[158] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // File : drivers.c |
---|
| 3 | // Date : 01/04/2012 |
---|
| 4 | // Author : alain greiner |
---|
| 5 | // Copyright (c) UPMC-LIP6 |
---|
| 6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 7 | // The drivers.c and drivers.h files are part ot the GIET-VM nano kernel. |
---|
[158] | 8 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
| 9 | // - vci_multi_tty |
---|
| 10 | // - vci_multi_timer |
---|
| 11 | // - vci_multi_dma |
---|
| 12 | // - vci_multi_icu |
---|
[203] | 13 | // - vci_xicu & vci_multi_icu |
---|
[158] | 14 | // - vci_gcd |
---|
| 15 | // - vci_frame_buffer |
---|
| 16 | // - vci_block_device |
---|
| 17 | // |
---|
| 18 | // The following global parameters must be defined in the giet_config.h file: |
---|
[204] | 19 | // - CLUSTER_IO_ID |
---|
| 20 | // - CLUSTER_SIZE |
---|
[189] | 21 | // - NB_CLUSTERS |
---|
| 22 | // - NB_PROCS_MAX |
---|
| 23 | // - NB_TIMERS_MAX |
---|
| 24 | // - NB_DMAS_MAX |
---|
| 25 | // - NB_TTYS |
---|
[158] | 26 | // |
---|
[204] | 27 | // The following virtual base addresses must be defined in the giet.ld file: |
---|
[158] | 28 | // - seg_icu_base |
---|
[203] | 29 | // - seg_tim_base |
---|
[158] | 30 | // - seg_tty_base |
---|
| 31 | // - seg_gcd_base |
---|
| 32 | // - seg_dma_base |
---|
[203] | 33 | // - seg_fbf_base |
---|
[158] | 34 | // - seg_ioc_base |
---|
[204] | 35 | // As some peripherals can be replicated in the clusters (ICU, TIMER, DMA) |
---|
| 36 | // These addresses must be completed by an offset depending on the cluster index |
---|
| 37 | // full_base_address = seg_***_base + cluster_id * CLUSTER_SIZE |
---|
[158] | 38 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 39 | |
---|
[166] | 40 | #include <vm_handler.h> |
---|
[158] | 41 | #include <sys_handler.h> |
---|
| 42 | #include <giet_config.h> |
---|
| 43 | #include <drivers.h> |
---|
| 44 | #include <common.h> |
---|
| 45 | #include <hwr_mapping.h> |
---|
| 46 | #include <mips32_registers.h> |
---|
| 47 | #include <ctx_handler.h> |
---|
| 48 | |
---|
| 49 | #if !defined(NB_CLUSTERS) |
---|
[189] | 50 | # error: You must define NB_CLUSTERS in 'giet_config.h' file |
---|
[158] | 51 | #endif |
---|
[189] | 52 | |
---|
| 53 | #if !defined(NB_PROCS_MAX) |
---|
| 54 | # error: You must define NB_PROCS_MAX in 'giet_config.h' file |
---|
| 55 | #endif |
---|
| 56 | |
---|
| 57 | #if (NB_PROCS_MAX > 8) |
---|
| 58 | # error: NB_PROCS_MAX cannot be larger than 8! |
---|
| 59 | #endif |
---|
| 60 | |
---|
[204] | 61 | #if !defined(CLUSTER_SIZE) |
---|
| 62 | # error: You must define CLUSTER_SIZE in 'giet_config.h' file |
---|
[158] | 63 | #endif |
---|
[189] | 64 | |
---|
[158] | 65 | #if !defined(NB_TTYS) |
---|
[189] | 66 | # error: You must define NB_TTYS in 'giet_config.h' file |
---|
[158] | 67 | #endif |
---|
| 68 | |
---|
[165] | 69 | #if (NB_TTYS < 1) |
---|
| 70 | # error: NB_TTYS cannot be smaller than 1! |
---|
| 71 | #endif |
---|
| 72 | |
---|
[189] | 73 | #if !defined(NB_DMAS_MAX) |
---|
[205] | 74 | #define NB_DMAS_MAX 0 |
---|
[165] | 75 | #endif |
---|
| 76 | |
---|
[189] | 77 | #if !defined(NB_TIMERS_MAX) |
---|
[205] | 78 | #define NB_TIMERS_MAX 0 |
---|
[165] | 79 | #endif |
---|
| 80 | |
---|
[189] | 81 | #if ( (NB_TIMERS_MAX + NB_PROCS_MAX) > 32 ) |
---|
| 82 | # error: NB_TIMERS_MAX + NB_PROCS_MAX cannot be larger than 32 |
---|
| 83 | #endif |
---|
[165] | 84 | |
---|
[189] | 85 | #if !defined(NB_IOCS) |
---|
| 86 | # error: You must define NB_IOCS in 'giet_config.h' file |
---|
| 87 | #endif |
---|
[158] | 88 | |
---|
[189] | 89 | #if ( NB_IOCS > 1 ) |
---|
| 90 | # error: NB_IOCS cannot be larger than 1 |
---|
| 91 | #endif |
---|
[158] | 92 | |
---|
| 93 | |
---|
[189] | 94 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
[169] | 95 | |
---|
[158] | 96 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 97 | // Timers driver |
---|
[158] | 98 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 99 | // The timers can be implemented in a vci_timer component or in a vci_xicu |
---|
| 100 | // component (depending on the GIET_USE_XICU parameter). |
---|
| 101 | // There is one timer (or xicu) component per cluster. |
---|
[189] | 102 | // There is two types of timers: |
---|
| 103 | // - "system" timers : one per processor, used for context switch. |
---|
| 104 | // local_id in [0, NB_PROCS_MAX-1], |
---|
| 105 | // - "user" timers : requested by the task in the mapping_info data structure. |
---|
[203] | 106 | // local_id in [NB_PROC_MAX, NB_PROCS_MAX + NB_TIMERS_MAX - 1] |
---|
| 107 | // For each user timer, the timer_id is stored in the context of the task. |
---|
| 108 | // The global index is cluster_id * (NB_PROCS_MAX+NB_TIMERS_MAX) + local_id |
---|
[158] | 109 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 110 | |
---|
[189] | 111 | // User Timer signaling variables |
---|
| 112 | |
---|
| 113 | #if (NB_TIMERS_MAX > 0) |
---|
| 114 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS*NB_TIMERS_MAX] |
---|
| 115 | = { [0 ... ((NB_CLUSTERS*NB_TIMERS_MAX)-1)] = 0 }; |
---|
| 116 | #endif |
---|
| 117 | |
---|
[158] | 118 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 119 | // _timer_start() |
---|
| 120 | // This function activates a timer in the vci_timer (or vci_xicu) component |
---|
| 121 | // by writing in the proper register the period value. |
---|
| 122 | // It can be used by both the kernel to initialise a "system" timer, |
---|
[189] | 123 | // or by a task (through a system call) to configure an "user" timer. |
---|
[158] | 124 | // Returns 0 if success, > 0 if error. |
---|
| 125 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 126 | unsigned int _timer_start( unsigned int cluster_id, |
---|
| 127 | unsigned int local_id, |
---|
| 128 | unsigned int period ) |
---|
[158] | 129 | { |
---|
[165] | 130 | // parameters checking |
---|
[189] | 131 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 132 | if ( local_id >= NB_TIMERS_MAX + NB_PROCS_MAX ) return 1; |
---|
[158] | 133 | |
---|
[189] | 134 | #if GIET_USE_XICU |
---|
[204] | 135 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
| 136 | (cluster_id * CLUSTER_SIZE) ); |
---|
[158] | 137 | |
---|
[203] | 138 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period; |
---|
[189] | 139 | #else |
---|
[204] | 140 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
| 141 | (cluster_id * CLUSTER_SIZE) ); |
---|
[189] | 142 | |
---|
[203] | 143 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period; |
---|
| 144 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0x3; |
---|
[189] | 145 | #endif |
---|
| 146 | |
---|
[158] | 147 | return 0; |
---|
| 148 | } |
---|
[189] | 149 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 150 | // _timer_stop() |
---|
| 151 | // This function desactivates a timer in the vci_timer (or vci_xicu) component |
---|
| 152 | // by writing in the proper register. |
---|
[189] | 153 | // Returns 0 if success, > 0 if error. |
---|
| 154 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 155 | unsigned int _timer_stop( unsigned int cluster_id, |
---|
| 156 | unsigned int local_id ) |
---|
[189] | 157 | { |
---|
[203] | 158 | // parameters checking |
---|
| 159 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 160 | if ( local_id >= NB_TIMERS_MAX + NB_PROCS_MAX ) return 1; |
---|
[158] | 161 | |
---|
[203] | 162 | #if GIET_USE_XICU |
---|
[204] | 163 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
| 164 | (cluster_id * CLUSTER_SIZE) ); |
---|
[203] | 165 | |
---|
| 166 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
| 167 | #else |
---|
[204] | 168 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
| 169 | (cluster_id * CLUSTER_SIZE) ); |
---|
[203] | 170 | |
---|
| 171 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0; |
---|
| 172 | #endif |
---|
| 173 | |
---|
| 174 | return 0; |
---|
[189] | 175 | } |
---|
[158] | 176 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 177 | // _timer_reset_irq() |
---|
| 178 | // This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu) |
---|
[204] | 179 | // component by reading/writing in the proper register. |
---|
[203] | 180 | // It can be used by both the isr_switch() for a "system" timer, |
---|
| 181 | // or by the _isr_timer() for an "user" timer. |
---|
[158] | 182 | // Returns 0 if success, > 0 if error. |
---|
| 183 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 184 | unsigned int _timer_reset_irq( unsigned int cluster_id, |
---|
| 185 | unsigned int local_id ) |
---|
[158] | 186 | { |
---|
[203] | 187 | // parameters checking |
---|
| 188 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 189 | if ( local_id >= NB_TIMERS_MAX + NB_PROCS_MAX ) return 1; |
---|
[158] | 190 | |
---|
[203] | 191 | #if GIET_USE_XICU |
---|
[204] | 192 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
| 193 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[203] | 194 | |
---|
| 195 | unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)]; |
---|
[204] | 196 | bloup++; // to avoid a warning |
---|
[203] | 197 | #else |
---|
[204] | 198 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
| 199 | (cluster_id * CLUSTER_SIZE) ); |
---|
[203] | 200 | |
---|
| 201 | timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0; |
---|
| 202 | #endif |
---|
| 203 | |
---|
| 204 | return 0; |
---|
[158] | 205 | } |
---|
| 206 | |
---|
| 207 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 208 | // VciMultiTty driver |
---|
| 209 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 210 | // There is only one multi_tty controler in the architecture. |
---|
[158] | 211 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
---|
[189] | 212 | // The "system" terminal is TTY[0]. |
---|
| 213 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
---|
| 214 | // as defined in the mapping_info data structure. The corresponding tty_id must |
---|
| 215 | // be stored in the context of the task by the boot code. |
---|
| 216 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
---|
| 217 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 218 | |
---|
[189] | 219 | // TTY variables |
---|
| 220 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
---|
| 221 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS-1] = 0 }; |
---|
| 222 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
---|
| 223 | |
---|
| 224 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 225 | // _tty_error() |
---|
| 226 | //////////////////////////////////////////////////////////////////////////////// |
---|
[199] | 227 | void _tty_error( unsigned int task_id ) |
---|
[189] | 228 | { |
---|
| 229 | unsigned int proc_id = _procid(); |
---|
| 230 | |
---|
| 231 | _get_lock(&_tty_put_lock); |
---|
| 232 | _puts("\n[GIET ERROR] TTY index too large for task "); |
---|
[207] | 233 | _putd( task_id ); |
---|
[189] | 234 | _puts(" on processor "); |
---|
[207] | 235 | _putd( proc_id ); |
---|
[189] | 236 | _puts("\n"); |
---|
| 237 | _release_lock(&_tty_put_lock); |
---|
| 238 | } |
---|
| 239 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 240 | // _tty_write() |
---|
[158] | 241 | // Write one or several characters directly from a fixed-length user buffer to |
---|
| 242 | // the TTY_WRITE register of the TTY controler. |
---|
| 243 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
| 244 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
| 245 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
| 246 | // The function returns the number of characters that have been written. |
---|
[189] | 247 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 248 | unsigned int _tty_write( const char *buffer, |
---|
| 249 | unsigned int length) |
---|
[158] | 250 | { |
---|
[189] | 251 | unsigned int nwritten; |
---|
[158] | 252 | |
---|
[199] | 253 | unsigned int task_id = _get_current_task_id(); |
---|
| 254 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
| 255 | |
---|
[189] | 256 | if ( tty_id >= NB_TTYS ) |
---|
| 257 | { |
---|
[199] | 258 | _tty_error( task_id ); |
---|
[189] | 259 | return 0; |
---|
| 260 | } |
---|
[158] | 261 | |
---|
[204] | 262 | unsigned int* tty_address = (unsigned int*)( (char*)&seg_tty_base + |
---|
| 263 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
[158] | 264 | |
---|
| 265 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
| 266 | { |
---|
[165] | 267 | // check tty's status |
---|
[204] | 268 | if ((tty_address[tty_id*TTY_SPAN + TTY_STATUS] & 0x2) == 0x2) |
---|
[158] | 269 | break; |
---|
| 270 | else |
---|
[165] | 271 | // write character |
---|
[204] | 272 | tty_address[tty_id*TTY_SPAN + TTY_WRITE] = (unsigned int)buffer[nwritten]; |
---|
[158] | 273 | } |
---|
| 274 | return nwritten; |
---|
| 275 | } |
---|
| 276 | ////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 277 | // _tty_read() |
---|
[158] | 278 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
[165] | 279 | // the associated kernel buffer, that has been written by the ISR. |
---|
[204] | 280 | // It get the TTY terminal index from the context of the current task. |
---|
[158] | 281 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
| 282 | // buffer, writes this character to the user buffer, and resets the |
---|
| 283 | // _tty_get_full[tty_id] buffer. |
---|
[204] | 284 | // The length argument is not used. |
---|
[158] | 285 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
| 286 | ////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 287 | unsigned int _tty_read( char *buffer, |
---|
| 288 | unsigned int length) |
---|
[158] | 289 | { |
---|
[199] | 290 | unsigned int task_id = _get_current_task_id(); |
---|
| 291 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
[158] | 292 | |
---|
[189] | 293 | if ( tty_id >= NB_TTYS ) |
---|
| 294 | { |
---|
[199] | 295 | _tty_error( task_id ); |
---|
[189] | 296 | return 0; |
---|
| 297 | } |
---|
[158] | 298 | |
---|
| 299 | if (_tty_get_full[tty_id] == 0) |
---|
| 300 | { |
---|
[189] | 301 | return 0; |
---|
[158] | 302 | } |
---|
| 303 | else |
---|
| 304 | { |
---|
| 305 | *buffer = _tty_get_buf[tty_id]; |
---|
| 306 | _tty_get_full[tty_id] = 0; |
---|
[189] | 307 | return 1; |
---|
[158] | 308 | } |
---|
[189] | 309 | } |
---|
[158] | 310 | //////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 311 | // _tty_get_char() |
---|
| 312 | // This function is used by the _isr_tty to read a character in the TTY |
---|
| 313 | // terminal defined by the tty_id argument. The character is stored |
---|
| 314 | // in requested buffer, and the IRQ is acknowledged. |
---|
| 315 | // Returns 0 if success, 1 if tty_id too large. |
---|
[158] | 316 | //////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 317 | unsigned int _tty_get_char( unsigned int tty_id, |
---|
[207] | 318 | unsigned char* buffer ) |
---|
[158] | 319 | { |
---|
[204] | 320 | // checking argument |
---|
| 321 | if ( tty_id >= NB_TTYS ) return 1; |
---|
[199] | 322 | |
---|
[204] | 323 | // compute terminal base address |
---|
| 324 | unsigned int *tty_address = (unsigned int*)( (char*)&seg_tty_base + |
---|
| 325 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
[158] | 326 | |
---|
[204] | 327 | *buffer = (unsigned char)tty_address[tty_id*TTY_SPAN + TTY_READ]; |
---|
| 328 | return 0; |
---|
[158] | 329 | } |
---|
| 330 | |
---|
| 331 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 332 | // VciMultiIcu and VciXicu drivers |
---|
[158] | 333 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 334 | // There is one vci_multi_icu (or vci_xicu) component per cluster, |
---|
| 335 | // and the number of independant ICUs is equal to NB_PROCS_MAX, |
---|
| 336 | // because there is one private interrupr controler per processor. |
---|
[158] | 337 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 338 | |
---|
| 339 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 340 | // _icu_set_mask() |
---|
| 341 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
| 342 | // It set the mask register for the ICU channel identified by the cluster index |
---|
| 343 | // and the processor index: all '1' bits are set / all '0' bits are not modified. |
---|
[158] | 344 | // Returns 0 if success, > 0 if error. |
---|
| 345 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 346 | unsigned int _icu_set_mask( unsigned int cluster_id, |
---|
| 347 | unsigned int proc_id, |
---|
| 348 | unsigned int value, |
---|
| 349 | unsigned int is_timer ) |
---|
[158] | 350 | { |
---|
[203] | 351 | // parameters checking |
---|
| 352 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 353 | if ( proc_id >= NB_PROCS_MAX ) return 1; |
---|
| 354 | |
---|
[204] | 355 | unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + |
---|
| 356 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[189] | 357 | #if GIET_USE_XICU |
---|
[203] | 358 | if ( is_timer ) icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value; |
---|
| 359 | else icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value; |
---|
[189] | 360 | #else |
---|
[203] | 361 | icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; |
---|
| 362 | #endif |
---|
[189] | 363 | |
---|
[158] | 364 | return 0; |
---|
| 365 | } |
---|
| 366 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 367 | // _icu_get_index() |
---|
| 368 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
| 369 | // It returns the index of the highest priority (smaller index) active HWI. |
---|
| 370 | // The ICU channel is identified by the cluster index and the processor index. |
---|
[158] | 371 | // Returns 0 if success, > 0 if error. |
---|
| 372 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 373 | unsigned int _icu_get_index( unsigned int cluster_id, |
---|
| 374 | unsigned int proc_id, |
---|
| 375 | unsigned int* buffer ) |
---|
[158] | 376 | { |
---|
[203] | 377 | // parameters checking |
---|
| 378 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 379 | if ( proc_id >= NB_PROCS_MAX ) return 1; |
---|
| 380 | |
---|
[204] | 381 | unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + |
---|
| 382 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[189] | 383 | #if GIET_USE_XICU |
---|
[203] | 384 | unsigned int prio = icu_address[XICU_REG(XICU_PRIO, proc_id)]; |
---|
| 385 | unsigned int pti_ok = (prio & 0x00000001); |
---|
| 386 | unsigned int hwi_ok = (prio & 0x00000002); |
---|
| 387 | unsigned int swi_ok = (prio & 0x00000004); |
---|
| 388 | unsigned int pti_id = (prio & 0x00001F00) >> 8; |
---|
| 389 | unsigned int hwi_id = (prio & 0x001F0000) >> 16; |
---|
| 390 | unsigned int swi_id = (prio & 0x1F000000) >> 24; |
---|
| 391 | if (pti_ok) *buffer = pti_id; |
---|
| 392 | else if (hwi_ok) *buffer = hwi_id; |
---|
| 393 | else if (swi_ok) *buffer = swi_id; |
---|
| 394 | else *buffer = 32; |
---|
[189] | 395 | #else |
---|
[203] | 396 | *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; |
---|
| 397 | #endif |
---|
[189] | 398 | |
---|
[158] | 399 | return 0; |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 403 | // VciGcd driver |
---|
| 404 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 405 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
[165] | 406 | // performing the computation of the GCD of two 32 bits integers. |
---|
[158] | 407 | // It has no DMA capability. |
---|
| 408 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 409 | |
---|
| 410 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 411 | // _gcd_write() |
---|
[158] | 412 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 413 | // Returns 0 if success, > 0 if error. |
---|
| 414 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 415 | unsigned int _gcd_write( unsigned int register_index, |
---|
| 416 | unsigned int value) |
---|
[158] | 417 | { |
---|
[165] | 418 | // parameters checking |
---|
[158] | 419 | if (register_index >= GCD_END) |
---|
| 420 | return 1; |
---|
| 421 | |
---|
[204] | 422 | unsigned int* gcd_address = (unsigned int*)( (char*)&seg_gcd_base + |
---|
| 423 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
[165] | 424 | |
---|
| 425 | gcd_address[register_index] = value; // write word |
---|
[158] | 426 | return 0; |
---|
| 427 | } |
---|
| 428 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 429 | // _gcd_read() |
---|
[158] | 430 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 431 | // Returns 0 if success, > 0 if error. |
---|
| 432 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 433 | unsigned int _gcd_read( unsigned int register_index, |
---|
| 434 | unsigned int *buffer) |
---|
[158] | 435 | { |
---|
[165] | 436 | // parameters checking |
---|
[158] | 437 | if (register_index >= GCD_END) |
---|
| 438 | return 1; |
---|
| 439 | |
---|
[204] | 440 | unsigned int* gcd_address = (unsigned int*)( (char*)&seg_gcd_base + |
---|
| 441 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
[165] | 442 | |
---|
| 443 | *buffer = gcd_address[register_index]; // read word |
---|
[158] | 444 | return 0; |
---|
| 445 | } |
---|
| 446 | |
---|
| 447 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 448 | // VciBlockDevice driver |
---|
| 449 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 450 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
[166] | 451 | // |
---|
| 452 | // The IOMMU can be activated or not: |
---|
| 453 | // |
---|
| 454 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
| 455 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
| 456 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
| 457 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
| 458 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
| 459 | // The number of PT2 entries is dynamically computed and stored in the |
---|
| 460 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
| 461 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
| 462 | // the transfer is completed. |
---|
| 463 | // |
---|
| 464 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
| 465 | // contiguous physical buffer (this is generally true because the user space |
---|
| 466 | // page tables are statically constructed to use contiguous physical memory). |
---|
| 467 | // |
---|
| 468 | // Finally, the memory buffer must fulfill the following conditions: |
---|
| 469 | // - The user buffer must be word aligned, |
---|
| 470 | // - The user buffer must be mapped in user address space, |
---|
| 471 | // - The user buffer must be writable in case of (to_mem) access, |
---|
| 472 | // - The total number of physical pages occupied by the user buffer cannot |
---|
| 473 | // be larger than 512 pages if the IOMMU is activated, |
---|
| 474 | // - All physical pages occupied by the user buffer must be contiguous |
---|
| 475 | // if the IOMMU is not activated. |
---|
| 476 | // An error code is returned if these conditions are not verified. |
---|
| 477 | // |
---|
[158] | 478 | // As the IOC component can be used by several programs running in parallel, |
---|
| 479 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
| 480 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
| 481 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
| 482 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
| 483 | // available. |
---|
| 484 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
| 485 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
| 486 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
| 487 | // variable. |
---|
| 488 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
[166] | 489 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
[158] | 490 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
| 491 | // variable. |
---|
| 492 | // |
---|
| 493 | // In a multi-processing environment, this polling policy should be replaced by |
---|
| 494 | // a descheduling policy for the requesting process. |
---|
| 495 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 496 | |
---|
[189] | 497 | // IOC global variables |
---|
| 498 | in_unckdata volatile unsigned int _ioc_status = 0; |
---|
| 499 | in_unckdata volatile unsigned int _ioc_done = 0; |
---|
| 500 | in_unckdata unsigned int _ioc_lock = 0; |
---|
| 501 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
| 502 | in_unckdata unsigned int _ioc_iommu_npages; |
---|
[158] | 503 | |
---|
| 504 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 505 | // _ioc_access() |
---|
[166] | 506 | // This function transfer data between a memory buffer and the block device. |
---|
| 507 | // The buffer lentgth is (count*block_size) bytes. |
---|
| 508 | // Arguments are: |
---|
| 509 | // - to_mem : from external storage to memory when non 0 |
---|
| 510 | // - lba : first block index on the external storage. |
---|
| 511 | // - user_vaddr : virtual base address of the memory buffer. |
---|
| 512 | // - count : number of blocks to be transfered. |
---|
[158] | 513 | // Returns 0 if success, > 0 if error. |
---|
| 514 | /////////////////////////////////////////////////////////////////////////////// |
---|
[166] | 515 | unsigned int _ioc_access( unsigned int to_mem, |
---|
| 516 | unsigned int lba, |
---|
| 517 | unsigned int user_vaddr, |
---|
| 518 | unsigned int count ) |
---|
[158] | 519 | { |
---|
[167] | 520 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
| 521 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
| 522 | unsigned int vpn; // current virtual page index in user space |
---|
| 523 | unsigned int ppn; // physical page number |
---|
| 524 | unsigned int flags; // page protection flags |
---|
| 525 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
| 526 | unsigned int addr; // buffer address for IOC peripheral |
---|
| 527 | unsigned int ppn_first; // first physical page number for user buffer |
---|
[166] | 528 | |
---|
| 529 | // check buffer alignment |
---|
| 530 | if ( (unsigned int)user_vaddr & 0x3 ) return 1; |
---|
[158] | 531 | |
---|
[204] | 532 | unsigned int* ioc_address = (unsigned int*)( (char*)&seg_ioc_base + |
---|
| 533 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
| 534 | |
---|
[166] | 535 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 536 | unsigned int length = count*block_size; |
---|
[158] | 537 | |
---|
[167] | 538 | // get user space page table virtual address |
---|
[199] | 539 | unsigned int task_id = _get_current_task_id(); |
---|
| 540 | unsigned int user_pt_vbase = _get_context_slot( task_id, CTX_PTAB_ID ); |
---|
[166] | 541 | |
---|
| 542 | user_vpn_min = user_vaddr >> 12; |
---|
| 543 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 544 | ix2 = 0; |
---|
[158] | 545 | |
---|
[166] | 546 | // loop on all virtual pages covering the user buffer |
---|
| 547 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 548 | { |
---|
| 549 | // get ppn and flags for each vpn |
---|
[189] | 550 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
| 551 | vpn, |
---|
| 552 | &ppn, |
---|
| 553 | &flags ); |
---|
[158] | 554 | |
---|
[166] | 555 | // check access rights |
---|
| 556 | if ( ko ) return 2; // unmapped |
---|
| 557 | if ( (flags & PTE_U) == 0 ) return 3; // not in user space |
---|
| 558 | if ( ( (flags & PTE_W) == 0 ) && to_mem ) return 4; // not writable |
---|
[158] | 559 | |
---|
[166] | 560 | // save first ppn value |
---|
| 561 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
[158] | 562 | |
---|
[166] | 563 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
| 564 | { |
---|
| 565 | // check buffer length < 2 Mbytes |
---|
| 566 | if ( ix2 > 511 ) return 2; |
---|
[158] | 567 | |
---|
[166] | 568 | // map the physical page in IOMMU page table |
---|
| 569 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 570 | ix2, // PT2 index |
---|
| 571 | ppn, // Physical page number |
---|
| 572 | flags ); // Protection flags |
---|
| 573 | } |
---|
| 574 | else // no IOMMU : check that physical pages are contiguous |
---|
| 575 | { |
---|
| 576 | if ( (ppn - ppn_first) != ix2 ) return 5; // split physical buffer |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | // increment page index |
---|
| 580 | ix2++; |
---|
| 581 | } // end for vpn |
---|
[158] | 582 | |
---|
[166] | 583 | // register the number of pages to be unmapped |
---|
| 584 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
[158] | 585 | |
---|
[166] | 586 | // invalidate data cache in case of memory write |
---|
| 587 | if ( to_mem ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
[158] | 588 | |
---|
[166] | 589 | // compute buffer base address for IOC depending on IOMMU activation |
---|
| 590 | if ( GIET_IOMMU_ACTIVE ) addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
[167] | 591 | else addr = (ppn_first << 12) | (user_vaddr & 0xFFF); |
---|
[166] | 592 | |
---|
| 593 | // get the lock on ioc device |
---|
[189] | 594 | _get_lock( &_ioc_lock ); |
---|
[158] | 595 | |
---|
[166] | 596 | // peripheral configuration |
---|
| 597 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
---|
| 598 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 599 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 600 | if ( to_mem == 0 ) ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
| 601 | else ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
[158] | 602 | |
---|
| 603 | return 0; |
---|
| 604 | } |
---|
| 605 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 606 | // _ioc_completed() |
---|
| 607 | // |
---|
| 608 | // This function checks completion of an I/O transfer and reports errors. |
---|
[166] | 609 | // As it is a blocking call, the processor is stalled. |
---|
| 610 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
| 611 | // space are unmapped, and the IOB TLB is cleared. |
---|
[158] | 612 | // Returns 0 if success, > 0 if error. |
---|
| 613 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 614 | unsigned int _ioc_completed() |
---|
| 615 | { |
---|
[166] | 616 | unsigned int ret; |
---|
| 617 | unsigned int ix2; |
---|
[158] | 618 | |
---|
[166] | 619 | // busy waiting |
---|
[158] | 620 | while (_ioc_done == 0) |
---|
| 621 | asm volatile("nop"); |
---|
| 622 | |
---|
[166] | 623 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
| 624 | if ( GIET_IOMMU_ACTIVE ) |
---|
| 625 | { |
---|
[204] | 626 | unsigned int* iob_address = (unsigned int*)( (char*)&seg_iob_base + |
---|
| 627 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
[166] | 628 | |
---|
| 629 | for ( ix2 = 0 ; ix2 < _ioc_iommu_npages ; ix2++ ) |
---|
| 630 | { |
---|
| 631 | // unmap the page in IOMMU page table |
---|
| 632 | _iommu_inval_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 633 | ix2 ); // PT2 index |
---|
| 634 | |
---|
| 635 | // clear IOMMU TLB |
---|
[169] | 636 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
---|
[166] | 637 | } |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | // test IOC status |
---|
[158] | 641 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
[166] | 642 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
| 643 | else ret = 0; // success |
---|
[158] | 644 | |
---|
[166] | 645 | // reset synchronization variables |
---|
[158] | 646 | _ioc_lock =0; |
---|
| 647 | _ioc_done =0; |
---|
| 648 | |
---|
| 649 | return ret; |
---|
| 650 | } |
---|
[166] | 651 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 652 | // _ioc_read() |
---|
[166] | 653 | // Transfer data from the block device to a memory buffer in user space. |
---|
| 654 | // - lba : first block index on the block device |
---|
| 655 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 656 | // - count : number of blocks to be transfered. |
---|
| 657 | // Returns 0 if success, > 0 if error. |
---|
| 658 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 659 | unsigned int _ioc_read( unsigned int lba, |
---|
| 660 | void* buffer, |
---|
| 661 | unsigned int count ) |
---|
| 662 | { |
---|
[189] | 663 | return _ioc_access( 1, // read access |
---|
[166] | 664 | lba, |
---|
| 665 | (unsigned int)buffer, |
---|
| 666 | count ); |
---|
| 667 | } |
---|
| 668 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 669 | // _ioc_write() |
---|
[166] | 670 | // Transfer data from a memory buffer in user space to the block device. |
---|
| 671 | // - lba : first block index on the block device |
---|
| 672 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 673 | // - count : number of blocks to be transfered. |
---|
| 674 | // Returns 0 if success, > 0 if error. |
---|
| 675 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 676 | unsigned int _ioc_write( unsigned int lba, |
---|
| 677 | const void* buffer, |
---|
| 678 | unsigned int count ) |
---|
| 679 | { |
---|
[189] | 680 | return _ioc_access( 0, // write access |
---|
[166] | 681 | lba, |
---|
| 682 | (unsigned int)buffer, |
---|
| 683 | count ); |
---|
| 684 | } |
---|
[204] | 685 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 686 | // _ioc_get_status() |
---|
| 687 | // This function returns the transfert status, and acknowledge the IRQ. |
---|
| 688 | // Returns 0 if success, > 0 if error. |
---|
| 689 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 690 | unsigned int _ioc_get_status(unsigned int* status) |
---|
| 691 | { |
---|
| 692 | // get IOC base address |
---|
| 693 | unsigned int* ioc_address = (unsigned int*)( (char*)&seg_ioc_base + |
---|
| 694 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
[166] | 695 | |
---|
[204] | 696 | *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ |
---|
| 697 | return 0; |
---|
| 698 | } |
---|
| 699 | |
---|
[158] | 700 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 701 | // VciMultiDma driver |
---|
| 702 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 703 | // The DMA controllers are physically distributed in the clusters. |
---|
| 704 | // There is (NB_CLUSTERS * NB_DMAS_MAX) channels, indexed by a global index: |
---|
| 705 | // dma_id = cluster_id * NB_DMA_MAX + loc_id |
---|
| 706 | // |
---|
| 707 | // As a DMA channel can be used by several tasks, each DMA channel is protected |
---|
| 708 | // by a specific lock: _dma_lock[dma_id] |
---|
| 709 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
---|
| 710 | // synchronisation variables (set by the ISR, and reset by the OS). |
---|
| 711 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
---|
| 712 | // |
---|
| 713 | // These DMA channels can be used by the FB driver, or by the NIC driver. |
---|
| 714 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 715 | |
---|
[205] | 716 | //+1: for the case where the NB_DMAS_MAX == 0 |
---|
[213] | 717 | #if NB_DMAS_MAX > 0 |
---|
| 718 | in_unckdata unsigned int _dma_lock[NB_DMAS_MAX * NB_CLUSTERS] |
---|
| 719 | = { [0 ... ((NB_DMAS_MAX) * NB_CLUSTERS)-1] = 0 }; |
---|
[189] | 720 | |
---|
[213] | 721 | in_unckdata volatile unsigned int _dma_done[NB_DMAS_MAX * NB_CLUSTERS] |
---|
| 722 | = { [0 ... (NB_DMAS_MAX * NB_CLUSTERS)-1] = 0 }; |
---|
[189] | 723 | |
---|
[213] | 724 | in_unckdata volatile unsigned int _dma_status[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
[189] | 725 | |
---|
| 726 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
---|
| 727 | |
---|
[213] | 728 | in_unckdata unsigned int _dma_iommu_npages[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
| 729 | #endif |
---|
[189] | 730 | |
---|
| 731 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 732 | // _dma_reset_irq() |
---|
| 733 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 734 | unsigned int _dma_reset_irq( unsigned int cluster_id, |
---|
[207] | 735 | unsigned int channel_id ) |
---|
[204] | 736 | { |
---|
[213] | 737 | #if NB_DMAS_MAX > 0 |
---|
[204] | 738 | // parameters checking |
---|
| 739 | if ( cluster_id >= NB_CLUSTERS ) return 1; |
---|
[207] | 740 | if ( channel_id >= NB_DMAS_MAX ) return 1; |
---|
[204] | 741 | |
---|
| 742 | // compute DMA base address |
---|
| 743 | unsigned int* dma_address = (unsigned int*)( (char*)&seg_dma_base + |
---|
| 744 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
| 745 | |
---|
[207] | 746 | dma_address[channel_id*DMA_SPAN + DMA_RESET] = 0; |
---|
[204] | 747 | return 0; |
---|
[213] | 748 | #else |
---|
| 749 | return -1; |
---|
| 750 | #endif |
---|
[204] | 751 | } |
---|
| 752 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 753 | // _dma_get_status() |
---|
| 754 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 755 | unsigned int _dma_get_status( unsigned int cluster_id, |
---|
[207] | 756 | unsigned int channel_id, |
---|
[204] | 757 | unsigned int* status ) |
---|
| 758 | { |
---|
[213] | 759 | #if NB_DMAS_MAX > 0 |
---|
[204] | 760 | // parameters checking |
---|
| 761 | if ( cluster_id >= NB_CLUSTERS ) return 1; |
---|
[207] | 762 | if ( channel_id >= NB_DMAS_MAX ) return 1; |
---|
[204] | 763 | |
---|
| 764 | // compute DMA base address |
---|
| 765 | unsigned int* dma_address = (unsigned int*)( (char*)&seg_dma_base + |
---|
| 766 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[207] | 767 | |
---|
| 768 | *status = dma_address[channel_id*DMA_SPAN + DMA_LEN]; |
---|
[204] | 769 | return 0; |
---|
[213] | 770 | #else |
---|
| 771 | return -1; |
---|
| 772 | #endif |
---|
[204] | 773 | } |
---|
| 774 | |
---|
| 775 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 776 | // VciFrameBuffer driver |
---|
| 777 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 778 | // The vci_frame_buffer device can be accessed directly by software with memcpy(), |
---|
| 779 | // or it can be accessed through a multi-channels DMA component: |
---|
| 780 | // |
---|
[158] | 781 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
---|
| 782 | // implement the transfer between a data buffer (user space) and the frame |
---|
| 783 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
[169] | 784 | // |
---|
[158] | 785 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the DMA |
---|
[189] | 786 | // controlers (distributed in the clusters) to transfer data |
---|
| 787 | // between the user buffer and the frame buffer. A DMA channel is |
---|
| 788 | // allocated to each task requesting it in the mapping_info data structure. |
---|
[158] | 789 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 790 | |
---|
| 791 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 792 | // _fb_sync_write() |
---|
| 793 | // Transfer data from an memory buffer to the frame_buffer device using |
---|
| 794 | // a memcpy. The source memory buffer must be in user address space. |
---|
| 795 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 796 | // - buffer : base address of the memory buffer. |
---|
| 797 | // - length : number of bytes to be transfered. |
---|
| 798 | // Returns 0 if success, > 0 if error. |
---|
| 799 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 800 | unsigned int _fb_sync_write( unsigned int offset, |
---|
| 801 | const void* buffer, |
---|
| 802 | unsigned int length ) |
---|
| 803 | { |
---|
| 804 | |
---|
[169] | 805 | // buffer must be mapped in user space |
---|
| 806 | if ( ((unsigned int)buffer + length ) >= 0x80000000 ) |
---|
[189] | 807 | { |
---|
[158] | 808 | return 1; |
---|
[189] | 809 | } |
---|
| 810 | else |
---|
| 811 | { |
---|
[203] | 812 | unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset; |
---|
[189] | 813 | memcpy((void*)fb_address, (void*)buffer, length); |
---|
| 814 | return 0; |
---|
| 815 | } |
---|
[158] | 816 | } |
---|
| 817 | |
---|
| 818 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 819 | // _fb_sync_read() |
---|
| 820 | // Transfer data from the frame_buffer device to a memory buffer using |
---|
| 821 | // a memcpy. The destination memory buffer must be in user address space. |
---|
| 822 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 823 | // - buffer : base address of the memory buffer. |
---|
| 824 | // - length : number of bytes to be transfered. |
---|
| 825 | // Returns 0 if success, > 0 if error. |
---|
| 826 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 827 | unsigned int _fb_sync_read( unsigned int offset, |
---|
| 828 | const void* buffer, |
---|
| 829 | unsigned int length ) |
---|
| 830 | { |
---|
[169] | 831 | // buffer must be mapped in user space |
---|
| 832 | if ( ((unsigned int)buffer + length ) >= 0x80000000 ) |
---|
[189] | 833 | { |
---|
[158] | 834 | return 1; |
---|
[189] | 835 | } |
---|
| 836 | else |
---|
| 837 | { |
---|
[203] | 838 | unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset; |
---|
[189] | 839 | memcpy((void*)buffer, (void*)fb_address, length); |
---|
| 840 | return 0; |
---|
| 841 | } |
---|
[158] | 842 | } |
---|
| 843 | |
---|
| 844 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 845 | // _fb_dma_access() |
---|
| 846 | // Transfer data between a user buffer and the frame_buffer using DMA. |
---|
| 847 | // - to_user : from frame buffer to user buffer when true. |
---|
[169] | 848 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 849 | // - user_vaddr : virtual base address of the memory buffer. |
---|
| 850 | // - length : number of bytes to be transfered. |
---|
[207] | 851 | // The user buffer must be mapped in user address space and word-aligned. |
---|
[169] | 852 | // The user buffer length must be multiple of 4 bytes. |
---|
[189] | 853 | // Me must compute the physical base addresses for both the frame buffer |
---|
| 854 | // and the user buffer before programming the DMA transfer. |
---|
[207] | 855 | // The GIET being fully static, we don't need to split the transfer in 4 Kbytes |
---|
[189] | 856 | // pages, because the user buffer is contiguous in physical space. |
---|
[158] | 857 | // Returns 0 if success, > 0 if error. |
---|
| 858 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 859 | unsigned int _fb_dma_access( unsigned int to_user, |
---|
| 860 | unsigned int offset, |
---|
| 861 | unsigned int user_vaddr, |
---|
| 862 | unsigned int length ) |
---|
[158] | 863 | { |
---|
[213] | 864 | #if NB_DMAS_MAX > 0 |
---|
[189] | 865 | unsigned int ko; // unsuccessfull V2P translation |
---|
| 866 | unsigned int flags; // protection flags |
---|
| 867 | unsigned int ppn; // physical page number |
---|
| 868 | unsigned int user_pbase; // user buffer pbase address |
---|
| 869 | unsigned int fb_pbase; // frame buffer pbase address |
---|
[158] | 870 | |
---|
[189] | 871 | // get DMA channel and compute DMA vbase address |
---|
[199] | 872 | unsigned int task_id = _get_current_task_id(); |
---|
| 873 | unsigned int dma_id = _get_context_slot( task_id, CTX_FBDMA_ID ); |
---|
[189] | 874 | unsigned int cluster_id = dma_id / NB_DMAS_MAX; |
---|
| 875 | unsigned int loc_id = dma_id % NB_DMAS_MAX; |
---|
[169] | 876 | |
---|
[204] | 877 | unsigned int* dma_base = (unsigned int*)( (char*)&seg_dma_base + |
---|
| 878 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
| 879 | |
---|
[189] | 880 | // check user buffer address and length alignment |
---|
| 881 | if ( (user_vaddr & 0x3) || (length & 0x3) ) |
---|
| 882 | { |
---|
[203] | 883 | _get_lock(&_tty_put_lock); |
---|
[207] | 884 | _puts("\n[GIET ERROR] in _fbdma_access() : user buffer not word aligned\n"); |
---|
[203] | 885 | _release_lock(&_tty_put_lock); |
---|
[189] | 886 | return 1; |
---|
| 887 | } |
---|
[169] | 888 | |
---|
| 889 | // get user space page table virtual address |
---|
[199] | 890 | unsigned int user_ptab = _get_context_slot( task_id, CTX_PTAB_ID ); |
---|
[169] | 891 | |
---|
[189] | 892 | // compute frame buffer pbase address |
---|
[207] | 893 | unsigned int fb_vaddr = (unsigned int)&seg_fbf_base + |
---|
| 894 | (CLUSTER_IO_ID * (unsigned int)CLUSTER_SIZE) + offset; |
---|
[189] | 895 | |
---|
| 896 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
| 897 | (fb_vaddr >> 12), |
---|
| 898 | &ppn, |
---|
| 899 | &flags ); |
---|
| 900 | fb_pbase = (ppn << 12) | (fb_vaddr & 0x00000FFF); |
---|
| 901 | |
---|
| 902 | if ( ko ) |
---|
| 903 | { |
---|
[203] | 904 | _get_lock(&_tty_put_lock); |
---|
[207] | 905 | _puts("\n[GIET ERROR] in _fbdma_access() : frame buffer unmapped\n"); |
---|
[203] | 906 | _release_lock(&_tty_put_lock); |
---|
[189] | 907 | return 2; |
---|
| 908 | } |
---|
| 909 | |
---|
| 910 | // Compute user buffer pbase address |
---|
| 911 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
| 912 | (user_vaddr >> 12), |
---|
| 913 | &ppn, |
---|
| 914 | &flags ); |
---|
| 915 | user_pbase = (ppn << 12) | (user_vaddr & 0x00000FFF); |
---|
| 916 | |
---|
| 917 | if ( ko ) |
---|
| 918 | { |
---|
[203] | 919 | _get_lock(&_tty_put_lock); |
---|
[207] | 920 | _puts("\n[GIET ERROR] in _fbdma_access() : user buffer unmapped\n"); |
---|
[203] | 921 | _release_lock(&_tty_put_lock); |
---|
[189] | 922 | return 3; |
---|
| 923 | } |
---|
| 924 | if ( (flags & PTE_U) == 0 ) |
---|
| 925 | { |
---|
[203] | 926 | _get_lock(&_tty_put_lock); |
---|
[189] | 927 | _puts("[GIET ERROR] in _fbdma_access() : user buffer not in user space\n"); |
---|
[203] | 928 | _release_lock(&_tty_put_lock); |
---|
[189] | 929 | return 4; |
---|
| 930 | } |
---|
| 931 | if ( ( (flags & PTE_W) == 0 ) && to_user ) |
---|
| 932 | { |
---|
[203] | 933 | _get_lock(&_tty_put_lock); |
---|
[207] | 934 | _puts("\n[GIET ERROR] in _fbdma_access() : user buffer not writable\n"); |
---|
[203] | 935 | _release_lock(&_tty_put_lock); |
---|
[189] | 936 | return 5; |
---|
| 937 | } |
---|
| 938 | |
---|
| 939 | |
---|
| 940 | |
---|
| 941 | /* |
---|
| 942 | // loop on all virtual pages covering the user buffer |
---|
[169] | 943 | unsigned int user_vpn_min = user_vaddr >> 12; |
---|
| 944 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 945 | unsigned int ix2 = 0; |
---|
| 946 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
[158] | 947 | |
---|
[169] | 948 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 949 | { |
---|
| 950 | // get ppn and flags for each vpn |
---|
[189] | 951 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
| 952 | vpn, |
---|
| 953 | &ppn, |
---|
| 954 | &flags ); |
---|
[158] | 955 | |
---|
[169] | 956 | // check access rights |
---|
[189] | 957 | if ( ko ) return 3; // unmapped |
---|
| 958 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
---|
| 959 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
---|
[158] | 960 | |
---|
[169] | 961 | // save first ppn value |
---|
| 962 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
| 963 | |
---|
| 964 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
| 965 | { |
---|
| 966 | // check buffer length < 2 Mbytes |
---|
| 967 | if ( ix2 > 511 ) return 2; |
---|
| 968 | |
---|
| 969 | // map the physical page in IOMMU page table |
---|
| 970 | _iommu_add_pte2( ix1, // PT1 index |
---|
| 971 | ix2, // PT2 index |
---|
| 972 | ppn, // physical page number |
---|
| 973 | flags ); // protection flags |
---|
| 974 | } |
---|
| 975 | else // no IOMMU : check that physical pages are contiguous |
---|
| 976 | { |
---|
[189] | 977 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
---|
[169] | 978 | } |
---|
| 979 | |
---|
| 980 | // increment page index |
---|
| 981 | ix2++; |
---|
| 982 | } // end for vpn |
---|
| 983 | |
---|
[189] | 984 | // register the number of pages to be unmapped if iommu activated |
---|
[169] | 985 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
---|
| 986 | |
---|
[189] | 987 | */ |
---|
[204] | 988 | |
---|
[169] | 989 | // invalidate data cache in case of memory write |
---|
[189] | 990 | if ( to_user ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
[169] | 991 | |
---|
[189] | 992 | // get the lock |
---|
| 993 | _get_lock( &_dma_lock[dma_id] ); |
---|
[169] | 994 | |
---|
| 995 | // DMA configuration |
---|
[189] | 996 | if ( to_user ) |
---|
[169] | 997 | { |
---|
[204] | 998 | dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)fb_pbase; |
---|
| 999 | dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)user_pbase; |
---|
[169] | 1000 | } |
---|
| 1001 | else |
---|
| 1002 | { |
---|
[204] | 1003 | dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)user_pbase; |
---|
| 1004 | dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)fb_pbase; |
---|
[169] | 1005 | } |
---|
[204] | 1006 | dma_base[loc_id*DMA_SPAN + DMA_LEN] = (unsigned int)length; |
---|
[169] | 1007 | |
---|
[158] | 1008 | return 0; |
---|
[213] | 1009 | |
---|
| 1010 | #else //NB_DMAS_MAX == 0 |
---|
| 1011 | return -1; |
---|
| 1012 | #endif |
---|
[169] | 1013 | } |
---|
| 1014 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1015 | // _fb_write() |
---|
| 1016 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
---|
| 1017 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1018 | // - buffer : base address of the memory buffer. |
---|
| 1019 | // - length : number of bytes to be transfered. |
---|
| 1020 | // Returns 0 if success, > 0 if error. |
---|
| 1021 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1022 | unsigned int _fb_write( unsigned int offset, |
---|
| 1023 | const void* buffer, |
---|
| 1024 | unsigned int length ) |
---|
| 1025 | { |
---|
[189] | 1026 | return _fb_dma_access( 0, // write to frame buffer |
---|
| 1027 | offset, |
---|
| 1028 | (unsigned int)buffer, |
---|
| 1029 | length ); |
---|
[158] | 1030 | } |
---|
| 1031 | |
---|
| 1032 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1033 | // _fb_read() |
---|
[169] | 1034 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
---|
[158] | 1035 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1036 | // - buffer : base address of the memory buffer. |
---|
| 1037 | // - length : number of bytes to be transfered. |
---|
| 1038 | // Returns 0 if success, > 0 if error. |
---|
| 1039 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1040 | unsigned int _fb_read( unsigned int offset, |
---|
[169] | 1041 | const void* buffer, |
---|
[158] | 1042 | unsigned int length ) |
---|
| 1043 | { |
---|
[189] | 1044 | return _fb_dma_access( 1, // read from frame buffer |
---|
| 1045 | offset, |
---|
| 1046 | (unsigned int)buffer, |
---|
| 1047 | length ); |
---|
[158] | 1048 | } |
---|
| 1049 | |
---|
| 1050 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1051 | // _fb_completed() |
---|
| 1052 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
[169] | 1053 | // As it is a blocking call, the processor is busy waiting. |
---|
| 1054 | // Returns 0 if success, > 0 if error |
---|
| 1055 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
[158] | 1056 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1057 | unsigned int _fb_completed() |
---|
| 1058 | { |
---|
[213] | 1059 | #if NB_DMAS_MAX > 0 |
---|
[199] | 1060 | unsigned int task_id = _get_current_task_id(); |
---|
| 1061 | unsigned int dma_id = _get_context_slot( task_id, CTX_FBDMA_ID ); |
---|
[158] | 1062 | |
---|
[169] | 1063 | // busy waiting with a pseudo random delay between bus access |
---|
[189] | 1064 | while (_dma_done[dma_id] == 0) |
---|
[169] | 1065 | { |
---|
| 1066 | unsigned int i; |
---|
[189] | 1067 | unsigned int delay = ( _proctime() ^ _procid()<<4 ) & 0xFF; |
---|
[169] | 1068 | for (i = 0; i < delay; i++) |
---|
| 1069 | asm volatile("nop"); |
---|
| 1070 | } |
---|
| 1071 | |
---|
| 1072 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
| 1073 | if ( GIET_IOMMU_ACTIVE ) |
---|
| 1074 | { |
---|
[204] | 1075 | unsigned int* iob_address = (unsigned int*)( (char*)&seg_iob_base + |
---|
| 1076 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
| 1077 | |
---|
[169] | 1078 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
| 1079 | unsigned int ix2; |
---|
[158] | 1080 | |
---|
[169] | 1081 | for ( ix2 = 0 ; ix2 < _dma_iommu_npages[dma_id] ; ix2++ ) |
---|
| 1082 | { |
---|
| 1083 | // unmap the page in IOMMU page table |
---|
| 1084 | _iommu_inval_pte2( ix1, // PT1 index |
---|
| 1085 | ix2 ); // PT2 index |
---|
[158] | 1086 | |
---|
[169] | 1087 | // clear IOMMU TLB |
---|
| 1088 | iob_address[IOB_INVAL_PTE] = (ix1 << 21) | (ix2 << 12); |
---|
| 1089 | } |
---|
| 1090 | } |
---|
| 1091 | |
---|
[189] | 1092 | // reset synchronization variables |
---|
| 1093 | _dma_lock[dma_id] = 0; |
---|
| 1094 | _dma_done[dma_id] = 0; |
---|
| 1095 | |
---|
[169] | 1096 | return _dma_status[dma_id]; |
---|
[213] | 1097 | |
---|
| 1098 | #else //NB_DMAS_MAX == 0 |
---|
| 1099 | |
---|
| 1100 | return -1; |
---|
| 1101 | |
---|
| 1102 | #endif |
---|
[158] | 1103 | } |
---|
| 1104 | |
---|