[158] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // File : drivers.c |
---|
| 3 | // Date : 01/04/2012 |
---|
| 4 | // Author : alain greiner |
---|
| 5 | // Copyright (c) UPMC-LIP6 |
---|
| 6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 7 | // The drivers.c and drivers.h files are part ot the GIET-VM nano kernel. |
---|
[158] | 8 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
| 9 | // - vci_multi_tty |
---|
| 10 | // - vci_multi_timer |
---|
| 11 | // - vci_multi_dma |
---|
| 12 | // - vci_multi_icu |
---|
[189] | 13 | // - vci_xicu |
---|
[158] | 14 | // - vci_gcd |
---|
| 15 | // - vci_frame_buffer |
---|
| 16 | // - vci_block_device |
---|
| 17 | // |
---|
| 18 | // The following global parameters must be defined in the giet_config.h file: |
---|
[189] | 19 | // - NB_CLUSTERS |
---|
| 20 | // - NB_PROCS_MAX |
---|
| 21 | // - NB_TIMERS_MAX |
---|
| 22 | // - NB_DMAS_MAX |
---|
| 23 | // - NB_TTYS |
---|
[158] | 24 | // |
---|
| 25 | // The following base addresses must be defined in the sys.ld file: |
---|
| 26 | // - seg_icu_base |
---|
| 27 | // - seg_timer_base |
---|
| 28 | // - seg_tty_base |
---|
| 29 | // - seg_gcd_base |
---|
| 30 | // - seg_dma_base |
---|
| 31 | // - seg_fb_base |
---|
| 32 | // - seg_ioc_base |
---|
| 33 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
[166] | 35 | #include <vm_handler.h> |
---|
[158] | 36 | #include <sys_handler.h> |
---|
| 37 | #include <giet_config.h> |
---|
| 38 | #include <drivers.h> |
---|
| 39 | #include <common.h> |
---|
| 40 | #include <hwr_mapping.h> |
---|
| 41 | #include <mips32_registers.h> |
---|
| 42 | #include <ctx_handler.h> |
---|
| 43 | |
---|
| 44 | #if !defined(NB_CLUSTERS) |
---|
[189] | 45 | # error: You must define NB_CLUSTERS in 'giet_config.h' file |
---|
[158] | 46 | #endif |
---|
[189] | 47 | |
---|
| 48 | #if !defined(NB_PROCS_MAX) |
---|
| 49 | # error: You must define NB_PROCS_MAX in 'giet_config.h' file |
---|
| 50 | #endif |
---|
| 51 | |
---|
| 52 | #if (NB_PROCS_MAX > 8) |
---|
| 53 | # error: NB_PROCS_MAX cannot be larger than 8! |
---|
| 54 | #endif |
---|
| 55 | |
---|
[158] | 56 | #if !defined(CLUSTER_SPAN) |
---|
[189] | 57 | # error: You must define CLUSTER_SPAN in 'giet_config.h' file |
---|
[158] | 58 | #endif |
---|
[189] | 59 | |
---|
[158] | 60 | #if !defined(NB_TTYS) |
---|
[189] | 61 | # error: You must define NB_TTYS in 'giet_config.h' file |
---|
[158] | 62 | #endif |
---|
| 63 | |
---|
[165] | 64 | #if (NB_TTYS < 1) |
---|
| 65 | # error: NB_TTYS cannot be smaller than 1! |
---|
| 66 | #endif |
---|
| 67 | |
---|
[189] | 68 | #if !defined(NB_DMAS_MAX) |
---|
| 69 | # error: You must define NB_DMAS_MAX in 'giet_config.h' file |
---|
[165] | 70 | #endif |
---|
| 71 | |
---|
[189] | 72 | #if (NB_DMAS_MAX < 1) |
---|
| 73 | # error: NB_DMAS_MAX cannot be 0! |
---|
[165] | 74 | #endif |
---|
| 75 | |
---|
[189] | 76 | #if !defined(NB_TIMERS_MAX) |
---|
| 77 | # error: You must define NB_TIMERS_MAX in 'giet_config.h' file |
---|
[165] | 78 | #endif |
---|
| 79 | |
---|
[189] | 80 | #if ( (NB_TIMERS_MAX + NB_PROCS_MAX) > 32 ) |
---|
| 81 | # error: NB_TIMERS_MAX + NB_PROCS_MAX cannot be larger than 32 |
---|
| 82 | #endif |
---|
[165] | 83 | |
---|
[189] | 84 | #if !defined(NB_IOCS) |
---|
| 85 | # error: You must define NB_IOCS in 'giet_config.h' file |
---|
| 86 | #endif |
---|
[158] | 87 | |
---|
[189] | 88 | #if ( NB_IOCS > 1 ) |
---|
| 89 | # error: NB_IOCS cannot be larger than 1 |
---|
| 90 | #endif |
---|
[158] | 91 | |
---|
| 92 | |
---|
[189] | 93 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
[169] | 94 | |
---|
[158] | 95 | |
---|
| 96 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 97 | // VciMultiTimer driver |
---|
| 98 | ////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 99 | // There is one multi_timer (or xicu) component per cluster. |
---|
| 100 | // The global index is cluster_id*(NB_PROCS_MAX+NB_TIMERS_MAX) + local_id |
---|
| 101 | // There is two types of timers: |
---|
| 102 | // - "system" timers : one per processor, used for context switch. |
---|
| 103 | // local_id in [0, NB_PROCS_MAX-1], |
---|
| 104 | // - "user" timers : requested by the task in the mapping_info data structure. |
---|
| 105 | // local_id in [NB_PROC_MAX, NB_PROCS_MAX+NB_TIMERS_MAX-1], |
---|
| 106 | // For each user timer, the tty_id is stored in the context of the task |
---|
| 107 | // and must be explicitely defined in the boot code. |
---|
| 108 | // These timers can be implemented in a vci_multi_timer component |
---|
| 109 | // or in a vci_xicu component (depending on the GIET_USE_XICU parameter). |
---|
[158] | 110 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 111 | |
---|
[189] | 112 | // User Timer signaling variables |
---|
| 113 | |
---|
| 114 | #if (NB_TIMERS_MAX > 0) |
---|
| 115 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS*NB_TIMERS_MAX] |
---|
| 116 | = { [0 ... ((NB_CLUSTERS*NB_TIMERS_MAX)-1)] = 0 }; |
---|
| 117 | #endif |
---|
| 118 | |
---|
[158] | 119 | ////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 120 | // _timer_access() |
---|
| 121 | // This function is the only way to access a timer device. |
---|
| 122 | // It can be a multi-timer component or an xicu component. |
---|
| 123 | // It can be used by the kernel to initialise a "system" timer, |
---|
| 124 | // or by a task (through a system call) to configure an "user" timer. |
---|
[158] | 125 | // Returns 0 if success, > 0 if error. |
---|
| 126 | ////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 127 | unsigned int _timer_access( unsigned int read, |
---|
| 128 | unsigned int cluster_id, |
---|
| 129 | unsigned int local_id, |
---|
| 130 | unsigned int register_id, |
---|
| 131 | unsigned int* buffer ) |
---|
[158] | 132 | { |
---|
[165] | 133 | // parameters checking |
---|
[189] | 134 | if ( register_id >= TIMER_SPAN) return 1; |
---|
| 135 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 136 | if ( local_id >= NB_TIMERS_MAX + NB_PROCS_MAX ) return 1; |
---|
[158] | 137 | |
---|
[189] | 138 | #if GIET_USE_XICU |
---|
[158] | 139 | |
---|
[189] | 140 | unsigned int* timer_address = //TODO |
---|
[158] | 141 | |
---|
[189] | 142 | #else |
---|
| 143 | |
---|
| 144 | unsigned int* timer_address = (unsigned int*)&seg_timer_base + |
---|
| 145 | (cluster_id * CLUSTER_SPAN) + |
---|
| 146 | (local_id * TIMER_SPAN); |
---|
| 147 | #endif |
---|
| 148 | |
---|
| 149 | if (read) *buffer = timer_address[register_id]; // read word |
---|
| 150 | else timer_address[register_id] = *buffer; // write word |
---|
[158] | 151 | return 0; |
---|
| 152 | } |
---|
[189] | 153 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 154 | // _timer_write() |
---|
| 155 | // This function implements a write access to a "user" timer register. |
---|
| 156 | // It gets the cluster_id and local_id from the global index stored in |
---|
| 157 | // the task context and use the timer_access() function to make the write. |
---|
| 158 | // Returns 0 if success, > 0 if error. |
---|
| 159 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 160 | unsigned int _timer_write( unsigned int register_id, |
---|
| 161 | unsigned int value ) |
---|
| 162 | { |
---|
| 163 | unsigned int buffer = value; |
---|
| 164 | unsigned int timer_id = _get_current_context_slot(CTX_TIMER_ID); |
---|
| 165 | unsigned int cluster_id = timer_id / (NB_PROCS_MAX + NB_TIMERS_MAX); |
---|
| 166 | unsigned int local_id = timer_id % (NB_PROCS_MAX + NB_TIMERS_MAX); |
---|
[158] | 167 | |
---|
[189] | 168 | // checking user timer |
---|
| 169 | if ( local_id < NB_PROCS_MAX ) |
---|
| 170 | { |
---|
| 171 | return 2; |
---|
| 172 | } |
---|
| 173 | else |
---|
| 174 | { |
---|
| 175 | return _timer_access ( 0, // write access |
---|
| 176 | cluster_id, |
---|
| 177 | local_id, |
---|
| 178 | register_id, |
---|
| 179 | &buffer ); |
---|
| 180 | } |
---|
| 181 | } |
---|
[158] | 182 | ////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 183 | // _timer_read() |
---|
| 184 | // This function implements a read access to a "user" timer register. |
---|
| 185 | // It gets the cluster_id and local_id from the global index stored in |
---|
| 186 | // the task context and use the timer_access() function to make the read. |
---|
[158] | 187 | // Returns 0 if success, > 0 if error. |
---|
| 188 | ////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 189 | unsigned int _timer_read( unsigned int register_id, |
---|
| 190 | unsigned int* buffer ) |
---|
[158] | 191 | { |
---|
[189] | 192 | unsigned int timer_id = _get_current_context_slot(CTX_TIMER_ID); |
---|
| 193 | unsigned int cluster_id = timer_id / (NB_PROCS_MAX + NB_TIMERS_MAX); |
---|
| 194 | unsigned int local_id = timer_id % (NB_PROCS_MAX + NB_TIMERS_MAX); |
---|
[158] | 195 | |
---|
[189] | 196 | // checking user timer |
---|
| 197 | if ( local_id < NB_PROCS_MAX ) |
---|
| 198 | { |
---|
| 199 | return 2; |
---|
| 200 | } |
---|
| 201 | else |
---|
| 202 | { |
---|
| 203 | return _timer_access ( 1, // read access |
---|
| 204 | cluster_id, |
---|
| 205 | local_id, |
---|
| 206 | register_id, |
---|
| 207 | buffer ); |
---|
| 208 | } |
---|
[158] | 209 | } |
---|
[189] | 210 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 211 | // _timer_check() |
---|
| 212 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 213 | |
---|
| 214 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 215 | // VciMultiTty driver |
---|
| 216 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 217 | // There is only one multi_tty controler in the architecture. |
---|
[158] | 218 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
---|
[189] | 219 | // The "system" terminal is TTY[0]. |
---|
| 220 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
---|
| 221 | // as defined in the mapping_info data structure. The corresponding tty_id must |
---|
| 222 | // be stored in the context of the task by the boot code. |
---|
| 223 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
---|
| 224 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 225 | |
---|
[189] | 226 | // TTY variables |
---|
| 227 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
---|
| 228 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS-1] = 0 }; |
---|
| 229 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
---|
| 230 | |
---|
| 231 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 232 | // _tty_error() |
---|
| 233 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 234 | void _tty_error() |
---|
| 235 | { |
---|
| 236 | unsigned int task_id = _get_current_task_id(); |
---|
| 237 | unsigned int proc_id = _procid(); |
---|
| 238 | |
---|
| 239 | _get_lock(&_tty_put_lock); |
---|
| 240 | _puts("\n[GIET ERROR] TTY index too large for task "); |
---|
| 241 | _putw( task_id ); |
---|
| 242 | _puts(" on processor "); |
---|
| 243 | _putw( proc_id ); |
---|
| 244 | _puts("\n"); |
---|
| 245 | _release_lock(&_tty_put_lock); |
---|
| 246 | } |
---|
| 247 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 248 | // _tty_write() |
---|
[158] | 249 | // Write one or several characters directly from a fixed-length user buffer to |
---|
| 250 | // the TTY_WRITE register of the TTY controler. |
---|
| 251 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
| 252 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
| 253 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
| 254 | // The function returns the number of characters that have been written. |
---|
[189] | 255 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 256 | unsigned int _tty_write( const char *buffer, |
---|
| 257 | unsigned int length) |
---|
[158] | 258 | { |
---|
[189] | 259 | unsigned int nwritten; |
---|
[158] | 260 | |
---|
[189] | 261 | unsigned int tty_id = _get_current_context_slot(CTX_TTY_ID); |
---|
| 262 | if ( tty_id >= NB_TTYS ) |
---|
| 263 | { |
---|
| 264 | _tty_error(); |
---|
| 265 | return 0; |
---|
| 266 | } |
---|
[158] | 267 | |
---|
[189] | 268 | unsigned int* tty_address = (unsigned int*)&seg_tty_base + tty_id*TTY_SPAN; |
---|
[158] | 269 | |
---|
| 270 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
| 271 | { |
---|
[165] | 272 | // check tty's status |
---|
[158] | 273 | if ((tty_address[TTY_STATUS] & 0x2) == 0x2) |
---|
| 274 | break; |
---|
| 275 | else |
---|
[165] | 276 | // write character |
---|
[158] | 277 | tty_address[TTY_WRITE] = (unsigned int)buffer[nwritten]; |
---|
| 278 | } |
---|
| 279 | return nwritten; |
---|
| 280 | } |
---|
| 281 | ////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 282 | // _tty_read_irq() |
---|
[158] | 283 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
[165] | 284 | // the associated kernel buffer, that has been written by the ISR. |
---|
[158] | 285 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
| 286 | // buffer, writes this character to the user buffer, and resets the |
---|
| 287 | // _tty_get_full[tty_id] buffer. |
---|
| 288 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
| 289 | ////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 290 | unsigned int _tty_read_irq( char *buffer, |
---|
| 291 | unsigned int length) |
---|
[158] | 292 | { |
---|
[189] | 293 | unsigned int tty_id = _get_current_context_slot(CTX_TTY_ID); |
---|
[158] | 294 | |
---|
[189] | 295 | if ( tty_id >= NB_TTYS ) |
---|
| 296 | { |
---|
| 297 | _tty_error(); |
---|
| 298 | return 0; |
---|
| 299 | } |
---|
[158] | 300 | |
---|
| 301 | if (_tty_get_full[tty_id] == 0) |
---|
| 302 | { |
---|
[189] | 303 | return 0; |
---|
[158] | 304 | } |
---|
| 305 | else |
---|
| 306 | { |
---|
| 307 | *buffer = _tty_get_buf[tty_id]; |
---|
| 308 | _tty_get_full[tty_id] = 0; |
---|
[189] | 309 | return 1; |
---|
[158] | 310 | } |
---|
[189] | 311 | } |
---|
[158] | 312 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 313 | // _tty_read() |
---|
[158] | 314 | // This non-blocking function fetches one character directly from the TTY_READ |
---|
| 315 | // register of the TTY controler, and writes this character to the user buffer. |
---|
| 316 | // It doesn't use the TTY_GET_IRQ interrupt and the associated kernel buffer. |
---|
| 317 | // Returns 0 if the register is empty, 1 if the register is full. |
---|
| 318 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 319 | unsigned int _tty_read( char *buffer, |
---|
| 320 | unsigned int length) |
---|
[158] | 321 | { |
---|
[189] | 322 | unsigned int tty_id = _get_current_context_slot(CTX_TTY_ID); |
---|
| 323 | if ( tty_id >= NB_TTYS ) |
---|
| 324 | { |
---|
| 325 | _tty_error(); |
---|
| 326 | return 0; |
---|
| 327 | } |
---|
[158] | 328 | |
---|
[189] | 329 | unsigned int* tty_address = (unsigned int*)&seg_tty_base + tty_id*TTY_SPAN; |
---|
[158] | 330 | |
---|
[189] | 331 | if ((tty_address[TTY_STATUS] & 0x1) != 0x1) |
---|
| 332 | { |
---|
| 333 | return 0; |
---|
| 334 | } |
---|
| 335 | else |
---|
| 336 | { |
---|
| 337 | *buffer = (char)tty_address[TTY_READ]; |
---|
| 338 | return 1; |
---|
| 339 | } |
---|
[158] | 340 | } |
---|
| 341 | |
---|
| 342 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 343 | // VciMultiIcu and VciXicu drivers |
---|
[158] | 344 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 345 | // There is in principle one vci_multi_icu (or vci_xicu) component per cluster, |
---|
| 346 | // and the number of independant ICUs is equal to NB_PROCS_MAX, because there is |
---|
| 347 | // one private interrupr controler per processor. |
---|
[158] | 348 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 349 | |
---|
| 350 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 351 | // _icu_write() |
---|
[165] | 352 | // Write a 32-bit word in a memory mapped register of the MULTI_ICU device, |
---|
| 353 | // identified by the cluster index, and a processor local index. |
---|
[158] | 354 | // Returns 0 if success, > 0 if error. |
---|
| 355 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 356 | unsigned int _icu_write( unsigned int cluster_index, |
---|
| 357 | unsigned int proc_index, |
---|
| 358 | unsigned int register_index, |
---|
| 359 | unsigned int value ) |
---|
[158] | 360 | { |
---|
[189] | 361 | #if GIET_USE_XICU |
---|
[158] | 362 | |
---|
[189] | 363 | #else |
---|
| 364 | |
---|
[165] | 365 | // parameters checking |
---|
| 366 | if ( register_index >= ICU_SPAN) return 1; |
---|
| 367 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
[189] | 368 | if ( proc_index >= NB_PROCS_MAX ) return 1; |
---|
[158] | 369 | |
---|
[189] | 370 | unsigned int *icu_address = (unsigned int*)&seg_icu_base + |
---|
| 371 | (cluster_index * CLUSTER_SPAN) + |
---|
| 372 | (proc_index * ICU_SPAN); |
---|
[165] | 373 | |
---|
| 374 | icu_address[register_index] = value; // write word |
---|
[158] | 375 | return 0; |
---|
[189] | 376 | |
---|
| 377 | #endif |
---|
[158] | 378 | } |
---|
| 379 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 380 | // _icu_read() |
---|
[165] | 381 | // Read a 32-bit word in a memory mapped register of the MULTI_ICU device, |
---|
| 382 | // identified by the cluster index and a processor local index. |
---|
[158] | 383 | // Returns 0 if success, > 0 if error. |
---|
| 384 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 385 | unsigned int _icu_read( unsigned int cluster_index, |
---|
| 386 | unsigned int proc_index, |
---|
| 387 | unsigned int register_index, |
---|
| 388 | unsigned int* buffer ) |
---|
[158] | 389 | { |
---|
[189] | 390 | #if GIET_USE_XICU |
---|
[158] | 391 | |
---|
[189] | 392 | #else |
---|
| 393 | |
---|
[165] | 394 | // parameters checking |
---|
| 395 | if ( register_index >= ICU_SPAN) return 1; |
---|
| 396 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
[189] | 397 | if ( proc_index >= NB_PROCS_MAX ) return 1; |
---|
[158] | 398 | |
---|
[189] | 399 | unsigned int *icu_address = (unsigned int*)&seg_icu_base + |
---|
| 400 | (cluster_index * CLUSTER_SPAN) + |
---|
| 401 | (proc_index * ICU_SPAN); |
---|
[165] | 402 | |
---|
| 403 | *buffer = icu_address[register_index]; // read word |
---|
[158] | 404 | return 0; |
---|
[189] | 405 | |
---|
| 406 | #endif |
---|
[158] | 407 | } |
---|
| 408 | |
---|
| 409 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 410 | // VciGcd driver |
---|
| 411 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 412 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
[165] | 413 | // performing the computation of the GCD of two 32 bits integers. |
---|
[158] | 414 | // It has no DMA capability. |
---|
| 415 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 416 | |
---|
| 417 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 418 | // _gcd_write() |
---|
[158] | 419 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 420 | // Returns 0 if success, > 0 if error. |
---|
| 421 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 422 | unsigned int _gcd_write( unsigned int register_index, |
---|
| 423 | unsigned int value) |
---|
[158] | 424 | { |
---|
| 425 | volatile unsigned int *gcd_address; |
---|
| 426 | |
---|
[165] | 427 | // parameters checking |
---|
[158] | 428 | if (register_index >= GCD_END) |
---|
| 429 | return 1; |
---|
| 430 | |
---|
| 431 | gcd_address = (unsigned int*)&seg_gcd_base; |
---|
[165] | 432 | |
---|
| 433 | gcd_address[register_index] = value; // write word |
---|
[158] | 434 | return 0; |
---|
| 435 | } |
---|
| 436 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 437 | // _gcd_read() |
---|
[158] | 438 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 439 | // Returns 0 if success, > 0 if error. |
---|
| 440 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 441 | unsigned int _gcd_read( unsigned int register_index, |
---|
| 442 | unsigned int *buffer) |
---|
[158] | 443 | { |
---|
| 444 | volatile unsigned int *gcd_address; |
---|
| 445 | |
---|
[165] | 446 | // parameters checking |
---|
[158] | 447 | if (register_index >= GCD_END) |
---|
| 448 | return 1; |
---|
| 449 | |
---|
| 450 | gcd_address = (unsigned int*)&seg_gcd_base; |
---|
[165] | 451 | |
---|
| 452 | *buffer = gcd_address[register_index]; // read word |
---|
[158] | 453 | return 0; |
---|
| 454 | } |
---|
| 455 | |
---|
| 456 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 457 | // VciBlockDevice driver |
---|
| 458 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 459 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
[166] | 460 | // |
---|
| 461 | // The IOMMU can be activated or not: |
---|
| 462 | // |
---|
| 463 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
| 464 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
| 465 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
| 466 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
| 467 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
| 468 | // The number of PT2 entries is dynamically computed and stored in the |
---|
| 469 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
| 470 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
| 471 | // the transfer is completed. |
---|
| 472 | // |
---|
| 473 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
| 474 | // contiguous physical buffer (this is generally true because the user space |
---|
| 475 | // page tables are statically constructed to use contiguous physical memory). |
---|
| 476 | // |
---|
| 477 | // Finally, the memory buffer must fulfill the following conditions: |
---|
| 478 | // - The user buffer must be word aligned, |
---|
| 479 | // - The user buffer must be mapped in user address space, |
---|
| 480 | // - The user buffer must be writable in case of (to_mem) access, |
---|
| 481 | // - The total number of physical pages occupied by the user buffer cannot |
---|
| 482 | // be larger than 512 pages if the IOMMU is activated, |
---|
| 483 | // - All physical pages occupied by the user buffer must be contiguous |
---|
| 484 | // if the IOMMU is not activated. |
---|
| 485 | // An error code is returned if these conditions are not verified. |
---|
| 486 | // |
---|
[158] | 487 | // As the IOC component can be used by several programs running in parallel, |
---|
| 488 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
| 489 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
| 490 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
| 491 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
| 492 | // available. |
---|
| 493 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
| 494 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
| 495 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
| 496 | // variable. |
---|
| 497 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
[166] | 498 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
[158] | 499 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
| 500 | // variable. |
---|
| 501 | // |
---|
| 502 | // In a multi-processing environment, this polling policy should be replaced by |
---|
| 503 | // a descheduling policy for the requesting process. |
---|
| 504 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 505 | |
---|
[189] | 506 | // IOC global variables |
---|
| 507 | in_unckdata volatile unsigned int _ioc_status = 0; |
---|
| 508 | in_unckdata volatile unsigned int _ioc_done = 0; |
---|
| 509 | in_unckdata unsigned int _ioc_lock = 0; |
---|
| 510 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
| 511 | in_unckdata unsigned int _ioc_iommu_npages; |
---|
[158] | 512 | |
---|
| 513 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 514 | // _ioc_access() |
---|
[166] | 515 | // This function transfer data between a memory buffer and the block device. |
---|
| 516 | // The buffer lentgth is (count*block_size) bytes. |
---|
| 517 | // Arguments are: |
---|
| 518 | // - to_mem : from external storage to memory when non 0 |
---|
| 519 | // - lba : first block index on the external storage. |
---|
| 520 | // - user_vaddr : virtual base address of the memory buffer. |
---|
| 521 | // - count : number of blocks to be transfered. |
---|
[158] | 522 | // Returns 0 if success, > 0 if error. |
---|
| 523 | /////////////////////////////////////////////////////////////////////////////// |
---|
[166] | 524 | unsigned int _ioc_access( unsigned int to_mem, |
---|
| 525 | unsigned int lba, |
---|
| 526 | unsigned int user_vaddr, |
---|
| 527 | unsigned int count ) |
---|
[158] | 528 | { |
---|
[167] | 529 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
| 530 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
| 531 | unsigned int vpn; // current virtual page index in user space |
---|
| 532 | unsigned int ppn; // physical page number |
---|
| 533 | unsigned int flags; // page protection flags |
---|
| 534 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
| 535 | unsigned int addr; // buffer address for IOC peripheral |
---|
| 536 | unsigned int ppn_first; // first physical page number for user buffer |
---|
[166] | 537 | |
---|
| 538 | // check buffer alignment |
---|
| 539 | if ( (unsigned int)user_vaddr & 0x3 ) return 1; |
---|
[158] | 540 | |
---|
[166] | 541 | unsigned int* ioc_address = (unsigned int*)&seg_ioc_base; |
---|
| 542 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 543 | unsigned int length = count*block_size; |
---|
[158] | 544 | |
---|
[167] | 545 | // get user space page table virtual address |
---|
[189] | 546 | unsigned int user_pt_vbase = _get_current_context_slot(CTX_PTAB_ID); |
---|
[166] | 547 | |
---|
| 548 | user_vpn_min = user_vaddr >> 12; |
---|
| 549 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 550 | ix2 = 0; |
---|
[158] | 551 | |
---|
[166] | 552 | // loop on all virtual pages covering the user buffer |
---|
| 553 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 554 | { |
---|
| 555 | // get ppn and flags for each vpn |
---|
[189] | 556 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
| 557 | vpn, |
---|
| 558 | &ppn, |
---|
| 559 | &flags ); |
---|
[158] | 560 | |
---|
[166] | 561 | // check access rights |
---|
| 562 | if ( ko ) return 2; // unmapped |
---|
| 563 | if ( (flags & PTE_U) == 0 ) return 3; // not in user space |
---|
| 564 | if ( ( (flags & PTE_W) == 0 ) && to_mem ) return 4; // not writable |
---|
[158] | 565 | |
---|
[166] | 566 | // save first ppn value |
---|
| 567 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
[158] | 568 | |
---|
[166] | 569 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
| 570 | { |
---|
| 571 | // check buffer length < 2 Mbytes |
---|
| 572 | if ( ix2 > 511 ) return 2; |
---|
[158] | 573 | |
---|
[166] | 574 | // map the physical page in IOMMU page table |
---|
| 575 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 576 | ix2, // PT2 index |
---|
| 577 | ppn, // Physical page number |
---|
| 578 | flags ); // Protection flags |
---|
| 579 | } |
---|
| 580 | else // no IOMMU : check that physical pages are contiguous |
---|
| 581 | { |
---|
| 582 | if ( (ppn - ppn_first) != ix2 ) return 5; // split physical buffer |
---|
| 583 | } |
---|
| 584 | |
---|
| 585 | // increment page index |
---|
| 586 | ix2++; |
---|
| 587 | } // end for vpn |
---|
[158] | 588 | |
---|
[166] | 589 | // register the number of pages to be unmapped |
---|
| 590 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
[158] | 591 | |
---|
[166] | 592 | // invalidate data cache in case of memory write |
---|
| 593 | if ( to_mem ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
[158] | 594 | |
---|
[166] | 595 | // compute buffer base address for IOC depending on IOMMU activation |
---|
| 596 | if ( GIET_IOMMU_ACTIVE ) addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
[167] | 597 | else addr = (ppn_first << 12) | (user_vaddr & 0xFFF); |
---|
[166] | 598 | |
---|
| 599 | // get the lock on ioc device |
---|
[189] | 600 | _get_lock( &_ioc_lock ); |
---|
[158] | 601 | |
---|
[166] | 602 | // peripheral configuration |
---|
| 603 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
---|
| 604 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 605 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 606 | if ( to_mem == 0 ) ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
| 607 | else ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
[158] | 608 | |
---|
| 609 | return 0; |
---|
| 610 | } |
---|
| 611 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 612 | // _ioc_completed() |
---|
| 613 | // |
---|
| 614 | // This function checks completion of an I/O transfer and reports errors. |
---|
[166] | 615 | // As it is a blocking call, the processor is stalled. |
---|
| 616 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
| 617 | // space are unmapped, and the IOB TLB is cleared. |
---|
[158] | 618 | // Returns 0 if success, > 0 if error. |
---|
| 619 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 620 | unsigned int _ioc_completed() |
---|
| 621 | { |
---|
[166] | 622 | unsigned int ret; |
---|
| 623 | unsigned int ix2; |
---|
[158] | 624 | |
---|
[166] | 625 | // busy waiting |
---|
[158] | 626 | while (_ioc_done == 0) |
---|
| 627 | asm volatile("nop"); |
---|
| 628 | |
---|
[166] | 629 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
| 630 | if ( GIET_IOMMU_ACTIVE ) |
---|
| 631 | { |
---|
| 632 | unsigned int* iob_address = (unsigned int*)&seg_iob_base; |
---|
| 633 | |
---|
| 634 | for ( ix2 = 0 ; ix2 < _ioc_iommu_npages ; ix2++ ) |
---|
| 635 | { |
---|
| 636 | // unmap the page in IOMMU page table |
---|
| 637 | _iommu_inval_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 638 | ix2 ); // PT2 index |
---|
| 639 | |
---|
| 640 | // clear IOMMU TLB |
---|
[169] | 641 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
---|
[166] | 642 | } |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | // test IOC status |
---|
[158] | 646 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
[166] | 647 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
| 648 | else ret = 0; // success |
---|
[158] | 649 | |
---|
[166] | 650 | // reset synchronization variables |
---|
[158] | 651 | _ioc_lock =0; |
---|
| 652 | _ioc_done =0; |
---|
| 653 | |
---|
| 654 | return ret; |
---|
| 655 | } |
---|
[166] | 656 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 657 | // _ioc_read() |
---|
[166] | 658 | // Transfer data from the block device to a memory buffer in user space. |
---|
| 659 | // - lba : first block index on the block device |
---|
| 660 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 661 | // - count : number of blocks to be transfered. |
---|
| 662 | // Returns 0 if success, > 0 if error. |
---|
| 663 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 664 | unsigned int _ioc_read( unsigned int lba, |
---|
| 665 | void* buffer, |
---|
| 666 | unsigned int count ) |
---|
| 667 | { |
---|
[189] | 668 | return _ioc_access( 1, // read access |
---|
[166] | 669 | lba, |
---|
| 670 | (unsigned int)buffer, |
---|
| 671 | count ); |
---|
| 672 | } |
---|
| 673 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 674 | // _ioc_write() |
---|
[166] | 675 | // Transfer data from a memory buffer in user space to the block device. |
---|
| 676 | // - lba : first block index on the block device |
---|
| 677 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 678 | // - count : number of blocks to be transfered. |
---|
| 679 | // Returns 0 if success, > 0 if error. |
---|
| 680 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 681 | unsigned int _ioc_write( unsigned int lba, |
---|
| 682 | const void* buffer, |
---|
| 683 | unsigned int count ) |
---|
| 684 | { |
---|
[189] | 685 | return _ioc_access( 0, // write access |
---|
[166] | 686 | lba, |
---|
| 687 | (unsigned int)buffer, |
---|
| 688 | count ); |
---|
| 689 | } |
---|
| 690 | |
---|
[158] | 691 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 692 | // VciMultiDma driver |
---|
| 693 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 694 | // The DMA controllers are physically distributed in the clusters. |
---|
| 695 | // There is (NB_CLUSTERS * NB_DMAS_MAX) channels, indexed by a global index: |
---|
| 696 | // dma_id = cluster_id * NB_DMA_MAX + loc_id |
---|
| 697 | // |
---|
| 698 | // As a DMA channel can be used by several tasks, each DMA channel is protected |
---|
| 699 | // by a specific lock: _dma_lock[dma_id] |
---|
| 700 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
---|
| 701 | // synchronisation variables (set by the ISR, and reset by the OS). |
---|
| 702 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
---|
| 703 | // |
---|
| 704 | // These DMA channels can be used by the FB driver, or by the NIC driver. |
---|
| 705 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 706 | |
---|
| 707 | #if (NB_DMAS_MAX > 0) |
---|
| 708 | in_unckdata unsigned int _dma_lock[NB_DMAS_MAX * NB_CLUSTERS] |
---|
| 709 | = { [0 ... (NB_DMAS_MAX * NB_CLUSTERS)-1] = 0 }; |
---|
| 710 | |
---|
| 711 | in_unckdata volatile unsigned int _dma_done[NB_DMAS_MAX * NB_CLUSTERS] |
---|
| 712 | = { [0 ... (NB_DMAS_MAX * NB_CLUSTERS)-1] = 0 }; |
---|
| 713 | |
---|
| 714 | in_unckdata volatile unsigned int _dma_status[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
| 715 | |
---|
| 716 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
---|
| 717 | |
---|
| 718 | in_unckdata unsigned int _dma_iommu_npages[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
| 719 | #endif |
---|
| 720 | |
---|
| 721 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 722 | // VciFrameBuffer driver |
---|
| 723 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 724 | // The vci_frame_buffer device can be accessed directly by software with memcpy(), |
---|
| 725 | // or it can be accessed through a multi-channels DMA component: |
---|
| 726 | // |
---|
[158] | 727 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
---|
| 728 | // implement the transfer between a data buffer (user space) and the frame |
---|
| 729 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
[169] | 730 | // |
---|
[158] | 731 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the DMA |
---|
[189] | 732 | // controlers (distributed in the clusters) to transfer data |
---|
| 733 | // between the user buffer and the frame buffer. A DMA channel is |
---|
| 734 | // allocated to each task requesting it in the mapping_info data structure. |
---|
[158] | 735 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 736 | |
---|
| 737 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 738 | // _fb_sync_write() |
---|
| 739 | // Transfer data from an memory buffer to the frame_buffer device using |
---|
| 740 | // a memcpy. The source memory buffer must be in user address space. |
---|
| 741 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 742 | // - buffer : base address of the memory buffer. |
---|
| 743 | // - length : number of bytes to be transfered. |
---|
| 744 | // Returns 0 if success, > 0 if error. |
---|
| 745 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 746 | unsigned int _fb_sync_write( unsigned int offset, |
---|
| 747 | const void* buffer, |
---|
| 748 | unsigned int length ) |
---|
| 749 | { |
---|
| 750 | |
---|
[169] | 751 | // buffer must be mapped in user space |
---|
| 752 | if ( ((unsigned int)buffer + length ) >= 0x80000000 ) |
---|
[189] | 753 | { |
---|
[158] | 754 | return 1; |
---|
[189] | 755 | } |
---|
| 756 | else |
---|
| 757 | { |
---|
| 758 | unsigned char *fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
| 759 | memcpy((void*)fb_address, (void*)buffer, length); |
---|
| 760 | return 0; |
---|
| 761 | } |
---|
[158] | 762 | } |
---|
| 763 | |
---|
| 764 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 765 | // _fb_sync_read() |
---|
| 766 | // Transfer data from the frame_buffer device to a memory buffer using |
---|
| 767 | // a memcpy. The destination memory buffer must be in user address space. |
---|
| 768 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 769 | // - buffer : base address of the memory buffer. |
---|
| 770 | // - length : number of bytes to be transfered. |
---|
| 771 | // Returns 0 if success, > 0 if error. |
---|
| 772 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 773 | unsigned int _fb_sync_read( unsigned int offset, |
---|
| 774 | const void* buffer, |
---|
| 775 | unsigned int length ) |
---|
| 776 | { |
---|
[169] | 777 | // buffer must be mapped in user space |
---|
| 778 | if ( ((unsigned int)buffer + length ) >= 0x80000000 ) |
---|
[189] | 779 | { |
---|
[158] | 780 | return 1; |
---|
[189] | 781 | } |
---|
| 782 | else |
---|
| 783 | { |
---|
| 784 | unsigned char *fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
| 785 | memcpy((void*)buffer, (void*)fb_address, length); |
---|
| 786 | return 0; |
---|
| 787 | } |
---|
[158] | 788 | } |
---|
| 789 | |
---|
| 790 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 791 | // _fb_dma_access() |
---|
| 792 | // Transfer data between a user buffer and the frame_buffer using DMA. |
---|
| 793 | // - to_user : from frame buffer to user buffer when true. |
---|
[169] | 794 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 795 | // - user_vaddr : virtual base address of the memory buffer. |
---|
| 796 | // - length : number of bytes to be transfered. |
---|
| 797 | // The memory buffer must be mapped in user address space and word-aligned. |
---|
| 798 | // The user buffer length must be multiple of 4 bytes. |
---|
[189] | 799 | // Me must compute the physical base addresses for both the frame buffer |
---|
| 800 | // and the user buffer before programming the DMA transfer. |
---|
| 801 | // The GIET being fully static, we don't need to split the transfer in 4Kbytes |
---|
| 802 | // pages, because the user buffer is contiguous in physical space. |
---|
[158] | 803 | // Returns 0 if success, > 0 if error. |
---|
| 804 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 805 | unsigned int _fb_dma_access( unsigned int to_user, |
---|
| 806 | unsigned int offset, |
---|
| 807 | unsigned int user_vaddr, |
---|
| 808 | unsigned int length ) |
---|
[158] | 809 | { |
---|
[189] | 810 | unsigned int ko; // unsuccessfull V2P translation |
---|
| 811 | unsigned int flags; // protection flags |
---|
| 812 | unsigned int ppn; // physical page number |
---|
| 813 | unsigned int user_pbase; // user buffer pbase address |
---|
| 814 | unsigned int fb_pbase; // frame buffer pbase address |
---|
[158] | 815 | |
---|
[189] | 816 | // get DMA channel and compute DMA vbase address |
---|
| 817 | unsigned int dma_id = _get_current_context_slot(CTX_FBDMA_ID); |
---|
| 818 | unsigned int cluster_id = dma_id / NB_DMAS_MAX; |
---|
| 819 | unsigned int loc_id = dma_id % NB_DMAS_MAX; |
---|
| 820 | unsigned int* dma_base = (unsigned int*)&seg_dma_base + |
---|
| 821 | (cluster_id * CLUSTER_SPAN) + |
---|
| 822 | (loc_id * DMA_SPAN); |
---|
[169] | 823 | |
---|
[189] | 824 | // check user buffer address and length alignment |
---|
| 825 | if ( (user_vaddr & 0x3) || (length & 0x3) ) |
---|
| 826 | { |
---|
| 827 | _puts("[GIET ERROR] in _fbdma_access() : user buffer not word aligned\n"); |
---|
| 828 | return 1; |
---|
| 829 | } |
---|
[169] | 830 | |
---|
| 831 | // get user space page table virtual address |
---|
[189] | 832 | unsigned int user_ptab = _get_current_context_slot(CTX_PTAB_ID); |
---|
[169] | 833 | |
---|
[189] | 834 | // compute frame buffer pbase address |
---|
| 835 | unsigned int fb_vaddr = (unsigned int)&seg_fb_base + offset; |
---|
| 836 | |
---|
| 837 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
| 838 | (fb_vaddr >> 12), |
---|
| 839 | &ppn, |
---|
| 840 | &flags ); |
---|
| 841 | fb_pbase = (ppn << 12) | (fb_vaddr & 0x00000FFF); |
---|
| 842 | |
---|
| 843 | if ( ko ) |
---|
| 844 | { |
---|
| 845 | _puts("[GIET ERROR] in _fbdma_access() : frame buffer unmapped\n"); |
---|
| 846 | return 2; |
---|
| 847 | } |
---|
| 848 | |
---|
| 849 | // Compute user buffer pbase address |
---|
| 850 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
| 851 | (user_vaddr >> 12), |
---|
| 852 | &ppn, |
---|
| 853 | &flags ); |
---|
| 854 | user_pbase = (ppn << 12) | (user_vaddr & 0x00000FFF); |
---|
| 855 | |
---|
| 856 | if ( ko ) |
---|
| 857 | { |
---|
| 858 | _puts("[GIET ERROR] in _fbdma_access() : user buffer unmapped\n"); |
---|
| 859 | return 3; |
---|
| 860 | } |
---|
| 861 | if ( (flags & PTE_U) == 0 ) |
---|
| 862 | { |
---|
| 863 | _puts("[GIET ERROR] in _fbdma_access() : user buffer not in user space\n"); |
---|
| 864 | return 4; |
---|
| 865 | } |
---|
| 866 | if ( ( (flags & PTE_W) == 0 ) && to_user ) |
---|
| 867 | { |
---|
| 868 | _puts("[GIET ERROR] in _fbdma_access() : user buffer not writable\n"); |
---|
| 869 | return 5; |
---|
| 870 | } |
---|
| 871 | |
---|
| 872 | |
---|
| 873 | |
---|
| 874 | /* |
---|
| 875 | // loop on all virtual pages covering the user buffer |
---|
[169] | 876 | unsigned int user_vpn_min = user_vaddr >> 12; |
---|
| 877 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 878 | unsigned int ix2 = 0; |
---|
| 879 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
[158] | 880 | |
---|
[169] | 881 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 882 | { |
---|
| 883 | // get ppn and flags for each vpn |
---|
[189] | 884 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
| 885 | vpn, |
---|
| 886 | &ppn, |
---|
| 887 | &flags ); |
---|
[158] | 888 | |
---|
[169] | 889 | // check access rights |
---|
[189] | 890 | if ( ko ) return 3; // unmapped |
---|
| 891 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
---|
| 892 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
---|
[158] | 893 | |
---|
[169] | 894 | // save first ppn value |
---|
| 895 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
| 896 | |
---|
| 897 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
| 898 | { |
---|
| 899 | // check buffer length < 2 Mbytes |
---|
| 900 | if ( ix2 > 511 ) return 2; |
---|
| 901 | |
---|
| 902 | // map the physical page in IOMMU page table |
---|
| 903 | _iommu_add_pte2( ix1, // PT1 index |
---|
| 904 | ix2, // PT2 index |
---|
| 905 | ppn, // physical page number |
---|
| 906 | flags ); // protection flags |
---|
| 907 | } |
---|
| 908 | else // no IOMMU : check that physical pages are contiguous |
---|
| 909 | { |
---|
[189] | 910 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
---|
[169] | 911 | } |
---|
| 912 | |
---|
| 913 | // increment page index |
---|
| 914 | ix2++; |
---|
| 915 | } // end for vpn |
---|
| 916 | |
---|
[189] | 917 | // register the number of pages to be unmapped if iommu activated |
---|
[169] | 918 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
---|
| 919 | |
---|
[189] | 920 | */ |
---|
[169] | 921 | // invalidate data cache in case of memory write |
---|
[189] | 922 | if ( to_user ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
[169] | 923 | |
---|
[189] | 924 | // get the lock |
---|
| 925 | _get_lock( &_dma_lock[dma_id] ); |
---|
[169] | 926 | |
---|
| 927 | // DMA configuration |
---|
[189] | 928 | if ( to_user ) |
---|
[169] | 929 | { |
---|
[189] | 930 | dma_base[DMA_SRC] = (unsigned int)fb_pbase; |
---|
| 931 | dma_base[DMA_DST] = (unsigned int)user_pbase; |
---|
[169] | 932 | } |
---|
| 933 | else |
---|
| 934 | { |
---|
[189] | 935 | dma_base[DMA_SRC] = (unsigned int)user_pbase; |
---|
| 936 | dma_base[DMA_DST] = (unsigned int)fb_pbase; |
---|
[169] | 937 | } |
---|
| 938 | dma_base[DMA_LEN] = (unsigned int)length; |
---|
| 939 | |
---|
[158] | 940 | return 0; |
---|
[169] | 941 | } |
---|
| 942 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 943 | // _fb_write() |
---|
| 944 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
---|
| 945 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 946 | // - buffer : base address of the memory buffer. |
---|
| 947 | // - length : number of bytes to be transfered. |
---|
| 948 | // Returns 0 if success, > 0 if error. |
---|
| 949 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 950 | unsigned int _fb_write( unsigned int offset, |
---|
| 951 | const void* buffer, |
---|
| 952 | unsigned int length ) |
---|
| 953 | { |
---|
[189] | 954 | return _fb_dma_access( 0, // write to frame buffer |
---|
| 955 | offset, |
---|
| 956 | (unsigned int)buffer, |
---|
| 957 | length ); |
---|
[158] | 958 | } |
---|
| 959 | |
---|
| 960 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 961 | // _fb_read() |
---|
[169] | 962 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
---|
[158] | 963 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 964 | // - buffer : base address of the memory buffer. |
---|
| 965 | // - length : number of bytes to be transfered. |
---|
| 966 | // Returns 0 if success, > 0 if error. |
---|
| 967 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 968 | unsigned int _fb_read( unsigned int offset, |
---|
[169] | 969 | const void* buffer, |
---|
[158] | 970 | unsigned int length ) |
---|
| 971 | { |
---|
[189] | 972 | return _fb_dma_access( 1, // read from frame buffer |
---|
| 973 | offset, |
---|
| 974 | (unsigned int)buffer, |
---|
| 975 | length ); |
---|
[158] | 976 | } |
---|
| 977 | |
---|
| 978 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 979 | // _fb_completed() |
---|
| 980 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
[169] | 981 | // As it is a blocking call, the processor is busy waiting. |
---|
| 982 | // Returns 0 if success, > 0 if error |
---|
| 983 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
[158] | 984 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 985 | unsigned int _fb_completed() |
---|
| 986 | { |
---|
[189] | 987 | unsigned int dma_id = _get_current_context_slot(CTX_FBDMA_ID); |
---|
[158] | 988 | |
---|
[169] | 989 | // busy waiting with a pseudo random delay between bus access |
---|
[189] | 990 | while (_dma_done[dma_id] == 0) |
---|
[169] | 991 | { |
---|
| 992 | unsigned int i; |
---|
[189] | 993 | unsigned int delay = ( _proctime() ^ _procid()<<4 ) & 0xFF; |
---|
[169] | 994 | for (i = 0; i < delay; i++) |
---|
| 995 | asm volatile("nop"); |
---|
| 996 | } |
---|
| 997 | |
---|
| 998 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
| 999 | if ( GIET_IOMMU_ACTIVE ) |
---|
| 1000 | { |
---|
| 1001 | unsigned int* iob_address = (unsigned int*)&seg_iob_base; |
---|
| 1002 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
| 1003 | unsigned int ix2; |
---|
[158] | 1004 | |
---|
[169] | 1005 | for ( ix2 = 0 ; ix2 < _dma_iommu_npages[dma_id] ; ix2++ ) |
---|
| 1006 | { |
---|
| 1007 | // unmap the page in IOMMU page table |
---|
| 1008 | _iommu_inval_pte2( ix1, // PT1 index |
---|
| 1009 | ix2 ); // PT2 index |
---|
[158] | 1010 | |
---|
[169] | 1011 | // clear IOMMU TLB |
---|
| 1012 | iob_address[IOB_INVAL_PTE] = (ix1 << 21) | (ix2 << 12); |
---|
| 1013 | } |
---|
| 1014 | } |
---|
| 1015 | |
---|
[189] | 1016 | // reset synchronization variables |
---|
| 1017 | _dma_lock[dma_id] = 0; |
---|
| 1018 | _dma_done[dma_id] = 0; |
---|
| 1019 | |
---|
[169] | 1020 | return _dma_status[dma_id]; |
---|
[158] | 1021 | } |
---|
| 1022 | |
---|