get_full[tty_id] buffer. |
---|
| 227 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
| 228 | ////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 229 | unsigned int _tty_read_irq( char *buffer, |
---|
| 230 | unsigned int length) |
---|
[158] | 231 | { |
---|
| 232 | unsigned int proc_id; |
---|
| 233 | unsigned int task_id; |
---|
| 234 | unsigned int tty_id; |
---|
| 235 | unsigned int ret; |
---|
| 236 | |
---|
| 237 | proc_id = _procid(); |
---|
| 238 | task_id = _scheduler[proc_id].current; |
---|
| 239 | tty_id = _scheduler[proc_id].context[task_id][CTX_TTY_ID]; |
---|
| 240 | |
---|
| 241 | if (_tty_get_full[tty_id] == 0) |
---|
| 242 | { |
---|
| 243 | ret = 0; |
---|
| 244 | } |
---|
| 245 | else |
---|
| 246 | { |
---|
| 247 | *buffer = _tty_get_buf[tty_id]; |
---|
| 248 | _tty_get_full[tty_id] = 0; |
---|
| 249 | ret = 1; |
---|
| 250 | } |
---|
| 251 | return ret; |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 255 | // _tty_read() |
---|
| 256 | // |
---|
| 257 | // This non-blocking function fetches one character directly from the TTY_READ |
---|
| 258 | // register of the TTY controler, and writes this character to the user buffer. |
---|
| 259 | // It doesn't use the TTY_GET_IRQ interrupt and the associated kernel buffer. |
---|
| 260 | // Returns 0 if the register is empty, 1 if the register is full. |
---|
| 261 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 262 | unsigned int _tty_read( char *buffer, |
---|
| 263 | unsigned int length) |
---|
[158] | 264 | { |
---|
| 265 | volatile unsigned int *tty_address; |
---|
| 266 | |
---|
| 267 | unsigned int proc_id; |
---|
| 268 | unsigned int task_id; |
---|
| 269 | unsigned int tty_id; |
---|
| 270 | |
---|
| 271 | proc_id = _procid(); |
---|
| 272 | task_id = _scheduler[proc_id].current; |
---|
| 273 | tty_id = _scheduler[proc_id].context[task_id][CTX_TTY_ID]; |
---|
| 274 | |
---|
| 275 | tty_address = (unsigned int*)&seg_tty_base + tty_id*TTY_SPAN; |
---|
| 276 | |
---|
| 277 | if ((tty_address[TTY_STATUS] & 0x1) != 0x1) return 0; |
---|
| 278 | |
---|
| 279 | *buffer = (char)tty_address[TTY_READ]; |
---|
| 280 | return 1; |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 284 | // VciMultiIcu driver |
---|
| 285 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 286 | // There is in principle one MULTI-ICU component per cluster, and the |
---|
| 287 | // number of independant ICUs is equal to NB_PROCS, because there is |
---|
| 288 | // one ICU per processor. |
---|
| 289 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 290 | |
---|
| 291 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 292 | // _icu_write() |
---|
| 293 | // |
---|
[165] | 294 | // Write a 32-bit word in a memory mapped register of the MULTI_ICU device, |
---|
| 295 | // identified by the cluster index, and a processor local index. |
---|
[158] | 296 | // Returns 0 if success, > 0 if error. |
---|
| 297 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 298 | unsigned int _icu_write( unsigned int cluster_index, |
---|
| 299 | unsigned int proc_index, |
---|
| 300 | unsigned int register_index, |
---|
| 301 | unsigned int value ) |
---|
[158] | 302 | { |
---|
[165] | 303 | unsigned int *icu_address; |
---|
[158] | 304 | |
---|
[165] | 305 | // parameters checking |
---|
| 306 | if ( register_index >= ICU_SPAN) return 1; |
---|
| 307 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
| 308 | if ( proc_index >= NB_PROCS ) return 1; |
---|
[158] | 309 | |
---|
[165] | 310 | icu_address = (unsigned int*)&seg_icu_base + |
---|
| 311 | ( cluster_index * CLUSTER_SPAN ) + |
---|
| 312 | ( proc_index * ICU_SPAN ); |
---|
| 313 | |
---|
| 314 | icu_address[register_index] = value; // write word |
---|
[158] | 315 | return 0; |
---|
| 316 | } |
---|
| 317 | |
---|
| 318 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 319 | // _icu_read() |
---|
| 320 | // |
---|
[165] | 321 | // Read a 32-bit word in a memory mapped register of the MULTI_ICU device, |
---|
| 322 | // identified by the cluster index and a processor local index. |
---|
[158] | 323 | // Returns 0 if success, > 0 if error. |
---|
| 324 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 325 | unsigned int _icu_read( unsigned int cluster_index, |
---|
| 326 | unsigned int proc_index, |
---|
| 327 | unsigned int register_index, |
---|
| 328 | unsigned int* buffer ) |
---|
[158] | 329 | { |
---|
[165] | 330 | unsigned int *icu_address; |
---|
[158] | 331 | |
---|
[165] | 332 | // parameters checking |
---|
| 333 | if ( register_index >= ICU_SPAN) return 1; |
---|
| 334 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
| 335 | if ( proc_index >= NB_PROCS ) return 1; |
---|
[158] | 336 | |
---|
[165] | 337 | icu_address = (unsigned int*)&seg_icu_base + |
---|
| 338 | ( cluster_index * CLUSTER_SPAN ) + |
---|
| 339 | ( proc_index * ICU_SPAN ); |
---|
| 340 | |
---|
| 341 | *buffer = icu_address[register_index]; // read word |
---|
[158] | 342 | return 0; |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 346 | // VciGcd driver |
---|
| 347 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 348 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
[165] | 349 | // performing the computation of the GCD of two 32 bits integers. |
---|
[158] | 350 | // It has no DMA capability. |
---|
| 351 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 352 | |
---|
| 353 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 354 | // _gcd_write() |
---|
| 355 | // |
---|
| 356 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 357 | // Returns 0 if success, > 0 if error. |
---|
| 358 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 359 | unsigned int _gcd_write( unsigned int register_index, |
---|
| 360 | unsigned int value) |
---|
[158] | 361 | { |
---|
| 362 | volatile unsigned int *gcd_address; |
---|
| 363 | |
---|
[165] | 364 | // parameters checking |
---|
[158] | 365 | if (register_index >= GCD_END) |
---|
| 366 | return 1; |
---|
| 367 | |
---|
| 368 | gcd_address = (unsigned int*)&seg_gcd_base; |
---|
[165] | 369 | |
---|
| 370 | gcd_address[register_index] = value; // write word |
---|
[158] | 371 | return 0; |
---|
| 372 | } |
---|
| 373 | |
---|
| 374 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 375 | // _gcd_read() |
---|
| 376 | // |
---|
| 377 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 378 | // Returns 0 if success, > 0 if error. |
---|
| 379 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 380 | unsigned int _gcd_read( unsigned int register_index, |
---|
| 381 | unsigned int *buffer) |
---|
[158] | 382 | { |
---|
| 383 | volatile unsigned int *gcd_address; |
---|
| 384 | |
---|
[165] | 385 | // parameters checking |
---|
[158] | 386 | if (register_index >= GCD_END) |
---|
| 387 | return 1; |
---|
| 388 | |
---|
| 389 | gcd_address = (unsigned int*)&seg_gcd_base; |
---|
[165] | 390 | |
---|
| 391 | *buffer = gcd_address[register_index]; // read word |
---|
[158] | 392 | return 0; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 396 | // VciBlockDevice driver |
---|
| 397 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 398 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
[166] | 399 | // |
---|
| 400 | // The IOMMU can be activated or not: |
---|
| 401 | // |
---|
| 402 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
| 403 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
| 404 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
| 405 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
| 406 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
| 407 | // The number of PT2 entries is dynamically computed and stored in the |
---|
| 408 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
| 409 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
| 410 | // the transfer is completed. |
---|
| 411 | // |
---|
| 412 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
| 413 | // contiguous physical buffer (this is generally true because the user space |
---|
| 414 | // page tables are statically constructed to use contiguous physical memory). |
---|
| 415 | // |
---|
| 416 | // Finally, the memory buffer must fulfill the following conditions: |
---|
| 417 | // - The user buffer must be word aligned, |
---|
| 418 | // - The user buffer must be mapped in user address space, |
---|
| 419 | // - The user buffer must be writable in case of (to_mem) access, |
---|
| 420 | // - The total number of physical pages occupied by the user buffer cannot |
---|
| 421 | // be larger than 512 pages if the IOMMU is activated, |
---|
| 422 | // - All physical pages occupied by the user buffer must be contiguous |
---|
| 423 | // if the IOMMU is not activated. |
---|
| 424 | // An error code is returned if these conditions are not verified. |
---|
| 425 | // |
---|
[158] | 426 | // As the IOC component can be used by several programs running in parallel, |
---|
| 427 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
| 428 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
| 429 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
| 430 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
| 431 | // available. |
---|
| 432 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
| 433 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
| 434 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
| 435 | // variable. |
---|
| 436 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
[166] | 437 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
[158] | 438 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
| 439 | // variable. |
---|
| 440 | // |
---|
| 441 | // In a multi-processing environment, this polling policy should be replaced by |
---|
| 442 | // a descheduling policy for the requesting process. |
---|
| 443 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 444 | |
---|
| 445 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 446 | // _ioc_get_lock() |
---|
| 447 | // |
---|
| 448 | // This blocking helper is used by '_ioc_read()' and '_ioc_write()' functions |
---|
| 449 | // to get _ioc_lock using atomic LL/SC. |
---|
| 450 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 451 | static inline void _ioc_get_lock() |
---|
| 452 | { |
---|
| 453 | register unsigned int delay = (_proctime() & 0xF) << 4; |
---|
| 454 | register unsigned int *plock = (unsigned int*)&_ioc_lock; |
---|
| 455 | |
---|
| 456 | asm volatile ( |
---|
| 457 | "_ioc_llsc: \n" |
---|
| 458 | "ll $2, 0(%0) \n" /* $2 <= _ioc_lock current value */ |
---|
| 459 | "bnez $2, _ioc_delay \n" /* delay if _ioc_lock already taken */ |
---|
| 460 | "li $3, 1 \n" /* $3 <= argument for sc */ |
---|
| 461 | "sc $3, 0(%0) \n" /* try to set _ioc_lock */ |
---|
| 462 | "bnez $3, _ioc_ok \n" /* exit if atomic */ |
---|
| 463 | "_ioc_delay: \n" |
---|
| 464 | "move $4, %1 \n" /* $4 <= delay */ |
---|
| 465 | "_ioc_loop: \n" |
---|
[165] | 466 | "beqz $4, _ioc_loop \n" /* test end delay */ |
---|
[158] | 467 | "addi $4, $4, -1 \n" /* $4 <= $4 - 1 */ |
---|
[165] | 468 | "j _ioc_llsc \n" /* retry ll */ |
---|
| 469 | "nop \n" |
---|
[158] | 470 | "_ioc_ok: \n" |
---|
| 471 | : |
---|
| 472 | :"r"(plock), "r"(delay) |
---|
| 473 | :"$2", "$3", "$4"); |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | /////////////////////////////////////////////////////////////////////////////// |
---|
[166] | 477 | // _ioc_access() |
---|
| 478 | // This function transfer data between a memory buffer and the block device. |
---|
| 479 | // The buffer lentgth is (count*block_size) bytes. |
---|
[158] | 480 | // |
---|
[166] | 481 | // Arguments are: |
---|
| 482 | // - to_mem : from external storage to memory when non 0 |
---|
| 483 | // - lba : first block index on the external storage. |
---|
| 484 | // - user_vaddr : virtual base address of the memory buffer. |
---|
| 485 | // - count : number of blocks to be transfered. |
---|
[158] | 486 | // Returns 0 if success, > 0 if error. |
---|
| 487 | /////////////////////////////////////////////////////////////////////////////// |
---|
[166] | 488 | unsigned int _ioc_access( unsigned int to_mem, |
---|
| 489 | unsigned int lba, |
---|
| 490 | unsigned int user_vaddr, |
---|
| 491 | unsigned int count ) |
---|
[158] | 492 | { |
---|
[167] | 493 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
| 494 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
| 495 | unsigned int vpn; // current virtual page index in user space |
---|
| 496 | unsigned int ppn; // physical page number |
---|
| 497 | unsigned int flags; // page protection flags |
---|
| 498 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
| 499 | unsigned int addr; // buffer address for IOC peripheral |
---|
| 500 | unsigned int user_ptp; // page table pointer in user space |
---|
| 501 | unsigned int ko; // bool returned by _v2p_translate() |
---|
| 502 | unsigned int ppn_first; // first physical page number for user buffer |
---|
| 503 | unsigned int ltid; // current task local index |
---|
| 504 | static_scheduler_t* psched; // pointer on the current task scheduler |
---|
[166] | 505 | |
---|
| 506 | // check buffer alignment |
---|
| 507 | if ( (unsigned int)user_vaddr & 0x3 ) return 1; |
---|
[158] | 508 | |
---|
[166] | 509 | unsigned int* ioc_address = (unsigned int*)&seg_ioc_base; |
---|
| 510 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 511 | unsigned int length = count*block_size; |
---|
[158] | 512 | |
---|
[167] | 513 | // get user space page table virtual address |
---|
| 514 | psched = &_scheduler[_procid()]; |
---|
| 515 | ltid = psched->current; |
---|
| 516 | user_ptp = psched->context[ltid][CTX_PTAB_ID]; |
---|
[166] | 517 | |
---|
| 518 | user_vpn_min = user_vaddr >> 12; |
---|
| 519 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 520 | ix2 = 0; |
---|
[158] | 521 | |
---|
[166] | 522 | // loop on all virtual pages covering the user buffer |
---|
| 523 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 524 | { |
---|
| 525 | // get ppn and flags for each vpn |
---|
[167] | 526 | ko = _v2p_translate( (page_table_t*)user_ptp, |
---|
| 527 | vpn, |
---|
| 528 | &ppn, |
---|
| 529 | &flags ); |
---|
[158] | 530 | |
---|
[166] | 531 | // check access rights |
---|
| 532 | if ( ko ) return 2; // unmapped |
---|
| 533 | if ( (flags & PTE_U) == 0 ) return 3; // not in user space |
---|
| 534 | if ( ( (flags & PTE_W) == 0 ) && to_mem ) return 4; // not writable |
---|
[158] | 535 | |
---|
[166] | 536 | // save first ppn value |
---|
| 537 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
[158] | 538 | |
---|
[166] | 539 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
| 540 | { |
---|
| 541 | // check buffer length < 2 Mbytes |
---|
| 542 | if ( ix2 > 511 ) return 2; |
---|
[158] | 543 | |
---|
[166] | 544 | // map the physical page in IOMMU page table |
---|
| 545 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 546 | ix2, // PT2 index |
---|
| 547 | ppn, // Physical page number |
---|
| 548 | flags ); // Protection flags |
---|
| 549 | } |
---|
| 550 | else // no IOMMU : check that physical pages are contiguous |
---|
| 551 | { |
---|
| 552 | if ( (ppn - ppn_first) != ix2 ) return 5; // split physical buffer |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | // increment page index |
---|
| 556 | ix2++; |
---|
| 557 | } // end for vpn |
---|
[158] | 558 | |
---|
[166] | 559 | // register the number of pages to be unmapped |
---|
| 560 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
[158] | 561 | |
---|
[166] | 562 | // invalidate data cache in case of memory write |
---|
| 563 | if ( to_mem ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
[158] | 564 | |
---|
[166] | 565 | // compute buffer base address for IOC depending on IOMMU activation |
---|
| 566 | if ( GIET_IOMMU_ACTIVE ) addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
[167] | 567 | else addr = (ppn_first << 12) | (user_vaddr & 0xFFF); |
---|
[166] | 568 | |
---|
| 569 | // get the lock on ioc device |
---|
[158] | 570 | _ioc_get_lock(); |
---|
| 571 | |
---|
[166] | 572 | // peripheral configuration |
---|
| 573 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
---|
| 574 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 575 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 576 | if ( to_mem == 0 ) ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
| 577 | else ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
[158] | 578 | |
---|
| 579 | return 0; |
---|
| 580 | } |
---|
| 581 | |
---|
| 582 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 583 | // _ioc_completed() |
---|
| 584 | // |
---|
| 585 | // This function checks completion of an I/O transfer and reports errors. |
---|
[166] | 586 | // As it is a blocking call, the processor is stalled. |
---|
| 587 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
| 588 | // space are unmapped, and the IOB TLB is cleared. |
---|
[158] | 589 | // Returns 0 if success, > 0 if error. |
---|
| 590 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 591 | unsigned int _ioc_completed() |
---|
| 592 | { |
---|
[166] | 593 | unsigned int ret; |
---|
| 594 | unsigned int ix2; |
---|
[158] | 595 | |
---|
[166] | 596 | // busy waiting |
---|
[158] | 597 | while (_ioc_done == 0) |
---|
| 598 | asm volatile("nop"); |
---|
| 599 | |
---|
[166] | 600 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
| 601 | if ( GIET_IOMMU_ACTIVE ) |
---|
| 602 | { |
---|
| 603 | unsigned int* iob_address = (unsigned int*)&seg_iob_base; |
---|
| 604 | |
---|
| 605 | for ( ix2 = 0 ; ix2 < _ioc_iommu_npages ; ix2++ ) |
---|
| 606 | { |
---|
| 607 | // unmap the page in IOMMU page table |
---|
| 608 | _iommu_inval_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 609 | ix2 ); // PT2 index |
---|
| 610 | |
---|
| 611 | // clear IOMMU TLB |
---|
| 612 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2) << 12; |
---|
| 613 | } |
---|
| 614 | } |
---|
| 615 | |
---|
| 616 | // test IOC status |
---|
[158] | 617 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
[166] | 618 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
| 619 | else ret = 0; // success |
---|
[158] | 620 | |
---|
[166] | 621 | // reset synchronization variables |
---|
[158] | 622 | _ioc_lock =0; |
---|
| 623 | _ioc_done =0; |
---|
| 624 | |
---|
| 625 | return ret; |
---|
| 626 | } |
---|
| 627 | |
---|
[166] | 628 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 629 | // _ioc_read() |
---|
| 630 | // Transfer data from the block device to a memory buffer in user space. |
---|
| 631 | // - lba : first block index on the block device |
---|
| 632 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 633 | // - count : number of blocks to be transfered. |
---|
| 634 | // Returns 0 if success, > 0 if error. |
---|
| 635 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 636 | unsigned int _ioc_read( unsigned int lba, |
---|
| 637 | void* buffer, |
---|
| 638 | unsigned int count ) |
---|
| 639 | { |
---|
| 640 | return _ioc_access( 1, // read |
---|
| 641 | lba, |
---|
| 642 | (unsigned int)buffer, |
---|
| 643 | count ); |
---|
| 644 | } |
---|
| 645 | |
---|
| 646 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 647 | // _ioc_write() |
---|
| 648 | // Transfer data from a memory buffer in user space to the block device. |
---|
| 649 | // - lba : first block index on the block device |
---|
| 650 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 651 | // - count : number of blocks to be transfered. |
---|
| 652 | // Returns 0 if success, > 0 if error. |
---|
| 653 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 654 | unsigned int _ioc_write( unsigned int lba, |
---|
| 655 | const void* buffer, |
---|
| 656 | unsigned int count ) |
---|
| 657 | { |
---|
| 658 | return _ioc_access( 0, // write |
---|
| 659 | lba, |
---|
| 660 | (unsigned int)buffer, |
---|
| 661 | count ); |
---|
| 662 | } |
---|
| 663 | |
---|
[158] | 664 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 665 | // VciFrameBuffer driver |
---|
| 666 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 667 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
---|
| 668 | // implement the transfer between a data buffer (user space) and the frame |
---|
| 669 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
| 670 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the DMA |
---|
| 671 | // coprocessor to transfer data between the user buffer and the frame buffer. |
---|
| 672 | // These functions use a polling policy to test the global variables _dma_busy[i] |
---|
| 673 | // and detect the transfer completion. |
---|
| 674 | // There is NB_PROCS DMA channels, that are indexed by the proc_id. |
---|
| 675 | // The _dma_busy[i] synchronisation variables (one per channel) are set by the OS, |
---|
| 676 | // and reset by the ISR. |
---|
| 677 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 678 | |
---|
| 679 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 680 | // _fb_sync_write() |
---|
| 681 | // Transfer data from an memory buffer to the frame_buffer device using |
---|
| 682 | // a memcpy. The source memory buffer must be in user address space. |
---|
| 683 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 684 | // - buffer : base address of the memory buffer. |
---|
| 685 | // - length : number of bytes to be transfered. |
---|
| 686 | // Returns 0 if success, > 0 if error. |
---|
| 687 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 688 | unsigned int _fb_sync_write( unsigned int offset, |
---|
| 689 | const void* buffer, |
---|
| 690 | unsigned int length ) |
---|
| 691 | { |
---|
| 692 | volatile unsigned char *fb_address; |
---|
| 693 | |
---|
| 694 | /* buffer must be in user space */ |
---|
| 695 | if (((unsigned int)buffer >= 0x80000000) |
---|
| 696 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
| 697 | return 1; |
---|
| 698 | |
---|
| 699 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
| 700 | |
---|
| 701 | /* buffer copy */ |
---|
| 702 | memcpy((void*)fb_address, (void*)buffer, length); |
---|
| 703 | |
---|
| 704 | return 0; |
---|
| 705 | } |
---|
| 706 | |
---|
| 707 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 708 | // _fb_sync_read() |
---|
| 709 | // Transfer data from the frame_buffer device to a memory buffer using |
---|
| 710 | // a memcpy. The destination memory buffer must be in user address space. |
---|
| 711 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 712 | // - buffer : base address of the memory buffer. |
---|
| 713 | // - length : number of bytes to be transfered. |
---|
| 714 | // Returns 0 if success, > 0 if error. |
---|
| 715 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 716 | unsigned int _fb_sync_read( unsigned int offset, |
---|
| 717 | const void* buffer, |
---|
| 718 | unsigned int length ) |
---|
| 719 | { |
---|
| 720 | volatile unsigned char *fb_address; |
---|
| 721 | |
---|
| 722 | /* parameters checking */ |
---|
| 723 | /* buffer must be in user space */ |
---|
| 724 | if (((unsigned int)buffer >= 0x80000000) |
---|
| 725 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
| 726 | return 1; |
---|
| 727 | |
---|
| 728 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
| 729 | |
---|
| 730 | /* buffer copy */ |
---|
| 731 | memcpy((void*)buffer, (void*)fb_address, length); |
---|
| 732 | |
---|
| 733 | return 0; |
---|
| 734 | } |
---|
| 735 | |
---|
| 736 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 737 | // _fb_write() |
---|
| 738 | // Transfer data from an memory buffer to the frame_buffer device using a DMA. |
---|
| 739 | // The source memory buffer must be in user address space. |
---|
| 740 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 741 | // - buffer : base address of the memory buffer. |
---|
| 742 | // - length : number of bytes to be transfered. |
---|
| 743 | // Returns 0 if success, > 0 if error. |
---|
| 744 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 745 | unsigned int _fb_write( unsigned int offset, |
---|
| 746 | const void* buffer, |
---|
| 747 | unsigned int length ) |
---|
| 748 | { |
---|
| 749 | volatile unsigned char *fb_address; |
---|
| 750 | volatile unsigned int *dma; |
---|
| 751 | |
---|
| 752 | unsigned int proc_id; |
---|
| 753 | unsigned int delay; |
---|
| 754 | unsigned int i; |
---|
| 755 | |
---|
| 756 | /* buffer must be in user space */ |
---|
| 757 | if (((unsigned int)buffer >= 0x80000000) |
---|
| 758 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
| 759 | return 1; |
---|
| 760 | |
---|
| 761 | proc_id = _procid(); |
---|
| 762 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
| 763 | dma = (unsigned int*)&seg_dma_base + (proc_id * DMA_SPAN); |
---|
| 764 | |
---|
| 765 | /* waiting until DMA device is available */ |
---|
| 766 | while (_dma_busy[proc_id] != 0) |
---|
| 767 | { |
---|
| 768 | /* if the lock failed, busy wait with a pseudo random delay between bus |
---|
| 769 | * accesses */ |
---|
| 770 | delay = (_proctime() & 0xF) << 4; |
---|
| 771 | for (i = 0; i < delay; i++) |
---|
| 772 | asm volatile("nop"); |
---|
| 773 | } |
---|
| 774 | _dma_busy[proc_id] = 1; |
---|
| 775 | |
---|
| 776 | /* DMA configuration for write transfer */ |
---|
| 777 | dma[DMA_IRQ_DISABLE] = 0; |
---|
| 778 | dma[DMA_SRC] = (unsigned int)buffer; |
---|
| 779 | dma[DMA_DST] = (unsigned int)fb_address; |
---|
| 780 | dma[DMA_LEN] = (unsigned int)length; |
---|
| 781 | return 0; |
---|
| 782 | } |
---|
| 783 | |
---|
| 784 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 785 | // _fb_read() |
---|
| 786 | // Transfer data from the frame_buffer device to an memory buffer using a DMA. |
---|
| 787 | // The destination memory buffer must be in user address space. |
---|
| 788 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 789 | // - buffer : base address of the memory buffer. |
---|
| 790 | // - length : number of bytes to be transfered. |
---|
| 791 | // All cache lines corresponding to the the target buffer are invalidated |
---|
| 792 | // for cache coherence. |
---|
| 793 | // Returns 0 if success, > 0 if error. |
---|
| 794 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 795 | unsigned int _fb_read( unsigned int offset, |
---|
| 796 | const void* buffer, |
---|
| 797 | unsigned int length ) |
---|
| 798 | { |
---|
| 799 | volatile unsigned char *fb_address; |
---|
| 800 | volatile unsigned int *dma; |
---|
| 801 | |
---|
| 802 | unsigned int proc_id; |
---|
| 803 | unsigned int delay; |
---|
| 804 | unsigned int i; |
---|
| 805 | |
---|
| 806 | /* buffer must be in user space */ |
---|
| 807 | if (((unsigned int)buffer >= 0x80000000) |
---|
| 808 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
| 809 | return 1; |
---|
| 810 | |
---|
| 811 | proc_id = _procid(); |
---|
| 812 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
| 813 | dma = (unsigned int*)&seg_dma_base + (proc_id * DMA_SPAN); |
---|
| 814 | |
---|
| 815 | /* waiting until DMA device is available */ |
---|
| 816 | while (_dma_busy[proc_id] != 0) |
---|
| 817 | { |
---|
| 818 | /* if the lock failed, busy wait with a pseudo random delay between bus |
---|
| 819 | * accesses */ |
---|
| 820 | delay = (_proctime() & 0xF) << 4; |
---|
| 821 | for (i = 0; i < delay; i++) |
---|
| 822 | asm volatile("nop"); |
---|
| 823 | } |
---|
| 824 | _dma_busy[proc_id] = 1; |
---|
| 825 | |
---|
| 826 | /* DMA configuration for write transfer */ |
---|
| 827 | dma[DMA_IRQ_DISABLE] = 0; |
---|
| 828 | dma[DMA_SRC] = (unsigned int)fb_address; |
---|
| 829 | dma[DMA_DST] = (unsigned int)buffer; |
---|
| 830 | dma[DMA_LEN] = (unsigned int)length; |
---|
| 831 | |
---|
| 832 | /* invalidation of data cache */ |
---|
| 833 | _dcache_buf_invalidate(buffer, length); |
---|
| 834 | |
---|
| 835 | return 0; |
---|
| 836 | } |
---|
| 837 | |
---|
| 838 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 839 | // _fb_completed() |
---|
| 840 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
| 841 | // As it is a blocking call, the processor is stalled until the next interrupt. |
---|
| 842 | // Returns 0 if success, > 0 if error. |
---|
| 843 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 844 | unsigned int _fb_completed() |
---|
| 845 | { |
---|
| 846 | unsigned int proc_id; |
---|
| 847 | |
---|
| 848 | proc_id = _procid(); |
---|
| 849 | |
---|
| 850 | while (_dma_busy[proc_id] != 0) |
---|
| 851 | asm volatile("nop"); |
---|
| 852 | |
---|
| 853 | if (_dma_status[proc_id] != 0) |
---|
| 854 | return 1; |
---|
| 855 | |
---|
| 856 | return 0; |
---|
| 857 | } |
---|
| 858 | |
---|