source: soft/giet_vm/sys/drivers.c @ 218

Last change on this file since 218 was 218, checked in by alain, 12 years ago

Introducing support for Network controller

File size: 47.1 KB
RevLine 
[158]1///////////////////////////////////////////////////////////////////////////////////
2// File     : drivers.c
3// Date     : 01/04/2012
4// Author   : alain greiner
5// Copyright (c) UPMC-LIP6
6///////////////////////////////////////////////////////////////////////////////////
[189]7// The drivers.c and drivers.h files are part ot the GIET-VM nano kernel.
[158]8// They contains the drivers for the peripherals available in the SoCLib library:
9// - vci_multi_tty
10// - vci_multi_timer
11// - vci_multi_dma
12// - vci_multi_icu
[203]13// - vci_xicu & vci_multi_icu
[158]14// - vci_gcd
15// - vci_frame_buffer
16// - vci_block_device
17//
18// The following global parameters must be defined in the giet_config.h file:
[204]19// - CLUSTER_SIZE
[189]20// - NB_CLUSTERS   
21// - NB_PROCS_MAX 
22// - NB_TIMERS_MAX   
23// - NB_DMAS_MAX     
24// - NB_TTYS   
[158]25//
[218]26// The following virtual base addresses must be defined in the giet_vsegs.ld file:
[158]27// - seg_icu_base
[203]28// - seg_tim_base
[158]29// - seg_tty_base
30// - seg_gcd_base
31// - seg_dma_base
[203]32// - seg_fbf_base
[158]33// - seg_ioc_base
[218]34// - seg_nic_base
[204]35// As some peripherals can be replicated in the clusters (ICU, TIMER, DMA)
36// These addresses must be completed by an offset depending on the cluster index
37//    full_base_address = seg_***_base + cluster_id * CLUSTER_SIZE
[158]38///////////////////////////////////////////////////////////////////////////////////
39
[166]40#include <vm_handler.h>
[158]41#include <sys_handler.h>
42#include <giet_config.h>
43#include <drivers.h>
44#include <common.h>
45#include <hwr_mapping.h>
46#include <mips32_registers.h>
47#include <ctx_handler.h>
48
49#if !defined(NB_CLUSTERS)
[215]50# error: You must define NB_CLUSTERS in the configs file
[158]51#endif
[189]52
53#if !defined(NB_PROCS_MAX)
[215]54# error: You must define NB_PROCS_MAX in the configs file
[189]55#endif
56
57#if (NB_PROCS_MAX > 8)
58# error: NB_PROCS_MAX cannot be larger than 8!
59#endif
60
[204]61#if !defined(CLUSTER_SIZE)
[215]62# error: You must define CLUSTER_SIZE in the configs file
[158]63#endif
[189]64
[158]65#if !defined(NB_TTYS)
[215]66# error: You must define NB_TTYS in the configs file
[158]67#endif
68
[165]69#if (NB_TTYS < 1)
70# error: NB_TTYS cannot be smaller than 1!
71#endif
72
[189]73#if !defined(NB_DMAS_MAX)
[205]74#define NB_DMAS_MAX 0
[165]75#endif
76
[189]77#if !defined(NB_TIMERS_MAX)
[205]78#define NB_TIMERS_MAX 0
[165]79#endif
80
[216]81#if ( (NB_TIMERS_MAX) > 32 )
[189]82# error: NB_TIMERS_MAX + NB_PROCS_MAX cannot be larger than 32
83#endif
[165]84
[189]85#if !defined(NB_IOCS)
[215]86# error: You must define NB_IOCS in the configs file
[189]87#endif
[158]88
[189]89#if ( NB_IOCS > 1 )
90# error: NB_IOCS cannot be larger than 1
91#endif
[158]92
[215]93#if !defined( USE_XICU )
94# error: You must define USE_XICU in the configs file
95#endif
[158]96
[215]97#if !defined( IOMMU_ACTIVE )
98# error: You must define IOMMU_ACTIVE in the configs file
99#endif
100
101
[189]102#define in_unckdata __attribute__((section (".unckdata")))
[169]103
[158]104//////////////////////////////////////////////////////////////////////////////
[203]105//      Timers driver
[158]106//////////////////////////////////////////////////////////////////////////////
[203]107// The timers can be implemented in a vci_timer component or in a vci_xicu
[215]108// component (depending on the USE_XICU parameter).
[203]109// There is one timer (or xicu) component per cluster.
[189]110// There is two types of timers:
111// - "system" timers : one per processor, used for context switch.
112//   local_id in [0, NB_PROCS_MAX-1],
113// - "user" timers : requested by the task in the mapping_info data structure.
[203]114//   For each user timer, the timer_id is stored in the context of the task.
115// The global index is cluster_id * (NB_PROCS_MAX+NB_TIMERS_MAX) + local_id
[158]116//////////////////////////////////////////////////////////////////////////////
117
[189]118// User Timer signaling variables
119
120#if (NB_TIMERS_MAX > 0)
121in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS*NB_TIMERS_MAX] 
122         = { [0 ... ((NB_CLUSTERS*NB_TIMERS_MAX)-1)] = 0 };
123#endif
124
[158]125//////////////////////////////////////////////////////////////////////////////
[203]126//     _timer_start()
127// This function activates a timer in the vci_timer (or vci_xicu) component
128// by writing in the proper register the period value.
129// It can be used by both the kernel to initialise a "system" timer,
[189]130// or by a task (through a system call) to configure an "user" timer.
[158]131// Returns 0 if success, > 0 if error.
132//////////////////////////////////////////////////////////////////////////////
[203]133unsigned int _timer_start( unsigned int cluster_id,
134                           unsigned int local_id,
135                           unsigned int period )
[158]136{
[165]137    // parameters checking
[216]138    if ( cluster_id >= NB_CLUSTERS)     return 1;
139    if ( local_id >= NB_TIMERS_MAX) return 2;
[158]140
[215]141#if USE_XICU
[204]142    unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base +
143                                  (cluster_id * CLUSTER_SIZE) );
[158]144
[203]145    timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period;
[189]146#else
[204]147    unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + 
148                                  (cluster_id * CLUSTER_SIZE) );
[189]149
[203]150    timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period;
151    timer_address[local_id * TIMER_SPAN + TIMER_MODE]   = 0x3;
[189]152#endif
153
[158]154    return 0;
155}
[189]156//////////////////////////////////////////////////////////////////////////////
[203]157//     _timer_stop()
158// This function desactivates a timer in the vci_timer (or vci_xicu) component
159// by writing in the proper register.
[189]160// Returns 0 if success, > 0 if error.
161//////////////////////////////////////////////////////////////////////////////
[203]162unsigned int _timer_stop( unsigned int  cluster_id,
163                          unsigned int  local_id )
[189]164{
[203]165    // parameters checking
[216]166    if ( cluster_id >= NB_CLUSTERS)      return 1;
167    if ( local_id >= NB_TIMERS_MAX ) return 2;
[158]168
[215]169#if USE_XICU
[204]170    unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base +
171                                  (cluster_id * CLUSTER_SIZE) );
[203]172
173    timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0;
174#else
[204]175    unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + 
176                                  (cluster_id * CLUSTER_SIZE) );
[203]177
178    timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0;
179#endif
180
181    return 0;
[189]182}
[158]183//////////////////////////////////////////////////////////////////////////////
[203]184//     _timer_reset_irq()
185// This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu)
[204]186// component by reading/writing in the proper register.
[203]187// It can be used by both the isr_switch() for a "system" timer,
188// or by the _isr_timer() for an "user" timer.
[158]189// Returns 0 if success, > 0 if error.
190//////////////////////////////////////////////////////////////////////////////
[203]191unsigned int _timer_reset_irq( unsigned int     cluster_id,
192                               unsigned int     local_id )
[158]193{
[203]194    // parameters checking
[216]195    if ( cluster_id >= NB_CLUSTERS)      return 1;
196    if ( local_id >= NB_TIMERS_MAX ) return 2;
[158]197
[215]198#if USE_XICU
[204]199    unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base +
200                                  (cluster_id * (unsigned)CLUSTER_SIZE) );
[203]201
202    unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)];
[204]203    bloup++;    // to avoid a warning
[203]204#else
[204]205    unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + 
206                                  (cluster_id * CLUSTER_SIZE) );
[203]207
208    timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0;
209#endif
210
211    return 0;
[158]212}
213
214/////////////////////////////////////////////////////////////////////////////////
215//      VciMultiTty driver
216/////////////////////////////////////////////////////////////////////////////////
[189]217// There is only one multi_tty controler in the architecture.
[158]218// The total number of TTYs is defined by the configuration parameter NB_TTYS.
[189]219// The "system" terminal is TTY[0].
220// The "user" TTYs are allocated to applications by the GIET in the boot phase,
221// as defined in the mapping_info data structure. The corresponding tty_id must
222// be stored in the context of the task by the boot code.
223// The TTY address is : seg_tty_base + tty_id*TTY_SPAN
224/////////////////////////////////////////////////////////////////////////////////
[158]225
[189]226// TTY variables
227in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS];
228in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS-1] = 0 };
229in_unckdata unsigned int           _tty_put_lock = 0;  // protect kernel TTY[0]
230
231////////////////////////////////////////////////////////////////////////////////
232//      _tty_error()
233////////////////////////////////////////////////////////////////////////////////
[199]234void _tty_error( unsigned int task_id )
[189]235{
236    unsigned int proc_id = _procid();
237
238    _get_lock(&_tty_put_lock);
239    _puts("\n[GIET ERROR] TTY index too large for task ");
[207]240    _putd( task_id );
[189]241    _puts(" on processor ");
[207]242    _putd( proc_id );
[189]243    _puts("\n");
244    _release_lock(&_tty_put_lock);
245}
246/////////////////////////////////////////////////////////////////////////////////
247//      _tty_write()
[158]248// Write one or several characters directly from a fixed-length user buffer to
249// the TTY_WRITE register of the TTY controler.
250// It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer.
251// This is a non blocking call: it tests the TTY_STATUS register, and stops
252// the transfer as soon as the TTY_STATUS[WRITE] bit is set.
253// The function returns  the number of characters that have been written.
[189]254/////////////////////////////////////////////////////////////////////////////////
[165]255unsigned int _tty_write( const char             *buffer, 
256                         unsigned int   length)
[158]257{
[189]258    unsigned int        nwritten;
[158]259
[199]260    unsigned int task_id  = _get_current_task_id();
261    unsigned int tty_id   = _get_context_slot(task_id, CTX_TTY_ID);
262
[189]263    if ( tty_id >= NB_TTYS )
264    {
[199]265        _tty_error( task_id );
[189]266        return 0;
267    }
[158]268
[215]269    unsigned int*       tty_address = (unsigned int*) &seg_tty_base;
[158]270
271    for (nwritten = 0; nwritten < length; nwritten++)
272    {
[165]273        // check tty's status
[204]274        if ((tty_address[tty_id*TTY_SPAN + TTY_STATUS] & 0x2) == 0x2)
[158]275            break;
276        else
[165]277            // write character
[204]278            tty_address[tty_id*TTY_SPAN + TTY_WRITE] = (unsigned int)buffer[nwritten];
[158]279    }
280    return nwritten;
281}
282//////////////////////////////////////////////////////////////////////////////
[204]283//      _tty_read()
[158]284// This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and
[165]285// the associated kernel buffer, that has been written by the ISR.
[204]286// It get the TTY terminal index from the context of the current task.
[158]287// It fetches one single character from the _tty_get_buf[tty_id] kernel
288// buffer, writes this character to the user buffer, and resets the
289// _tty_get_full[tty_id] buffer.
[204]290// The length argument is not used.
[158]291// Returns 0 if the kernel buffer is empty, 1 if the buffer is full.
292//////////////////////////////////////////////////////////////////////////////
[204]293unsigned int _tty_read( char                    *buffer, 
294                        unsigned int    length)
[158]295{
[199]296    unsigned int task_id  = _get_current_task_id();
297    unsigned int tty_id   = _get_context_slot(task_id, CTX_TTY_ID);
[158]298
[189]299    if ( tty_id >= NB_TTYS )
300    {
[199]301        _tty_error( task_id );
[189]302        return 0;
303    }
[158]304
305    if (_tty_get_full[tty_id] == 0) 
306    {
[189]307        return 0;
[158]308    }
309    else
310    {
311        *buffer = _tty_get_buf[tty_id];
312        _tty_get_full[tty_id] = 0;
[189]313        return 1;
[158]314    }
[189]315} 
[158]316////////////////////////////////////////////////////////////////////////////////
[204]317//     _tty_get_char()
318// This function is used by the _isr_tty to read a character in the TTY
319// terminal defined by the tty_id argument. The character is stored
320// in requested buffer, and the IRQ is acknowledged.
321// Returns 0 if success, 1 if tty_id too large.
[158]322////////////////////////////////////////////////////////////////////////////////
[204]323unsigned int _tty_get_char( unsigned int        tty_id,
[207]324                            unsigned char*  buffer )
[158]325{
[204]326    // checking argument
327    if ( tty_id >= NB_TTYS ) return 1;
[199]328
[204]329    // compute terminal base address
[215]330    unsigned int *tty_address = (unsigned int*) &seg_tty_base; 
[158]331
[204]332    *buffer = (unsigned char)tty_address[tty_id*TTY_SPAN + TTY_READ];
333    return 0;
[158]334}
335
336////////////////////////////////////////////////////////////////////////////////
[189]337//      VciMultiIcu and VciXicu drivers
[158]338////////////////////////////////////////////////////////////////////////////////
[203]339// There is one vci_multi_icu (or vci_xicu) component per cluster,
340// and the number of independant ICUs is equal to NB_PROCS_MAX,
341// because there is one private interrupr controler per processor.
[158]342////////////////////////////////////////////////////////////////////////////////
343
344////////////////////////////////////////////////////////////////////////////////
[203]345//     _icu_set_mask()
346// This function can be used with both the vci_xicu & vci_multi_icu components.
347// It set the mask register for the ICU channel identified by the cluster index
348// and the processor index: all '1' bits are set / all '0' bits are not modified.
[158]349// Returns 0 if success, > 0 if error.
350////////////////////////////////////////////////////////////////////////////////
[203]351unsigned int _icu_set_mask( unsigned int cluster_id,
352                            unsigned int proc_id,
353                            unsigned int value,
354                            unsigned int is_timer )
[158]355{
[203]356    // parameters checking
357    if ( cluster_id >= NB_CLUSTERS)             return 1;
358    if ( proc_id    >= NB_PROCS_MAX )   return 1;
359
[204]360    unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + 
361                                (cluster_id * (unsigned)CLUSTER_SIZE) );
[215]362#if USE_XICU
[203]363    if ( is_timer ) icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value;
364    else            icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value;
[189]365#else
[203]366    icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; 
367#endif
[189]368
[158]369    return 0;
370}
371////////////////////////////////////////////////////////////////////////////////
[203]372//     _icu_get_index()
373// This function can be used with both the vci_xicu & vci_multi_icu components.
374// It returns the index of the highest priority (smaller index) active HWI.
375// The ICU channel is identified by the cluster index and the processor index.
[158]376// Returns 0 if success, > 0 if error.
377////////////////////////////////////////////////////////////////////////////////
[203]378unsigned int _icu_get_index(  unsigned int cluster_id,
379                              unsigned int proc_id,
380                              unsigned int* buffer )
[158]381{
[203]382    // parameters checking
383    if ( cluster_id >= NB_CLUSTERS)             return 1;
384    if ( proc_id    >= NB_PROCS_MAX )   return 1;
385
[204]386    unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + 
387                                (cluster_id * (unsigned)CLUSTER_SIZE) );
[215]388#if USE_XICU
[203]389    unsigned int prio   = icu_address[XICU_REG(XICU_PRIO, proc_id)];
390    unsigned int pti_ok = (prio & 0x00000001);
391    unsigned int hwi_ok = (prio & 0x00000002);
392    unsigned int swi_ok = (prio & 0x00000004);
393    unsigned int pti_id = (prio & 0x00001F00) >> 8;
394    unsigned int hwi_id = (prio & 0x001F0000) >> 16;
395    unsigned int swi_id = (prio & 0x1F000000) >> 24;
396    if      (pti_ok)    *buffer = pti_id;
397    else if (hwi_ok)    *buffer = hwi_id;
398    else if (swi_ok)    *buffer = swi_id;
399    else                *buffer = 32;
[189]400#else
[203]401    *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; 
402#endif
[189]403
[158]404    return 0;
405}
406
407////////////////////////////////////////////////////////////////////////////////
408//      VciGcd driver
409////////////////////////////////////////////////////////////////////////////////
410// The Greater Dommon Divider is a -very- simple hardware coprocessor
[165]411// performing the computation of the GCD of two 32 bits integers.
[158]412// It has no DMA capability.
413////////////////////////////////////////////////////////////////////////////////
414
415////////////////////////////////////////////////////////////////////////////////
[189]416//     _gcd_write()
[158]417// Write a 32-bit word in a memory mapped register of the GCD coprocessor.
418// Returns 0 if success, > 0 if error.
419////////////////////////////////////////////////////////////////////////////////
[165]420unsigned int _gcd_write( unsigned int register_index, 
421                         unsigned int value)
[158]422{
[165]423    // parameters checking
[158]424    if (register_index >= GCD_END)
425        return 1;
426
[215]427    unsigned int* gcd_address = (unsigned int*) &seg_gcd_base;
[165]428
429    gcd_address[register_index] = value; // write word
[158]430    return 0;
431}
432////////////////////////////////////////////////////////////////////////////////
[189]433//     _gcd_read()
[158]434// Read a 32-bit word in a memory mapped register of the GCD coprocessor.
435// Returns 0 if success, > 0 if error.
436////////////////////////////////////////////////////////////////////////////////
[165]437unsigned int _gcd_read( unsigned int register_index, 
438                        unsigned int *buffer)
[158]439{
[165]440    // parameters checking
[158]441    if (register_index >= GCD_END)
442        return 1;
443
[215]444    unsigned int* gcd_address = (unsigned int*) &seg_gcd_base;
[165]445
446    *buffer = gcd_address[register_index]; // read word
[158]447    return 0;
448}
449
450////////////////////////////////////////////////////////////////////////////////
451// VciBlockDevice driver
452////////////////////////////////////////////////////////////////////////////////
[165]453// The VciBlockDevice is a single channel external storage contrÃŽler.
[166]454//
455// The IOMMU can be activated or not:
456//
457// 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to
458// the IOC peripheral, in the I/O virtual space, and the user buffer is
459// dynamically remapped in the IOMMU page table. The corresponding entry
460// in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable.
461// The number of pages to be unmapped is stored in the _ioc_npages variable.
462// The number of PT2 entries is dynamically computed and stored in the
463// kernel _ioc_iommu_npages variable. It cannot be larger than 512.
464// The user buffer is unmapped by the _ioc_completed() function when
465// the transfer is completed.
466//
467// 2/ If the IOMMU is not used, we check that  the user buffer is mapped to a
468// contiguous physical buffer (this is generally true because the user space
469// page tables are statically constructed to use contiguous physical memory).
470//
471// Finally, the memory buffer must fulfill the following conditions:
472// - The user buffer must be word aligned,
473// - The user buffer must be mapped in user address space,
474// - The user buffer must be writable in case of (to_mem) access,
475// - The total number of physical pages occupied by the user buffer cannot
476//   be larger than 512 pages if the IOMMU is activated,
477// - All physical pages occupied by the user buffer must be contiguous
478//   if the IOMMU is not activated.
479// An error code is returned if these conditions are not verified.
480//
[158]481// As the IOC component can be used by several programs running in parallel,
482// the _ioc_lock variable guaranties exclusive access to the device.  The
483// _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock.
484// and set _ioc_lock to a non zero value.  The _ioc_write() and _ioc_read()
485// functions are blocking, polling the _ioc_lock variable until the device is
486// available.
487// When the tranfer is completed, the ISR routine activated by the IOC IRQ
488// set the _ioc_done variable to a non-zero value. Possible address errors
489// detected by the IOC peripheral are reported by the ISR in the _ioc_status
490// variable.
491// The _ioc_completed() function is polling the _ioc_done variable, waiting for
[166]492// transfer completion. When the completion is signaled, the _ioc_completed()
[158]493// function reset the _ioc_done variable to zero, and releases the _ioc_lock
494// variable.
495//
496// In a multi-processing environment, this polling policy should be replaced by
497// a descheduling policy for the requesting process.
498///////////////////////////////////////////////////////////////////////////////
499
[189]500// IOC global variables
501in_unckdata volatile unsigned int       _ioc_status       = 0;
502in_unckdata volatile unsigned int       _ioc_done         = 0;
503in_unckdata unsigned int                        _ioc_lock         = 0;
504in_unckdata unsigned int                        _ioc_iommu_ix1    = 0;
505in_unckdata unsigned int                        _ioc_iommu_npages; 
[158]506
507///////////////////////////////////////////////////////////////////////////////
[189]508//      _ioc_access()
[166]509// This function transfer data between a memory buffer and the block device.
510// The buffer lentgth is (count*block_size) bytes.
511// Arguments are:
512// - to_mem     : from external storage to memory when non 0
513// - lba        : first block index on the external storage.
514// - user_vaddr : virtual base address of the memory buffer.
515// - count      : number of blocks to be transfered.
[158]516// Returns 0 if success, > 0 if error.
517///////////////////////////////////////////////////////////////////////////////
[166]518unsigned int _ioc_access( unsigned int  to_mem,
519                          unsigned int  lba,
520                          unsigned int  user_vaddr,
521                          unsigned int  count )
[158]522{
[167]523    unsigned int                user_vpn_min;   // first virtuel page index in user space
524    unsigned int                user_vpn_max;   // last virtual page index in user space
525    unsigned int                vpn;                    // current virtual page index in user space
526    unsigned int                ppn;                    // physical page number
527    unsigned int                flags;                  // page protection flags
528    unsigned int                ix2;                    // page index in IOMMU PT1 page table
529    unsigned int                addr;                   // buffer address for IOC peripheral
530    unsigned int                ppn_first;              // first physical page number for user buffer
[166]531       
532    // check buffer alignment
533    if ( (unsigned int)user_vaddr & 0x3 ) return 1;
[158]534
[215]535    unsigned int*       ioc_address = (unsigned int*) &seg_ioc_base ;
[204]536
[166]537    unsigned int        block_size   = ioc_address[BLOCK_DEVICE_BLOCK_SIZE];
538    unsigned int        length       = count*block_size;
[158]539
[167]540    // get user space page table virtual address
[199]541    unsigned int task_id       = _get_current_task_id();
542    unsigned int user_pt_vbase = _get_context_slot( task_id, CTX_PTAB_ID );
[166]543   
544    user_vpn_min = user_vaddr >> 12;
545    user_vpn_max = (user_vaddr + length - 1) >> 12;
546    ix2          = 0;
[158]547
[166]548    // loop on all virtual pages covering the user buffer
549    for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ )
550    {
551        // get ppn and flags for each vpn
[189]552        unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase,
553                                           vpn,
554                                           &ppn,
555                                           &flags );
[158]556
[166]557        // check access rights
558        if ( ko )                                                                 return 2;             // unmapped
559        if ( (flags & PTE_U) == 0 )                               return 3;             // not in user space
560        if ( ( (flags & PTE_W) == 0 ) && to_mem ) return 4;             // not writable
[158]561
[166]562        // save first ppn value
563        if ( ix2 == 0 ) ppn_first = ppn;
[158]564
[215]565        if ( IOMMU_ACTIVE )    // the user buffer must be remapped in the I/0 space
[166]566        {
567            // check buffer length < 2 Mbytes
568            if ( ix2 > 511 ) return 2;
[158]569
[166]570            // map the physical page in IOMMU page table
571            _iommu_add_pte2( _ioc_iommu_ix1,    // PT1 index
572                             ix2,                               // PT2 index
573                                                 ppn,                           // Physical page number
574                             flags );                   // Protection flags
575        }
576        else                    // no IOMMU : check that physical pages are contiguous
577        {
578            if ( (ppn - ppn_first) != ix2 )           return 5;         // split physical buffer 
579        }
580       
581        // increment page index
582        ix2++;
583    } // end for vpn
[158]584
[166]585    // register the number of pages to be unmapped
586    _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1;
[158]587
[166]588    // invalidate data cache in case of memory write
589    if ( to_mem ) _dcache_buf_invalidate( (void*)user_vaddr, length );
[158]590
[166]591    // compute buffer base address for IOC depending on IOMMU activation
[215]592    if ( IOMMU_ACTIVE ) addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF);
[167]593    else                     addr = (ppn_first << 12) | (user_vaddr & 0xFFF);
[166]594
595    // get the lock on ioc device
[189]596    _get_lock( &_ioc_lock );
[158]597
[166]598    // peripheral configuration 
599    ioc_address[BLOCK_DEVICE_BUFFER]     = addr;
600    ioc_address[BLOCK_DEVICE_COUNT]      = count;
601    ioc_address[BLOCK_DEVICE_LBA]        = lba;
602    if ( to_mem == 0 ) ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE;
603    else               ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ;
[158]604
605    return 0;
606}
607/////////////////////////////////////////////////////////////////////////////////
608// _ioc_completed()
609//
610// This function checks completion of an I/O transfer and reports errors.
[166]611// As it is a blocking call, the processor is stalled.
612// If the virtual memory is activated, the pages mapped in the I/O virtual
613// space are unmapped, and the IOB TLB is cleared.
[158]614// Returns 0 if success, > 0 if error.
615/////////////////////////////////////////////////////////////////////////////////
616unsigned int _ioc_completed()
617{
[166]618    unsigned int        ret;
619    unsigned int        ix2;
[158]620
[166]621    // busy waiting
[158]622    while (_ioc_done == 0)
623        asm volatile("nop");
624
[166]625    // unmap the buffer from IOMMU page table if IOMMU is activated
[215]626    if ( IOMMU_ACTIVE )
[166]627    {
[215]628        unsigned int* iob_address = (unsigned int*) &seg_iob_base;
[166]629
630        for ( ix2 = 0 ; ix2 < _ioc_iommu_npages ; ix2++ )
631        {
632            // unmap the page in IOMMU page table
633            _iommu_inval_pte2( _ioc_iommu_ix1,  // PT1 index
634                              ix2 );                    // PT2 index
635
636            // clear IOMMU TLB
[169]637            iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); 
[166]638        }
639    }
640
641    // test IOC status
[158]642    if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS)
[166]643            && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1;    // error
644    else                                                    ret = 0;    // success
[158]645
[166]646    // reset synchronization variables
[158]647    _ioc_lock =0;
648    _ioc_done =0;
649
650    return ret;
651}
[166]652///////////////////////////////////////////////////////////////////////////////
[189]653//     _ioc_read()
[166]654// Transfer data from the block device to a memory buffer in user space.
655// - lba    : first block index on the block device
656// - buffer : base address of the memory buffer (must be word aligned)
657// - count  : number of blocks to be transfered.
658// Returns 0 if success, > 0 if error.
659///////////////////////////////////////////////////////////////////////////////
660unsigned int _ioc_read( unsigned int    lba, 
661                        void*               buffer, 
662                        unsigned int    count )
663{
[189]664    return _ioc_access( 1,              // read access
[166]665                        lba,
666                        (unsigned int)buffer,
667                        count );
668}
669///////////////////////////////////////////////////////////////////////////////
[189]670//     _ioc_write()
[166]671// Transfer data from a memory buffer in user space to the block device.
672// - lba    : first block index on the block device
673// - buffer : base address of the memory buffer (must be word aligned)
674// - count  : number of blocks to be transfered.
675// Returns 0 if success, > 0 if error.
676///////////////////////////////////////////////////////////////////////////////
677unsigned int _ioc_write( unsigned int   lba, 
678                         const void*    buffer, 
679                         unsigned int   count )
680{
[189]681    return _ioc_access( 0,              // write access
[166]682                        lba,
683                        (unsigned int)buffer,
684                        count );
685}
[204]686///////////////////////////////////////////////////////////////////////////////
687//     _ioc_get_status()
688// This function returns the transfert status, and acknowledge the IRQ.
689// Returns 0 if success, > 0 if error.
690///////////////////////////////////////////////////////////////////////////////
691unsigned int _ioc_get_status(unsigned int* status)
692{
693    // get IOC base address
[215]694    unsigned int* ioc_address = (unsigned int*) &seg_ioc_base;
[166]695
[204]696    *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ
697    return 0;
698}
699
[158]700//////////////////////////////////////////////////////////////////////////////////
[189]701// VciMultiDma driver
702//////////////////////////////////////////////////////////////////////////////////
703// The DMA controllers are physically distributed in the clusters.
704// There is  (NB_CLUSTERS * NB_DMAS_MAX) channels, indexed by a global index:
705//        dma_id = cluster_id * NB_DMA_MAX + loc_id
706//
707// As a DMA channel can be used by several tasks, each DMA channel is protected
708// by a specific lock: _dma_lock[dma_id]
709// The signalisation between the OS and the DMA uses the _dma_done[dma_id]
710// synchronisation variables  (set by the ISR, and reset by the OS).
711// The transfer status is copied by the ISR in the _dma_status[dma_id] variables.
712//
713// These DMA channels can be used by the FB driver, or by the NIC driver.
714//////////////////////////////////////////////////////////////////////////////////
715
[213]716#if NB_DMAS_MAX > 0
717in_unckdata unsigned int                        _dma_lock[NB_DMAS_MAX * NB_CLUSTERS]
[218]718                                       = { [0 ... (NB_DMAS_MAX * NB_CLUSTERS)-1] = 0 };
[189]719
[213]720in_unckdata volatile unsigned int       _dma_done[NB_DMAS_MAX * NB_CLUSTERS]
721                                       = { [0 ... (NB_DMAS_MAX * NB_CLUSTERS)-1] = 0 };
[189]722
[213]723in_unckdata volatile unsigned int       _dma_status[NB_DMAS_MAX * NB_CLUSTERS];
[189]724
725in_unckdata unsigned int                        _dma_iommu_ix1 = 1;
726
[213]727in_unckdata unsigned int            _dma_iommu_npages[NB_DMAS_MAX * NB_CLUSTERS];
728#endif
[189]729
730//////////////////////////////////////////////////////////////////////////////////
[204]731// _dma_reset_irq()
732//////////////////////////////////////////////////////////////////////////////////
733unsigned int _dma_reset_irq( unsigned int       cluster_id,
[207]734                             unsigned int       channel_id )
[204]735{
[213]736#if NB_DMAS_MAX > 0
[204]737    // parameters checking
738    if ( cluster_id >= NB_CLUSTERS ) return 1;
[207]739    if ( channel_id >= NB_DMAS_MAX ) return 1;
[204]740
741    // compute DMA base address
742    unsigned int*       dma_address = (unsigned int*)( (char*)&seg_dma_base + 
743                                  (cluster_id * (unsigned)CLUSTER_SIZE) );
744
[207]745    dma_address[channel_id*DMA_SPAN + DMA_RESET] = 0;                   
[204]746    return 0;
[213]747#else
748    return -1;
749#endif
[204]750}
[218]751
[204]752//////////////////////////////////////////////////////////////////////////////////
753// _dma_get_status()
754//////////////////////////////////////////////////////////////////////////////////
755unsigned int _dma_get_status( unsigned int      cluster_id,
[207]756                              unsigned int      channel_id,
[204]757                              unsigned int* status )
758{
[213]759#if NB_DMAS_MAX > 0
[204]760    // parameters checking
761    if ( cluster_id >= NB_CLUSTERS ) return 1;
[207]762    if ( channel_id >= NB_DMAS_MAX ) return 1;
[204]763
764    // compute DMA base address
765    unsigned int*       dma_address = (unsigned int*)( (char*)&seg_dma_base + 
766                                  (cluster_id * (unsigned)CLUSTER_SIZE) );
[207]767
768    *status = dma_address[channel_id*DMA_SPAN + DMA_LEN];
[204]769    return 0;
[213]770#else
771    return -1;
772#endif
[204]773}
774
775//////////////////////////////////////////////////////////////////////////////////
[218]776// _dma_transfer()
777// Transfer data between a user buffer and a device buffer using DMA.
778// Two devices types are supported: Frame Buffer if dev_type == 0
779//                                  Multi-Nic if dev_type != 0
780// Arguments are:
781// - dev_type     : device type.
782// - to_user      : from  device buffer to user buffer when true.
783// - offset       : offset (in bytes) in the device buffer.
784// - user_vaddr   : virtual base address of the user buffer.
785// - length       : number of bytes to be transfered.
786//
787// The DMA channel is obtained from task context (CTX_FBDMA_ID / CTX_NIDMA_ID.
[207]788// The user buffer must be mapped in user address space and word-aligned.
[169]789// The user buffer length must be multiple of 4 bytes.
[218]790// Me must compute the physical base addresses for both the device buffer
[189]791// and the user buffer before programming the DMA transfer.
[207]792// The GIET being fully static, we don't need to split the transfer in 4 Kbytes
[189]793// pages, because the user buffer is contiguous in physical space.
[158]794// Returns 0 if success, > 0 if error.
795//////////////////////////////////////////////////////////////////////////////////
[218]796unsigned int _dma_transfer(  unsigned int   dev_type,
797                             unsigned int   to_user,
[189]798                             unsigned int   offset,
799                             unsigned int   user_vaddr,
800                             unsigned int   length )
[158]801{
[213]802#if NB_DMAS_MAX > 0
[218]803    unsigned int        ko;                                     // unsuccessfull V2P translation
804    unsigned int        flags;                          // protection flags
805    unsigned int        ppn;                            // physical page number
806    unsigned int    user_pbase;                 // user buffer pbase address
807    unsigned int    device_pbase;                       // frame buffer pbase address
808    unsigned int        device_vaddr;                   // device buffer vbase address
[158]809
[189]810    // check user buffer address and length alignment
811    if ( (user_vaddr & 0x3) || (length & 0x3) )
812    {
[203]813        _get_lock(&_tty_put_lock);
[218]814        _puts("\n[GIET ERROR] in _dma_transfer : user buffer not word aligned\n");
[203]815        _release_lock(&_tty_put_lock);
[189]816        return 1;
817    }
[169]818
[218]819    // get DMA channel and compute DMA vbase address
820    unsigned int        task_id    = _get_current_task_id();
821    unsigned int    dma_id     = _get_context_slot( task_id, CTX_DMA_ID );
822    unsigned int    cluster_id = dma_id / NB_DMAS_MAX;
823    unsigned int    loc_id     = dma_id % NB_DMAS_MAX;
824    unsigned int*       dma_base   = (unsigned int*)( (char*)&seg_dma_base + 
825                                    (cluster_id * (unsigned)CLUSTER_SIZE) );
826
827    // get page table address
[199]828    unsigned int        user_ptab = _get_context_slot( task_id, CTX_PTAB_ID );
[169]829
[218]830    // get peripheral buffer virtual address
831    if ( dev_type)  device_vaddr = (unsigned int)&seg_nic_base + offset;
832    else            device_vaddr = (unsigned int)&seg_fbf_base + offset;
[189]833
[218]834    // get device buffer physical address
[189]835    ko = _v2p_translate( (page_table_t*)user_ptab,
[218]836                         (device_vaddr >> 12),
[189]837                         &ppn,
838                         &flags );
839    if ( ko )
840    {
[203]841        _get_lock(&_tty_put_lock);
[218]842        _puts("\n[GIET ERROR] in _dma_transfer : device buffer unmapped\n");
[203]843        _release_lock(&_tty_put_lock);
[189]844        return 2;
845    }
[218]846    device_pbase = (ppn << 12) | (device_vaddr & 0x00000FFF);
[189]847
[218]848    // Compute user buffer physical address
[189]849    ko = _v2p_translate( (page_table_t*)user_ptab,
850                         (user_vaddr >> 12),
851                         &ppn,
852                         &flags );
853    if ( ko )
854    {
[203]855        _get_lock(&_tty_put_lock);
[218]856        _puts("\n[GIET ERROR] in _dma_transfer() : user buffer unmapped\n");
[203]857        _release_lock(&_tty_put_lock);
[189]858        return 3;
859    } 
860    if ( (flags & PTE_U) == 0 )
861    {
[203]862        _get_lock(&_tty_put_lock);
[218]863        _puts("[GIET ERROR] in _dma_transfer() : user buffer not in user space\n");
[203]864        _release_lock(&_tty_put_lock);
[189]865        return 4; 
866    }
867    if ( ( (flags & PTE_W) == 0 ) && to_user ) 
868    {
[203]869        _get_lock(&_tty_put_lock);
[218]870        _puts("\n[GIET ERROR] in _dma_transfer() : user buffer not writable\n");
[203]871        _release_lock(&_tty_put_lock);
[189]872        return 5;
873    }
[218]874    user_pbase = (ppn << 12) | (user_vaddr & 0x00000FFF);
[189]875
[218]876/*  This is a draft for IOMMU support
877   
[189]878    // loop on all virtual pages covering the user buffer
[169]879    unsigned int user_vpn_min = user_vaddr >> 12;
880    unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12;
881    unsigned int ix2          = 0;
882    unsigned int ix1          = _dma_iommu_ix1 + dma_id;
[158]883
[169]884    for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ )
885    {
886        // get ppn and flags for each vpn
[189]887        unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase,
888                                          vpn,
889                                          &ppn,
890                                          &flags );
[158]891
[169]892        // check access rights
[189]893        if ( ko )                                 return 3;     // unmapped
894        if ( (flags & PTE_U) == 0 )               return 4;     // not in user space
895        if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5;     // not writable
[158]896
[169]897        // save first ppn value
898        if ( ix2 == 0 ) ppn_first = ppn;
899
[215]900        if ( IOMMU_ACTIVE )    // the user buffer must be remapped in the I/0 space
[169]901        {
902            // check buffer length < 2 Mbytes
903            if ( ix2 > 511 ) return 2;
904
905            // map the physical page in IOMMU page table
906            _iommu_add_pte2( ix1,               // PT1 index
907                             ix2,               // PT2 index
908                             ppn,               // physical page number
909                             flags );   // protection flags
910        }
911        else            // no IOMMU : check that physical pages are contiguous
912        {
[189]913            if ( (ppn - ppn_first) != ix2 )       return 6;     // split physical buffer 
[169]914        }
915
916        // increment page index
917        ix2++;
918    } // end for vpn
919
[189]920    // register the number of pages to be unmapped if iommu activated
[169]921    _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1;
922
[189]923*/
[204]924
[169]925    // invalidate data cache in case of memory write
[189]926    if ( to_user ) _dcache_buf_invalidate( (void*)user_vaddr, length );
[218]927   
[189]928    // get the lock
929    _get_lock( &_dma_lock[dma_id] );
[169]930
931    // DMA configuration
[189]932    if ( to_user )
[169]933    {
[218]934        dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)device_pbase;
[204]935        dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)user_pbase;
[169]936    }
937    else
938    {
[204]939        dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)user_pbase;
[218]940        dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)device_pbase;
[169]941    }
[204]942    dma_base[loc_id*DMA_SPAN + DMA_LEN] = (unsigned int)length;
[169]943   
[158]944    return 0;
[213]945
946#else //NB_DMAS_MAX == 0
[218]947
[213]948    return -1;
[218]949
[213]950#endif
[218]951}  // end _dma_transfer() 
952
[169]953//////////////////////////////////////////////////////////////////////////////////
[218]954// _dma_completed()
955// This function checks completion of a DMA transfer to or from a peripheral
956// device (Frame Buffer or Multi-Nic).
957// As it is a blocking call, the processor is busy waiting.
958// Returns 0 if success, > 0 if error
959// (1 == read error / 2 == DMA idle error / 3 == write error)
960//////////////////////////////////////////////////////////////////////////////////
961unsigned int _dma_completed()
962{
963#if NB_DMAS_MAX > 0
964    unsigned int    task_id = _get_current_task_id();
965    unsigned int    dma_id  = _get_context_slot( task_id, CTX_DMA_ID );
966
967    // busy waiting with a pseudo random delay between bus access
968    while (_dma_done[dma_id] == 0)
969    {
970        unsigned int delay = (( _proctime() ^ _procid()<<4 ) & 0x3F) + 1;
971        asm volatile("move  $3,   %0                    \n"
972                     "loop_nic_completed:               \n"
973                     "addi  $3, $3, -1              \n"
974                     "bnez  $3, loop_nic_completed      \n"
975                     "nop                                       \n"
976                     :
977                     : "r"(delay)
978                     : "$3" ); 
979    }
980   
981/* draft support for IOMMU
982    // unmap the buffer from IOMMU page table if IOMMU is activated
983    if ( GIET_IOMMU_ACTIVE )
984    {
985        unsigned int* iob_address = (unsigned int*)&seg_iob_base;
986
987        unsigned int  ix1         = _dma_iommu_ix1 + dma_id;
988        unsigned int  ix2;
989
990        for ( ix2 = 0 ; ix2 < _dma_iommu_npages[dma_id] ; ix2++ )
991        {
992            // unmap the page in IOMMU page table
993            _iommu_inval_pte2( ix1,             // PT1 index
994                               ix2 );   // PT2 index
995
996            // clear IOMMU TLB
997            iob_address[IOB_INVAL_PTE] = (ix1 << 21) | (ix2 << 12);
998        }
999    }
1000*/
1001
1002    // reset synchronization variables
1003    _dma_lock[dma_id] = 0;
1004    _dma_done[dma_id] = 0;
1005
1006    return _dma_status[dma_id];
1007
1008#else //NB_DMAS_MAX == 0
1009    return -1;
1010#endif
1011}  // end _dma_completed
1012
1013//////////////////////////////////////////////////////////////////////////////////
1014//      VciFrameBuffer driver
1015//////////////////////////////////////////////////////////////////////////////////
1016// The vci_frame_buffer device can be accessed directly by software with memcpy(),
1017// or it can be accessed through a multi-channels DMA component:
1018// 
1019// The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to
1020// implement the transfer between a data buffer (user space) and the frame
1021// buffer (kernel space). They are blocking until completion of the transfer.
1022//
1023// The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the
1024// VciMultiDma components (distributed in the clusters) to transfer data
1025// between the user buffer and the frame buffer. A  FBDMA channel is
1026// allocated to each task requesting it in the mapping_info data structure.
1027//////////////////////////////////////////////////////////////////////////////////
1028
1029//////////////////////////////////////////////////////////////////////////////////
1030// _fb_sync_write()
1031// Transfer data from an memory buffer to the frame_buffer device using a memcpy.
1032// - offset : offset (in bytes) in the frame buffer.
1033// - buffer : base address of the memory buffer.
1034// - length : number of bytes to be transfered.
1035//////////////////////////////////////////////////////////////////////////////////
1036unsigned int _fb_sync_write( unsigned int       offset, 
1037                             const void*        buffer, 
1038                             unsigned int       length )
1039{
1040    unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset;
1041    memcpy((void*)fb_address, (void*)buffer, length);
1042    return 0;
1043}
1044
1045//////////////////////////////////////////////////////////////////////////////////
1046// _fb_sync_read()
1047// Transfer data from the frame_buffer device to a memory buffer using a memcpy.
1048// - offset : offset (in bytes) in the frame buffer.
1049// - buffer : base address of the memory buffer.
1050// - length : number of bytes to be transfered.
1051//////////////////////////////////////////////////////////////////////////////////
1052unsigned int _fb_sync_read( unsigned int        offset, 
1053                            const void*         buffer, 
1054                            unsigned int        length )
1055{
1056    unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset;
1057    memcpy((void*)buffer, (void*)fb_address, length);
1058    return 0;
1059}
1060
1061//////////////////////////////////////////////////////////////////////////////////
[169]1062// _fb_write()
1063// Transfer data from a memory buffer to the frame_buffer device using  DMA.
1064// - offset : offset (in bytes) in the frame buffer.
1065// - buffer : base address of the memory buffer.
1066// - length : number of bytes to be transfered.
1067// Returns 0 if success, > 0 if error.
1068//////////////////////////////////////////////////////////////////////////////////
1069unsigned int _fb_write( unsigned int    offset, 
[218]1070                        const    void*  buffer, 
[169]1071                        unsigned int    length )
1072{
[218]1073    return _dma_transfer( 0,                                            // frame buffer
1074                          0,                                            // write
1075                                  offset,
1076                                  (unsigned int)buffer,
1077                                  length );     
[158]1078}
1079
1080//////////////////////////////////////////////////////////////////////////////////
1081// _fb_read()
[169]1082// Transfer data from the frame_buffer device to a memory buffer using  DMA.
[158]1083// - offset : offset (in bytes) in the frame buffer.
1084// - buffer : base address of the memory buffer.
1085// - length : number of bytes to be transfered.
1086// Returns 0 if success, > 0 if error.
1087//////////////////////////////////////////////////////////////////////////////////
1088unsigned int _fb_read( unsigned int     offset, 
[169]1089                       const void*              buffer, 
[158]1090                       unsigned int     length )
1091{
[218]1092    return _dma_transfer( 0,                                            // frame buffer
1093                          1,                                            // read
1094                                  offset,
1095                                  (unsigned int)buffer,
1096                                  length );     
[158]1097}
1098
1099//////////////////////////////////////////////////////////////////////////////////
1100// _fb_completed()
1101// This function checks completion of a DMA transfer to or fom the frame buffer.
[169]1102// As it is a blocking call, the processor is busy waiting.
1103// Returns 0 if success, > 0 if error
1104// (1 == read error / 2 == DMA idle error / 3 == write error)
[158]1105//////////////////////////////////////////////////////////////////////////////////
1106unsigned int _fb_completed()
1107{
[218]1108    return _dma_completed();
1109}
[158]1110
[218]1111//////////////////////////////////////////////////////////////////////////////////
1112//      VciMultiNic driver
1113//////////////////////////////////////////////////////////////////////////////////
1114// The VciMultiNic device can be accessed directly by software with memcpy(),
1115// or it can be accessed through a multi-channels DMA component:
1116// 
1117// The '_nic_sync_write' and '_nic_sync_read' functions use a memcpy strategy to
1118// implement the transfer between a data buffer (user space) and the NIC
1119// buffer (kernel space). They are blocking until completion of the transfer.
1120//
1121// The '_nic_write()', '_nic_read()' and '_nic_completed()' functions use the
1122// VciMultiDma components (distributed in the clusters) to transfer data
1123// between the user buffer and the NIC. A  NIDMA channel is allocated to each
1124// task requesting it in the mapping_info data structure.
1125//////////////////////////////////////////////////////////////////////////////////
[204]1126
[218]1127//////////////////////////////////////////////////////////////////////////////////
1128// _nic_sync_write()
1129// Transfer data from an memory buffer to the NIC device using a memcpy.
1130// - offset : offset (in bytes) in the frame buffer.
1131// - buffer : base address of the memory buffer.
1132// - length : number of bytes to be transfered.
1133//////////////////////////////////////////////////////////////////////////////////
1134unsigned int _nic_sync_write( unsigned int      offset, 
1135                              const void*       buffer, 
1136                              unsigned int      length )
1137{
1138    unsigned char *nic_address = (unsigned char*)&seg_nic_base + offset;
1139    memcpy((void*)nic_address, (void*)buffer, length);
1140    return 0;
1141}
[158]1142
[218]1143//////////////////////////////////////////////////////////////////////////////////
1144// _nic_sync_read()
1145// Transfer data from the NIC device to a memory buffer using a memcpy.
1146// - offset : offset (in bytes) in the frame buffer.
1147// - buffer : base address of the memory buffer.
1148// - length : number of bytes to be transfered.
1149//////////////////////////////////////////////////////////////////////////////////
1150unsigned int _nic_sync_read( unsigned int       offset, 
1151                             const void*        buffer, 
1152                             unsigned int       length )
1153{
1154    unsigned char *nic_address = (unsigned char*)&seg_nic_base + offset;
1155    memcpy((void*)buffer, (void*)nic_address, length);
1156    return 0;
1157}
[158]1158
[218]1159//////////////////////////////////////////////////////////////////////////////////
1160// _nic_write()
1161// Transfer data from a memory buffer to the NIC device using  DMA.
1162// - offset : offset (in bytes) in the frame buffer.
1163// - buffer : base address of the memory buffer.
1164// - length : number of bytes to be transfered.
1165// Returns 0 if success, > 0 if error.
1166//////////////////////////////////////////////////////////////////////////////////
1167unsigned int _nic_write( unsigned int   offset, 
1168                         const void*    buffer, 
1169                         unsigned int   length )
1170{
1171    return _dma_transfer( 1,            // NIC
1172                          0,                    // write
1173                                      offset,
1174                                      (unsigned int)buffer,
1175                                      length ); 
1176}
[169]1177
[218]1178//////////////////////////////////////////////////////////////////////////////////
1179// _nic_read()
1180// Transfer data from the NIC device to a memory buffer using  DMA.
1181// - offset : offset (in bytes) in the frame buffer.
1182// - buffer : base address of the memory buffer.
1183// - length : number of bytes to be transfered.
1184// Returns 0 if success, > 0 if error.
1185//////////////////////////////////////////////////////////////////////////////////
1186unsigned int _nic_read( unsigned int    offset, 
1187                        const void*             buffer, 
1188                        unsigned int    length )
1189{
1190    return _dma_transfer( 1,            // NIC
1191                          1,                    // read
1192                          offset,
1193                                      (unsigned int)buffer,
1194                                      length ); 
1195}
[189]1196
[218]1197//////////////////////////////////////////////////////////////////////////////////
1198// _nic_completed()
1199// This function checks completion of a DMA transfer to or fom a NIC channel.
1200// As it is a blocking call, the processor is busy waiting.
1201// Returns 0 if success, > 0 if error
1202// (1 == read error / 2 == DMA idle error / 3 == write error)
1203//////////////////////////////////////////////////////////////////////////////////
1204unsigned int _nic_completed()
1205{
1206    return _dma_completed();
[158]1207}
1208
Note: See TracBrowser for help on using the repository browser.