[158] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // File : drivers.c |
---|
| 3 | // Date : 01/04/2012 |
---|
| 4 | // Author : alain greiner |
---|
| 5 | // Copyright (c) UPMC-LIP6 |
---|
| 6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 7 | // The drivers.c and drivers.h files are part ot the GIET-VM nano kernel. |
---|
[158] | 8 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
| 9 | // - vci_multi_tty |
---|
| 10 | // - vci_multi_timer |
---|
| 11 | // - vci_multi_dma |
---|
| 12 | // - vci_multi_icu |
---|
[203] | 13 | // - vci_xicu & vci_multi_icu |
---|
[158] | 14 | // - vci_gcd |
---|
| 15 | // - vci_frame_buffer |
---|
| 16 | // - vci_block_device |
---|
| 17 | // |
---|
| 18 | // The following global parameters must be defined in the giet_config.h file: |
---|
[204] | 19 | // - CLUSTER_SIZE |
---|
[189] | 20 | // - NB_CLUSTERS |
---|
| 21 | // - NB_PROCS_MAX |
---|
| 22 | // - NB_TIMERS_MAX |
---|
| 23 | // - NB_DMAS_MAX |
---|
| 24 | // - NB_TTYS |
---|
[158] | 25 | // |
---|
[218] | 26 | // The following virtual base addresses must be defined in the giet_vsegs.ld file: |
---|
[158] | 27 | // - seg_icu_base |
---|
[203] | 28 | // - seg_tim_base |
---|
[158] | 29 | // - seg_tty_base |
---|
| 30 | // - seg_gcd_base |
---|
| 31 | // - seg_dma_base |
---|
[203] | 32 | // - seg_fbf_base |
---|
[158] | 33 | // - seg_ioc_base |
---|
[218] | 34 | // - seg_nic_base |
---|
[204] | 35 | // As some peripherals can be replicated in the clusters (ICU, TIMER, DMA) |
---|
| 36 | // These addresses must be completed by an offset depending on the cluster index |
---|
| 37 | // full_base_address = seg_***_base + cluster_id * CLUSTER_SIZE |
---|
[158] | 38 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 39 | |
---|
[166] | 40 | #include <vm_handler.h> |
---|
[158] | 41 | #include <sys_handler.h> |
---|
| 42 | #include <giet_config.h> |
---|
| 43 | #include <drivers.h> |
---|
| 44 | #include <common.h> |
---|
| 45 | #include <hwr_mapping.h> |
---|
| 46 | #include <mips32_registers.h> |
---|
| 47 | #include <ctx_handler.h> |
---|
| 48 | |
---|
| 49 | #if !defined(NB_CLUSTERS) |
---|
[215] | 50 | # error: You must define NB_CLUSTERS in the configs file |
---|
[158] | 51 | #endif |
---|
[189] | 52 | |
---|
| 53 | #if !defined(NB_PROCS_MAX) |
---|
[215] | 54 | # error: You must define NB_PROCS_MAX in the configs file |
---|
[189] | 55 | #endif |
---|
| 56 | |
---|
| 57 | #if (NB_PROCS_MAX > 8) |
---|
| 58 | # error: NB_PROCS_MAX cannot be larger than 8! |
---|
| 59 | #endif |
---|
| 60 | |
---|
[204] | 61 | #if !defined(CLUSTER_SIZE) |
---|
[215] | 62 | # error: You must define CLUSTER_SIZE in the configs file |
---|
[158] | 63 | #endif |
---|
[189] | 64 | |
---|
[158] | 65 | #if !defined(NB_TTYS) |
---|
[215] | 66 | # error: You must define NB_TTYS in the configs file |
---|
[158] | 67 | #endif |
---|
| 68 | |
---|
[165] | 69 | #if (NB_TTYS < 1) |
---|
| 70 | # error: NB_TTYS cannot be smaller than 1! |
---|
| 71 | #endif |
---|
| 72 | |
---|
[189] | 73 | #if !defined(NB_DMAS_MAX) |
---|
[205] | 74 | #define NB_DMAS_MAX 0 |
---|
[165] | 75 | #endif |
---|
| 76 | |
---|
[189] | 77 | #if !defined(NB_TIMERS_MAX) |
---|
[205] | 78 | #define NB_TIMERS_MAX 0 |
---|
[165] | 79 | #endif |
---|
| 80 | |
---|
[216] | 81 | #if ( (NB_TIMERS_MAX) > 32 ) |
---|
[189] | 82 | # error: NB_TIMERS_MAX + NB_PROCS_MAX cannot be larger than 32 |
---|
| 83 | #endif |
---|
[165] | 84 | |
---|
[189] | 85 | #if !defined(NB_IOCS) |
---|
[215] | 86 | # error: You must define NB_IOCS in the configs file |
---|
[189] | 87 | #endif |
---|
[158] | 88 | |
---|
[189] | 89 | #if ( NB_IOCS > 1 ) |
---|
| 90 | # error: NB_IOCS cannot be larger than 1 |
---|
| 91 | #endif |
---|
[158] | 92 | |
---|
[215] | 93 | #if !defined( USE_XICU ) |
---|
| 94 | # error: You must define USE_XICU in the configs file |
---|
| 95 | #endif |
---|
[158] | 96 | |
---|
[215] | 97 | #if !defined( IOMMU_ACTIVE ) |
---|
| 98 | # error: You must define IOMMU_ACTIVE in the configs file |
---|
| 99 | #endif |
---|
| 100 | |
---|
| 101 | |
---|
[189] | 102 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
[169] | 103 | |
---|
[158] | 104 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 105 | // Timers driver |
---|
[158] | 106 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 107 | // The timers can be implemented in a vci_timer component or in a vci_xicu |
---|
[215] | 108 | // component (depending on the USE_XICU parameter). |
---|
[203] | 109 | // There is one timer (or xicu) component per cluster. |
---|
[189] | 110 | // There is two types of timers: |
---|
| 111 | // - "system" timers : one per processor, used for context switch. |
---|
| 112 | // local_id in [0, NB_PROCS_MAX-1], |
---|
| 113 | // - "user" timers : requested by the task in the mapping_info data structure. |
---|
[203] | 114 | // For each user timer, the timer_id is stored in the context of the task. |
---|
| 115 | // The global index is cluster_id * (NB_PROCS_MAX+NB_TIMERS_MAX) + local_id |
---|
[158] | 116 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 117 | |
---|
[189] | 118 | // User Timer signaling variables |
---|
| 119 | |
---|
| 120 | #if (NB_TIMERS_MAX > 0) |
---|
| 121 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS*NB_TIMERS_MAX] |
---|
| 122 | = { [0 ... ((NB_CLUSTERS*NB_TIMERS_MAX)-1)] = 0 }; |
---|
| 123 | #endif |
---|
| 124 | |
---|
[158] | 125 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 126 | // _timer_start() |
---|
| 127 | // This function activates a timer in the vci_timer (or vci_xicu) component |
---|
| 128 | // by writing in the proper register the period value. |
---|
| 129 | // It can be used by both the kernel to initialise a "system" timer, |
---|
[189] | 130 | // or by a task (through a system call) to configure an "user" timer. |
---|
[158] | 131 | // Returns 0 if success, > 0 if error. |
---|
| 132 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 133 | unsigned int _timer_start( unsigned int cluster_id, |
---|
| 134 | unsigned int local_id, |
---|
| 135 | unsigned int period ) |
---|
[158] | 136 | { |
---|
[165] | 137 | // parameters checking |
---|
[216] | 138 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 139 | if ( local_id >= NB_TIMERS_MAX) return 2; |
---|
[158] | 140 | |
---|
[215] | 141 | #if USE_XICU |
---|
[204] | 142 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
| 143 | (cluster_id * CLUSTER_SIZE) ); |
---|
[158] | 144 | |
---|
[203] | 145 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period; |
---|
[189] | 146 | #else |
---|
[204] | 147 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
| 148 | (cluster_id * CLUSTER_SIZE) ); |
---|
[189] | 149 | |
---|
[203] | 150 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period; |
---|
| 151 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0x3; |
---|
[189] | 152 | #endif |
---|
| 153 | |
---|
[158] | 154 | return 0; |
---|
| 155 | } |
---|
[189] | 156 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 157 | // _timer_stop() |
---|
| 158 | // This function desactivates a timer in the vci_timer (or vci_xicu) component |
---|
| 159 | // by writing in the proper register. |
---|
[189] | 160 | // Returns 0 if success, > 0 if error. |
---|
| 161 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 162 | unsigned int _timer_stop( unsigned int cluster_id, |
---|
| 163 | unsigned int local_id ) |
---|
[189] | 164 | { |
---|
[203] | 165 | // parameters checking |
---|
[216] | 166 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 167 | if ( local_id >= NB_TIMERS_MAX ) return 2; |
---|
[158] | 168 | |
---|
[215] | 169 | #if USE_XICU |
---|
[204] | 170 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
| 171 | (cluster_id * CLUSTER_SIZE) ); |
---|
[203] | 172 | |
---|
| 173 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
| 174 | #else |
---|
[204] | 175 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
| 176 | (cluster_id * CLUSTER_SIZE) ); |
---|
[203] | 177 | |
---|
| 178 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0; |
---|
| 179 | #endif |
---|
| 180 | |
---|
| 181 | return 0; |
---|
[189] | 182 | } |
---|
[158] | 183 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 184 | // _timer_reset_irq() |
---|
| 185 | // This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu) |
---|
[204] | 186 | // component by reading/writing in the proper register. |
---|
[203] | 187 | // It can be used by both the isr_switch() for a "system" timer, |
---|
| 188 | // or by the _isr_timer() for an "user" timer. |
---|
[158] | 189 | // Returns 0 if success, > 0 if error. |
---|
| 190 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 191 | unsigned int _timer_reset_irq( unsigned int cluster_id, |
---|
| 192 | unsigned int local_id ) |
---|
[158] | 193 | { |
---|
[203] | 194 | // parameters checking |
---|
[216] | 195 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 196 | if ( local_id >= NB_TIMERS_MAX ) return 2; |
---|
[158] | 197 | |
---|
[215] | 198 | #if USE_XICU |
---|
[204] | 199 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
| 200 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[203] | 201 | |
---|
| 202 | unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)]; |
---|
[204] | 203 | bloup++; // to avoid a warning |
---|
[203] | 204 | #else |
---|
[204] | 205 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
| 206 | (cluster_id * CLUSTER_SIZE) ); |
---|
[203] | 207 | |
---|
| 208 | timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0; |
---|
| 209 | #endif |
---|
| 210 | |
---|
| 211 | return 0; |
---|
[158] | 212 | } |
---|
| 213 | |
---|
| 214 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 215 | // VciMultiTty driver |
---|
| 216 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 217 | // There is only one multi_tty controler in the architecture. |
---|
[158] | 218 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
---|
[189] | 219 | // The "system" terminal is TTY[0]. |
---|
| 220 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
---|
| 221 | // as defined in the mapping_info data structure. The corresponding tty_id must |
---|
| 222 | // be stored in the context of the task by the boot code. |
---|
| 223 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
---|
| 224 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 225 | |
---|
[189] | 226 | // TTY variables |
---|
| 227 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
---|
| 228 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS-1] = 0 }; |
---|
| 229 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
---|
| 230 | |
---|
| 231 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 232 | // _tty_error() |
---|
| 233 | //////////////////////////////////////////////////////////////////////////////// |
---|
[199] | 234 | void _tty_error( unsigned int task_id ) |
---|
[189] | 235 | { |
---|
| 236 | unsigned int proc_id = _procid(); |
---|
| 237 | |
---|
| 238 | _get_lock(&_tty_put_lock); |
---|
| 239 | _puts("\n[GIET ERROR] TTY index too large for task "); |
---|
[207] | 240 | _putd( task_id ); |
---|
[189] | 241 | _puts(" on processor "); |
---|
[207] | 242 | _putd( proc_id ); |
---|
[189] | 243 | _puts("\n"); |
---|
| 244 | _release_lock(&_tty_put_lock); |
---|
| 245 | } |
---|
| 246 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 247 | // _tty_write() |
---|
[158] | 248 | // Write one or several characters directly from a fixed-length user buffer to |
---|
| 249 | // the TTY_WRITE register of the TTY controler. |
---|
| 250 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
| 251 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
| 252 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
| 253 | // The function returns the number of characters that have been written. |
---|
[189] | 254 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 255 | unsigned int _tty_write( const char *buffer, |
---|
| 256 | unsigned int length) |
---|
[158] | 257 | { |
---|
[189] | 258 | unsigned int nwritten; |
---|
[158] | 259 | |
---|
[199] | 260 | unsigned int task_id = _get_current_task_id(); |
---|
| 261 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
| 262 | |
---|
[189] | 263 | if ( tty_id >= NB_TTYS ) |
---|
| 264 | { |
---|
[199] | 265 | _tty_error( task_id ); |
---|
[189] | 266 | return 0; |
---|
| 267 | } |
---|
[158] | 268 | |
---|
[215] | 269 | unsigned int* tty_address = (unsigned int*) &seg_tty_base; |
---|
[158] | 270 | |
---|
| 271 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
| 272 | { |
---|
[165] | 273 | // check tty's status |
---|
[204] | 274 | if ((tty_address[tty_id*TTY_SPAN + TTY_STATUS] & 0x2) == 0x2) |
---|
[158] | 275 | break; |
---|
| 276 | else |
---|
[165] | 277 | // write character |
---|
[204] | 278 | tty_address[tty_id*TTY_SPAN + TTY_WRITE] = (unsigned int)buffer[nwritten]; |
---|
[158] | 279 | } |
---|
| 280 | return nwritten; |
---|
| 281 | } |
---|
| 282 | ////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 283 | // _tty_read() |
---|
[158] | 284 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
[165] | 285 | // the associated kernel buffer, that has been written by the ISR. |
---|
[204] | 286 | // It get the TTY terminal index from the context of the current task. |
---|
[158] | 287 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
| 288 | // buffer, writes this character to the user buffer, and resets the |
---|
| 289 | // _tty_get_full[tty_id] buffer. |
---|
[204] | 290 | // The length argument is not used. |
---|
[158] | 291 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
| 292 | ////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 293 | unsigned int _tty_read( char *buffer, |
---|
| 294 | unsigned int length) |
---|
[158] | 295 | { |
---|
[199] | 296 | unsigned int task_id = _get_current_task_id(); |
---|
| 297 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
[158] | 298 | |
---|
[189] | 299 | if ( tty_id >= NB_TTYS ) |
---|
| 300 | { |
---|
[199] | 301 | _tty_error( task_id ); |
---|
[189] | 302 | return 0; |
---|
| 303 | } |
---|
[158] | 304 | |
---|
| 305 | if (_tty_get_full[tty_id] == 0) |
---|
| 306 | { |
---|
[189] | 307 | return 0; |
---|
[158] | 308 | } |
---|
| 309 | else |
---|
| 310 | { |
---|
| 311 | *buffer = _tty_get_buf[tty_id]; |
---|
| 312 | _tty_get_full[tty_id] = 0; |
---|
[189] | 313 | return 1; |
---|
[158] | 314 | } |
---|
[189] | 315 | } |
---|
[158] | 316 | //////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 317 | // _tty_get_char() |
---|
| 318 | // This function is used by the _isr_tty to read a character in the TTY |
---|
| 319 | // terminal defined by the tty_id argument. The character is stored |
---|
| 320 | // in requested buffer, and the IRQ is acknowledged. |
---|
| 321 | // Returns 0 if success, 1 if tty_id too large. |
---|
[158] | 322 | //////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 323 | unsigned int _tty_get_char( unsigned int tty_id, |
---|
[207] | 324 | unsigned char* buffer ) |
---|
[158] | 325 | { |
---|
[204] | 326 | // checking argument |
---|
| 327 | if ( tty_id >= NB_TTYS ) return 1; |
---|
[199] | 328 | |
---|
[204] | 329 | // compute terminal base address |
---|
[215] | 330 | unsigned int *tty_address = (unsigned int*) &seg_tty_base; |
---|
[158] | 331 | |
---|
[204] | 332 | *buffer = (unsigned char)tty_address[tty_id*TTY_SPAN + TTY_READ]; |
---|
| 333 | return 0; |
---|
[158] | 334 | } |
---|
| 335 | |
---|
| 336 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 337 | // VciMultiIcu and VciXicu drivers |
---|
[158] | 338 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 339 | // There is one vci_multi_icu (or vci_xicu) component per cluster, |
---|
| 340 | // and the number of independant ICUs is equal to NB_PROCS_MAX, |
---|
| 341 | // because there is one private interrupr controler per processor. |
---|
[158] | 342 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 343 | |
---|
| 344 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 345 | // _icu_set_mask() |
---|
| 346 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
| 347 | // It set the mask register for the ICU channel identified by the cluster index |
---|
| 348 | // and the processor index: all '1' bits are set / all '0' bits are not modified. |
---|
[158] | 349 | // Returns 0 if success, > 0 if error. |
---|
| 350 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 351 | unsigned int _icu_set_mask( unsigned int cluster_id, |
---|
| 352 | unsigned int proc_id, |
---|
| 353 | unsigned int value, |
---|
| 354 | unsigned int is_timer ) |
---|
[158] | 355 | { |
---|
[203] | 356 | // parameters checking |
---|
| 357 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 358 | if ( proc_id >= NB_PROCS_MAX ) return 1; |
---|
| 359 | |
---|
[204] | 360 | unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + |
---|
| 361 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[215] | 362 | #if USE_XICU |
---|
[203] | 363 | if ( is_timer ) icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value; |
---|
| 364 | else icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value; |
---|
[189] | 365 | #else |
---|
[203] | 366 | icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; |
---|
| 367 | #endif |
---|
[189] | 368 | |
---|
[158] | 369 | return 0; |
---|
| 370 | } |
---|
| 371 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 372 | // _icu_get_index() |
---|
| 373 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
| 374 | // It returns the index of the highest priority (smaller index) active HWI. |
---|
| 375 | // The ICU channel is identified by the cluster index and the processor index. |
---|
[158] | 376 | // Returns 0 if success, > 0 if error. |
---|
| 377 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 378 | unsigned int _icu_get_index( unsigned int cluster_id, |
---|
| 379 | unsigned int proc_id, |
---|
| 380 | unsigned int* buffer ) |
---|
[158] | 381 | { |
---|
[203] | 382 | // parameters checking |
---|
| 383 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
| 384 | if ( proc_id >= NB_PROCS_MAX ) return 1; |
---|
| 385 | |
---|
[204] | 386 | unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + |
---|
| 387 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[215] | 388 | #if USE_XICU |
---|
[203] | 389 | unsigned int prio = icu_address[XICU_REG(XICU_PRIO, proc_id)]; |
---|
| 390 | unsigned int pti_ok = (prio & 0x00000001); |
---|
| 391 | unsigned int hwi_ok = (prio & 0x00000002); |
---|
| 392 | unsigned int swi_ok = (prio & 0x00000004); |
---|
| 393 | unsigned int pti_id = (prio & 0x00001F00) >> 8; |
---|
| 394 | unsigned int hwi_id = (prio & 0x001F0000) >> 16; |
---|
| 395 | unsigned int swi_id = (prio & 0x1F000000) >> 24; |
---|
| 396 | if (pti_ok) *buffer = pti_id; |
---|
| 397 | else if (hwi_ok) *buffer = hwi_id; |
---|
| 398 | else if (swi_ok) *buffer = swi_id; |
---|
| 399 | else *buffer = 32; |
---|
[189] | 400 | #else |
---|
[203] | 401 | *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; |
---|
| 402 | #endif |
---|
[189] | 403 | |
---|
[158] | 404 | return 0; |
---|
| 405 | } |
---|
| 406 | |
---|
| 407 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 408 | // VciGcd driver |
---|
| 409 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 410 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
[165] | 411 | // performing the computation of the GCD of two 32 bits integers. |
---|
[158] | 412 | // It has no DMA capability. |
---|
| 413 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 414 | |
---|
| 415 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 416 | // _gcd_write() |
---|
[158] | 417 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 418 | // Returns 0 if success, > 0 if error. |
---|
| 419 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 420 | unsigned int _gcd_write( unsigned int register_index, |
---|
| 421 | unsigned int value) |
---|
[158] | 422 | { |
---|
[165] | 423 | // parameters checking |
---|
[158] | 424 | if (register_index >= GCD_END) |
---|
| 425 | return 1; |
---|
| 426 | |
---|
[215] | 427 | unsigned int* gcd_address = (unsigned int*) &seg_gcd_base; |
---|
[165] | 428 | |
---|
| 429 | gcd_address[register_index] = value; // write word |
---|
[158] | 430 | return 0; |
---|
| 431 | } |
---|
| 432 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 433 | // _gcd_read() |
---|
[158] | 434 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 435 | // Returns 0 if success, > 0 if error. |
---|
| 436 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 437 | unsigned int _gcd_read( unsigned int register_index, |
---|
| 438 | unsigned int *buffer) |
---|
[158] | 439 | { |
---|
[165] | 440 | // parameters checking |
---|
[158] | 441 | if (register_index >= GCD_END) |
---|
| 442 | return 1; |
---|
| 443 | |
---|
[215] | 444 | unsigned int* gcd_address = (unsigned int*) &seg_gcd_base; |
---|
[165] | 445 | |
---|
| 446 | *buffer = gcd_address[register_index]; // read word |
---|
[158] | 447 | return 0; |
---|
| 448 | } |
---|
| 449 | |
---|
| 450 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 451 | // VciBlockDevice driver |
---|
| 452 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 453 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
[166] | 454 | // |
---|
| 455 | // The IOMMU can be activated or not: |
---|
| 456 | // |
---|
| 457 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
| 458 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
| 459 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
| 460 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
| 461 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
| 462 | // The number of PT2 entries is dynamically computed and stored in the |
---|
| 463 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
| 464 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
| 465 | // the transfer is completed. |
---|
| 466 | // |
---|
| 467 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
| 468 | // contiguous physical buffer (this is generally true because the user space |
---|
| 469 | // page tables are statically constructed to use contiguous physical memory). |
---|
| 470 | // |
---|
| 471 | // Finally, the memory buffer must fulfill the following conditions: |
---|
| 472 | // - The user buffer must be word aligned, |
---|
| 473 | // - The user buffer must be mapped in user address space, |
---|
| 474 | // - The user buffer must be writable in case of (to_mem) access, |
---|
| 475 | // - The total number of physical pages occupied by the user buffer cannot |
---|
| 476 | // be larger than 512 pages if the IOMMU is activated, |
---|
| 477 | // - All physical pages occupied by the user buffer must be contiguous |
---|
| 478 | // if the IOMMU is not activated. |
---|
| 479 | // An error code is returned if these conditions are not verified. |
---|
| 480 | // |
---|
[158] | 481 | // As the IOC component can be used by several programs running in parallel, |
---|
| 482 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
| 483 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
| 484 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
| 485 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
| 486 | // available. |
---|
| 487 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
| 488 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
| 489 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
| 490 | // variable. |
---|
| 491 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
[166] | 492 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
[158] | 493 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
| 494 | // variable. |
---|
| 495 | // |
---|
| 496 | // In a multi-processing environment, this polling policy should be replaced by |
---|
| 497 | // a descheduling policy for the requesting process. |
---|
| 498 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 499 | |
---|
[189] | 500 | // IOC global variables |
---|
| 501 | in_unckdata volatile unsigned int _ioc_status = 0; |
---|
| 502 | in_unckdata volatile unsigned int _ioc_done = 0; |
---|
| 503 | in_unckdata unsigned int _ioc_lock = 0; |
---|
| 504 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
| 505 | in_unckdata unsigned int _ioc_iommu_npages; |
---|
[158] | 506 | |
---|
| 507 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 508 | // _ioc_access() |
---|
[166] | 509 | // This function transfer data between a memory buffer and the block device. |
---|
| 510 | // The buffer lentgth is (count*block_size) bytes. |
---|
| 511 | // Arguments are: |
---|
| 512 | // - to_mem : from external storage to memory when non 0 |
---|
| 513 | // - lba : first block index on the external storage. |
---|
| 514 | // - user_vaddr : virtual base address of the memory buffer. |
---|
| 515 | // - count : number of blocks to be transfered. |
---|
[158] | 516 | // Returns 0 if success, > 0 if error. |
---|
| 517 | /////////////////////////////////////////////////////////////////////////////// |
---|
[166] | 518 | unsigned int _ioc_access( unsigned int to_mem, |
---|
| 519 | unsigned int lba, |
---|
| 520 | unsigned int user_vaddr, |
---|
| 521 | unsigned int count ) |
---|
[158] | 522 | { |
---|
[167] | 523 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
| 524 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
| 525 | unsigned int vpn; // current virtual page index in user space |
---|
| 526 | unsigned int ppn; // physical page number |
---|
| 527 | unsigned int flags; // page protection flags |
---|
| 528 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
| 529 | unsigned int addr; // buffer address for IOC peripheral |
---|
| 530 | unsigned int ppn_first; // first physical page number for user buffer |
---|
[166] | 531 | |
---|
| 532 | // check buffer alignment |
---|
| 533 | if ( (unsigned int)user_vaddr & 0x3 ) return 1; |
---|
[158] | 534 | |
---|
[215] | 535 | unsigned int* ioc_address = (unsigned int*) &seg_ioc_base ; |
---|
[204] | 536 | |
---|
[166] | 537 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 538 | unsigned int length = count*block_size; |
---|
[158] | 539 | |
---|
[167] | 540 | // get user space page table virtual address |
---|
[199] | 541 | unsigned int task_id = _get_current_task_id(); |
---|
| 542 | unsigned int user_pt_vbase = _get_context_slot( task_id, CTX_PTAB_ID ); |
---|
[166] | 543 | |
---|
| 544 | user_vpn_min = user_vaddr >> 12; |
---|
| 545 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 546 | ix2 = 0; |
---|
[158] | 547 | |
---|
[166] | 548 | // loop on all virtual pages covering the user buffer |
---|
| 549 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 550 | { |
---|
| 551 | // get ppn and flags for each vpn |
---|
[189] | 552 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
| 553 | vpn, |
---|
| 554 | &ppn, |
---|
| 555 | &flags ); |
---|
[158] | 556 | |
---|
[166] | 557 | // check access rights |
---|
| 558 | if ( ko ) return 2; // unmapped |
---|
| 559 | if ( (flags & PTE_U) == 0 ) return 3; // not in user space |
---|
| 560 | if ( ( (flags & PTE_W) == 0 ) && to_mem ) return 4; // not writable |
---|
[158] | 561 | |
---|
[166] | 562 | // save first ppn value |
---|
| 563 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
[158] | 564 | |
---|
[215] | 565 | if ( IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
[166] | 566 | { |
---|
| 567 | // check buffer length < 2 Mbytes |
---|
| 568 | if ( ix2 > 511 ) return 2; |
---|
[158] | 569 | |
---|
[166] | 570 | // map the physical page in IOMMU page table |
---|
| 571 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 572 | ix2, // PT2 index |
---|
| 573 | ppn, // Physical page number |
---|
| 574 | flags ); // Protection flags |
---|
| 575 | } |
---|
| 576 | else // no IOMMU : check that physical pages are contiguous |
---|
| 577 | { |
---|
| 578 | if ( (ppn - ppn_first) != ix2 ) return 5; // split physical buffer |
---|
| 579 | } |
---|
| 580 | |
---|
| 581 | // increment page index |
---|
| 582 | ix2++; |
---|
| 583 | } // end for vpn |
---|
[158] | 584 | |
---|
[166] | 585 | // register the number of pages to be unmapped |
---|
| 586 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
[158] | 587 | |
---|
[166] | 588 | // invalidate data cache in case of memory write |
---|
| 589 | if ( to_mem ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
[158] | 590 | |
---|
[166] | 591 | // compute buffer base address for IOC depending on IOMMU activation |
---|
[215] | 592 | if ( IOMMU_ACTIVE ) addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
[167] | 593 | else addr = (ppn_first << 12) | (user_vaddr & 0xFFF); |
---|
[166] | 594 | |
---|
| 595 | // get the lock on ioc device |
---|
[189] | 596 | _get_lock( &_ioc_lock ); |
---|
[158] | 597 | |
---|
[166] | 598 | // peripheral configuration |
---|
| 599 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
---|
| 600 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 601 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 602 | if ( to_mem == 0 ) ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
| 603 | else ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
[158] | 604 | |
---|
| 605 | return 0; |
---|
| 606 | } |
---|
| 607 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 608 | // _ioc_completed() |
---|
| 609 | // |
---|
| 610 | // This function checks completion of an I/O transfer and reports errors. |
---|
[166] | 611 | // As it is a blocking call, the processor is stalled. |
---|
| 612 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
| 613 | // space are unmapped, and the IOB TLB is cleared. |
---|
[158] | 614 | // Returns 0 if success, > 0 if error. |
---|
| 615 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 616 | unsigned int _ioc_completed() |
---|
| 617 | { |
---|
[166] | 618 | unsigned int ret; |
---|
| 619 | unsigned int ix2; |
---|
[158] | 620 | |
---|
[166] | 621 | // busy waiting |
---|
[158] | 622 | while (_ioc_done == 0) |
---|
| 623 | asm volatile("nop"); |
---|
| 624 | |
---|
[166] | 625 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
[215] | 626 | if ( IOMMU_ACTIVE ) |
---|
[166] | 627 | { |
---|
[215] | 628 | unsigned int* iob_address = (unsigned int*) &seg_iob_base; |
---|
[166] | 629 | |
---|
| 630 | for ( ix2 = 0 ; ix2 < _ioc_iommu_npages ; ix2++ ) |
---|
| 631 | { |
---|
| 632 | // unmap the page in IOMMU page table |
---|
| 633 | _iommu_inval_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 634 | ix2 ); // PT2 index |
---|
| 635 | |
---|
| 636 | // clear IOMMU TLB |
---|
[169] | 637 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
---|
[166] | 638 | } |
---|
| 639 | } |
---|
| 640 | |
---|
| 641 | // test IOC status |
---|
[158] | 642 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
[166] | 643 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
| 644 | else ret = 0; // success |
---|
[158] | 645 | |
---|
[166] | 646 | // reset synchronization variables |
---|
[158] | 647 | _ioc_lock =0; |
---|
| 648 | _ioc_done =0; |
---|
| 649 | |
---|
| 650 | return ret; |
---|
| 651 | } |
---|
[166] | 652 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 653 | // _ioc_read() |
---|
[166] | 654 | // Transfer data from the block device to a memory buffer in user space. |
---|
| 655 | // - lba : first block index on the block device |
---|
| 656 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 657 | // - count : number of blocks to be transfered. |
---|
| 658 | // Returns 0 if success, > 0 if error. |
---|
| 659 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 660 | unsigned int _ioc_read( unsigned int lba, |
---|
| 661 | void* buffer, |
---|
| 662 | unsigned int count ) |
---|
| 663 | { |
---|
[189] | 664 | return _ioc_access( 1, // read access |
---|
[166] | 665 | lba, |
---|
| 666 | (unsigned int)buffer, |
---|
| 667 | count ); |
---|
| 668 | } |
---|
| 669 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 670 | // _ioc_write() |
---|
[166] | 671 | // Transfer data from a memory buffer in user space to the block device. |
---|
| 672 | // - lba : first block index on the block device |
---|
| 673 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 674 | // - count : number of blocks to be transfered. |
---|
| 675 | // Returns 0 if success, > 0 if error. |
---|
| 676 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 677 | unsigned int _ioc_write( unsigned int lba, |
---|
| 678 | const void* buffer, |
---|
| 679 | unsigned int count ) |
---|
| 680 | { |
---|
[189] | 681 | return _ioc_access( 0, // write access |
---|
[166] | 682 | lba, |
---|
| 683 | (unsigned int)buffer, |
---|
| 684 | count ); |
---|
| 685 | } |
---|
[204] | 686 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 687 | // _ioc_get_status() |
---|
| 688 | // This function returns the transfert status, and acknowledge the IRQ. |
---|
| 689 | // Returns 0 if success, > 0 if error. |
---|
| 690 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 691 | unsigned int _ioc_get_status(unsigned int* status) |
---|
| 692 | { |
---|
| 693 | // get IOC base address |
---|
[215] | 694 | unsigned int* ioc_address = (unsigned int*) &seg_ioc_base; |
---|
[166] | 695 | |
---|
[204] | 696 | *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ |
---|
| 697 | return 0; |
---|
| 698 | } |
---|
| 699 | |
---|
[158] | 700 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 701 | // VciMultiDma driver |
---|
| 702 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 703 | // The DMA controllers are physically distributed in the clusters. |
---|
| 704 | // There is (NB_CLUSTERS * NB_DMAS_MAX) channels, indexed by a global index: |
---|
| 705 | // dma_id = cluster_id * NB_DMA_MAX + loc_id |
---|
| 706 | // |
---|
| 707 | // As a DMA channel can be used by several tasks, each DMA channel is protected |
---|
| 708 | // by a specific lock: _dma_lock[dma_id] |
---|
| 709 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
---|
| 710 | // synchronisation variables (set by the ISR, and reset by the OS). |
---|
| 711 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
---|
| 712 | // |
---|
| 713 | // These DMA channels can be used by the FB driver, or by the NIC driver. |
---|
| 714 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 715 | |
---|
[213] | 716 | #if NB_DMAS_MAX > 0 |
---|
| 717 | in_unckdata unsigned int _dma_lock[NB_DMAS_MAX * NB_CLUSTERS] |
---|
[218] | 718 | = { [0 ... (NB_DMAS_MAX * NB_CLUSTERS)-1] = 0 }; |
---|
[189] | 719 | |
---|
[213] | 720 | in_unckdata volatile unsigned int _dma_done[NB_DMAS_MAX * NB_CLUSTERS] |
---|
| 721 | = { [0 ... (NB_DMAS_MAX * NB_CLUSTERS)-1] = 0 }; |
---|
[189] | 722 | |
---|
[213] | 723 | in_unckdata volatile unsigned int _dma_status[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
[189] | 724 | |
---|
| 725 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
---|
| 726 | |
---|
[213] | 727 | in_unckdata unsigned int _dma_iommu_npages[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
| 728 | #endif |
---|
[189] | 729 | |
---|
| 730 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 731 | // _dma_reset_irq() |
---|
| 732 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 733 | unsigned int _dma_reset_irq( unsigned int cluster_id, |
---|
[207] | 734 | unsigned int channel_id ) |
---|
[204] | 735 | { |
---|
[213] | 736 | #if NB_DMAS_MAX > 0 |
---|
[204] | 737 | // parameters checking |
---|
| 738 | if ( cluster_id >= NB_CLUSTERS ) return 1; |
---|
[207] | 739 | if ( channel_id >= NB_DMAS_MAX ) return 1; |
---|
[204] | 740 | |
---|
| 741 | // compute DMA base address |
---|
| 742 | unsigned int* dma_address = (unsigned int*)( (char*)&seg_dma_base + |
---|
| 743 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
| 744 | |
---|
[207] | 745 | dma_address[channel_id*DMA_SPAN + DMA_RESET] = 0; |
---|
[204] | 746 | return 0; |
---|
[213] | 747 | #else |
---|
| 748 | return -1; |
---|
| 749 | #endif |
---|
[204] | 750 | } |
---|
[218] | 751 | |
---|
[204] | 752 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 753 | // _dma_get_status() |
---|
| 754 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 755 | unsigned int _dma_get_status( unsigned int cluster_id, |
---|
[207] | 756 | unsigned int channel_id, |
---|
[204] | 757 | unsigned int* status ) |
---|
| 758 | { |
---|
[213] | 759 | #if NB_DMAS_MAX > 0 |
---|
[204] | 760 | // parameters checking |
---|
| 761 | if ( cluster_id >= NB_CLUSTERS ) return 1; |
---|
[207] | 762 | if ( channel_id >= NB_DMAS_MAX ) return 1; |
---|
[204] | 763 | |
---|
| 764 | // compute DMA base address |
---|
| 765 | unsigned int* dma_address = (unsigned int*)( (char*)&seg_dma_base + |
---|
| 766 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
[207] | 767 | |
---|
| 768 | *status = dma_address[channel_id*DMA_SPAN + DMA_LEN]; |
---|
[204] | 769 | return 0; |
---|
[213] | 770 | #else |
---|
| 771 | return -1; |
---|
| 772 | #endif |
---|
[204] | 773 | } |
---|
| 774 | |
---|
| 775 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[218] | 776 | // _dma_transfer() |
---|
| 777 | // Transfer data between a user buffer and a device buffer using DMA. |
---|
| 778 | // Two devices types are supported: Frame Buffer if dev_type == 0 |
---|
| 779 | // Multi-Nic if dev_type != 0 |
---|
| 780 | // Arguments are: |
---|
| 781 | // - dev_type : device type. |
---|
| 782 | // - to_user : from device buffer to user buffer when true. |
---|
| 783 | // - offset : offset (in bytes) in the device buffer. |
---|
| 784 | // - user_vaddr : virtual base address of the user buffer. |
---|
| 785 | // - length : number of bytes to be transfered. |
---|
| 786 | // |
---|
| 787 | // The DMA channel is obtained from task context (CTX_FBDMA_ID / CTX_NIDMA_ID. |
---|
[207] | 788 | // The user buffer must be mapped in user address space and word-aligned. |
---|
[169] | 789 | // The user buffer length must be multiple of 4 bytes. |
---|
[218] | 790 | // Me must compute the physical base addresses for both the device buffer |
---|
[189] | 791 | // and the user buffer before programming the DMA transfer. |
---|
[207] | 792 | // The GIET being fully static, we don't need to split the transfer in 4 Kbytes |
---|
[189] | 793 | // pages, because the user buffer is contiguous in physical space. |
---|
[158] | 794 | // Returns 0 if success, > 0 if error. |
---|
| 795 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[218] | 796 | unsigned int _dma_transfer( unsigned int dev_type, |
---|
| 797 | unsigned int to_user, |
---|
[189] | 798 | unsigned int offset, |
---|
| 799 | unsigned int user_vaddr, |
---|
| 800 | unsigned int length ) |
---|
[158] | 801 | { |
---|
[213] | 802 | #if NB_DMAS_MAX > 0 |
---|
[218] | 803 | unsigned int ko; // unsuccessfull V2P translation |
---|
| 804 | unsigned int flags; // protection flags |
---|
| 805 | unsigned int ppn; // physical page number |
---|
| 806 | unsigned int user_pbase; // user buffer pbase address |
---|
| 807 | unsigned int device_pbase; // frame buffer pbase address |
---|
| 808 | unsigned int device_vaddr; // device buffer vbase address |
---|
[158] | 809 | |
---|
[189] | 810 | // check user buffer address and length alignment |
---|
| 811 | if ( (user_vaddr & 0x3) || (length & 0x3) ) |
---|
| 812 | { |
---|
[203] | 813 | _get_lock(&_tty_put_lock); |
---|
[218] | 814 | _puts("\n[GIET ERROR] in _dma_transfer : user buffer not word aligned\n"); |
---|
[203] | 815 | _release_lock(&_tty_put_lock); |
---|
[189] | 816 | return 1; |
---|
| 817 | } |
---|
[169] | 818 | |
---|
[218] | 819 | // get DMA channel and compute DMA vbase address |
---|
| 820 | unsigned int task_id = _get_current_task_id(); |
---|
| 821 | unsigned int dma_id = _get_context_slot( task_id, CTX_DMA_ID ); |
---|
| 822 | unsigned int cluster_id = dma_id / NB_DMAS_MAX; |
---|
| 823 | unsigned int loc_id = dma_id % NB_DMAS_MAX; |
---|
| 824 | unsigned int* dma_base = (unsigned int*)( (char*)&seg_dma_base + |
---|
| 825 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
| 826 | |
---|
| 827 | // get page table address |
---|
[199] | 828 | unsigned int user_ptab = _get_context_slot( task_id, CTX_PTAB_ID ); |
---|
[169] | 829 | |
---|
[218] | 830 | // get peripheral buffer virtual address |
---|
| 831 | if ( dev_type) device_vaddr = (unsigned int)&seg_nic_base + offset; |
---|
| 832 | else device_vaddr = (unsigned int)&seg_fbf_base + offset; |
---|
[189] | 833 | |
---|
[218] | 834 | // get device buffer physical address |
---|
[189] | 835 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
[218] | 836 | (device_vaddr >> 12), |
---|
[189] | 837 | &ppn, |
---|
| 838 | &flags ); |
---|
| 839 | if ( ko ) |
---|
| 840 | { |
---|
[203] | 841 | _get_lock(&_tty_put_lock); |
---|
[218] | 842 | _puts("\n[GIET ERROR] in _dma_transfer : device buffer unmapped\n"); |
---|
[203] | 843 | _release_lock(&_tty_put_lock); |
---|
[189] | 844 | return 2; |
---|
| 845 | } |
---|
[218] | 846 | device_pbase = (ppn << 12) | (device_vaddr & 0x00000FFF); |
---|
[189] | 847 | |
---|
[218] | 848 | // Compute user buffer physical address |
---|
[189] | 849 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
| 850 | (user_vaddr >> 12), |
---|
| 851 | &ppn, |
---|
| 852 | &flags ); |
---|
| 853 | if ( ko ) |
---|
| 854 | { |
---|
[203] | 855 | _get_lock(&_tty_put_lock); |
---|
[218] | 856 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer unmapped\n"); |
---|
[203] | 857 | _release_lock(&_tty_put_lock); |
---|
[189] | 858 | return 3; |
---|
| 859 | } |
---|
| 860 | if ( (flags & PTE_U) == 0 ) |
---|
| 861 | { |
---|
[203] | 862 | _get_lock(&_tty_put_lock); |
---|
[218] | 863 | _puts("[GIET ERROR] in _dma_transfer() : user buffer not in user space\n"); |
---|
[203] | 864 | _release_lock(&_tty_put_lock); |
---|
[189] | 865 | return 4; |
---|
| 866 | } |
---|
| 867 | if ( ( (flags & PTE_W) == 0 ) && to_user ) |
---|
| 868 | { |
---|
[203] | 869 | _get_lock(&_tty_put_lock); |
---|
[218] | 870 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer not writable\n"); |
---|
[203] | 871 | _release_lock(&_tty_put_lock); |
---|
[189] | 872 | return 5; |
---|
| 873 | } |
---|
[218] | 874 | user_pbase = (ppn << 12) | (user_vaddr & 0x00000FFF); |
---|
[189] | 875 | |
---|
[218] | 876 | /* This is a draft for IOMMU support |
---|
| 877 | |
---|
[189] | 878 | // loop on all virtual pages covering the user buffer |
---|
[169] | 879 | unsigned int user_vpn_min = user_vaddr >> 12; |
---|
| 880 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 881 | unsigned int ix2 = 0; |
---|
| 882 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
[158] | 883 | |
---|
[169] | 884 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 885 | { |
---|
| 886 | // get ppn and flags for each vpn |
---|
[189] | 887 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
| 888 | vpn, |
---|
| 889 | &ppn, |
---|
| 890 | &flags ); |
---|
[158] | 891 | |
---|
[169] | 892 | // check access rights |
---|
[189] | 893 | if ( ko ) return 3; // unmapped |
---|
| 894 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
---|
| 895 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
---|
[158] | 896 | |
---|
[169] | 897 | // save first ppn value |
---|
| 898 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
| 899 | |
---|
[215] | 900 | if ( IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
[169] | 901 | { |
---|
| 902 | // check buffer length < 2 Mbytes |
---|
| 903 | if ( ix2 > 511 ) return 2; |
---|
| 904 | |
---|
| 905 | // map the physical page in IOMMU page table |
---|
| 906 | _iommu_add_pte2( ix1, // PT1 index |
---|
| 907 | ix2, // PT2 index |
---|
| 908 | ppn, // physical page number |
---|
| 909 | flags ); // protection flags |
---|
| 910 | } |
---|
| 911 | else // no IOMMU : check that physical pages are contiguous |
---|
| 912 | { |
---|
[189] | 913 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
---|
[169] | 914 | } |
---|
| 915 | |
---|
| 916 | // increment page index |
---|
| 917 | ix2++; |
---|
| 918 | } // end for vpn |
---|
| 919 | |
---|
[189] | 920 | // register the number of pages to be unmapped if iommu activated |
---|
[169] | 921 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
---|
| 922 | |
---|
[189] | 923 | */ |
---|
[204] | 924 | |
---|
[169] | 925 | // invalidate data cache in case of memory write |
---|
[189] | 926 | if ( to_user ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
[218] | 927 | |
---|
[189] | 928 | // get the lock |
---|
| 929 | _get_lock( &_dma_lock[dma_id] ); |
---|
[169] | 930 | |
---|
| 931 | // DMA configuration |
---|
[189] | 932 | if ( to_user ) |
---|
[169] | 933 | { |
---|
[218] | 934 | dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)device_pbase; |
---|
[204] | 935 | dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)user_pbase; |
---|
[169] | 936 | } |
---|
| 937 | else |
---|
| 938 | { |
---|
[204] | 939 | dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)user_pbase; |
---|
[218] | 940 | dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)device_pbase; |
---|
[169] | 941 | } |
---|
[204] | 942 | dma_base[loc_id*DMA_SPAN + DMA_LEN] = (unsigned int)length; |
---|
[169] | 943 | |
---|
[158] | 944 | return 0; |
---|
[213] | 945 | |
---|
| 946 | #else //NB_DMAS_MAX == 0 |
---|
[218] | 947 | |
---|
[213] | 948 | return -1; |
---|
[218] | 949 | |
---|
[213] | 950 | #endif |
---|
[218] | 951 | } // end _dma_transfer() |
---|
| 952 | |
---|
[169] | 953 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[218] | 954 | // _dma_completed() |
---|
| 955 | // This function checks completion of a DMA transfer to or from a peripheral |
---|
| 956 | // device (Frame Buffer or Multi-Nic). |
---|
| 957 | // As it is a blocking call, the processor is busy waiting. |
---|
| 958 | // Returns 0 if success, > 0 if error |
---|
| 959 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
| 960 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 961 | unsigned int _dma_completed() |
---|
| 962 | { |
---|
| 963 | #if NB_DMAS_MAX > 0 |
---|
| 964 | unsigned int task_id = _get_current_task_id(); |
---|
| 965 | unsigned int dma_id = _get_context_slot( task_id, CTX_DMA_ID ); |
---|
| 966 | |
---|
| 967 | // busy waiting with a pseudo random delay between bus access |
---|
| 968 | while (_dma_done[dma_id] == 0) |
---|
| 969 | { |
---|
| 970 | unsigned int delay = (( _proctime() ^ _procid()<<4 ) & 0x3F) + 1; |
---|
| 971 | asm volatile("move $3, %0 \n" |
---|
| 972 | "loop_nic_completed: \n" |
---|
| 973 | "addi $3, $3, -1 \n" |
---|
| 974 | "bnez $3, loop_nic_completed \n" |
---|
| 975 | "nop \n" |
---|
| 976 | : |
---|
| 977 | : "r"(delay) |
---|
| 978 | : "$3" ); |
---|
| 979 | } |
---|
| 980 | |
---|
| 981 | /* draft support for IOMMU |
---|
| 982 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
| 983 | if ( GIET_IOMMU_ACTIVE ) |
---|
| 984 | { |
---|
| 985 | unsigned int* iob_address = (unsigned int*)&seg_iob_base; |
---|
| 986 | |
---|
| 987 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
| 988 | unsigned int ix2; |
---|
| 989 | |
---|
| 990 | for ( ix2 = 0 ; ix2 < _dma_iommu_npages[dma_id] ; ix2++ ) |
---|
| 991 | { |
---|
| 992 | // unmap the page in IOMMU page table |
---|
| 993 | _iommu_inval_pte2( ix1, // PT1 index |
---|
| 994 | ix2 ); // PT2 index |
---|
| 995 | |
---|
| 996 | // clear IOMMU TLB |
---|
| 997 | iob_address[IOB_INVAL_PTE] = (ix1 << 21) | (ix2 << 12); |
---|
| 998 | } |
---|
| 999 | } |
---|
| 1000 | */ |
---|
| 1001 | |
---|
| 1002 | // reset synchronization variables |
---|
| 1003 | _dma_lock[dma_id] = 0; |
---|
| 1004 | _dma_done[dma_id] = 0; |
---|
| 1005 | |
---|
| 1006 | return _dma_status[dma_id]; |
---|
| 1007 | |
---|
| 1008 | #else //NB_DMAS_MAX == 0 |
---|
| 1009 | return -1; |
---|
| 1010 | #endif |
---|
| 1011 | } // end _dma_completed |
---|
| 1012 | |
---|
| 1013 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1014 | // VciFrameBuffer driver |
---|
| 1015 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1016 | // The vci_frame_buffer device can be accessed directly by software with memcpy(), |
---|
| 1017 | // or it can be accessed through a multi-channels DMA component: |
---|
| 1018 | // |
---|
| 1019 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
---|
| 1020 | // implement the transfer between a data buffer (user space) and the frame |
---|
| 1021 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
| 1022 | // |
---|
| 1023 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the |
---|
| 1024 | // VciMultiDma components (distributed in the clusters) to transfer data |
---|
| 1025 | // between the user buffer and the frame buffer. A FBDMA channel is |
---|
| 1026 | // allocated to each task requesting it in the mapping_info data structure. |
---|
| 1027 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1028 | |
---|
| 1029 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1030 | // _fb_sync_write() |
---|
| 1031 | // Transfer data from an memory buffer to the frame_buffer device using a memcpy. |
---|
| 1032 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1033 | // - buffer : base address of the memory buffer. |
---|
| 1034 | // - length : number of bytes to be transfered. |
---|
| 1035 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1036 | unsigned int _fb_sync_write( unsigned int offset, |
---|
| 1037 | const void* buffer, |
---|
| 1038 | unsigned int length ) |
---|
| 1039 | { |
---|
| 1040 | unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset; |
---|
| 1041 | memcpy((void*)fb_address, (void*)buffer, length); |
---|
| 1042 | return 0; |
---|
| 1043 | } |
---|
| 1044 | |
---|
| 1045 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1046 | // _fb_sync_read() |
---|
| 1047 | // Transfer data from the frame_buffer device to a memory buffer using a memcpy. |
---|
| 1048 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1049 | // - buffer : base address of the memory buffer. |
---|
| 1050 | // - length : number of bytes to be transfered. |
---|
| 1051 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1052 | unsigned int _fb_sync_read( unsigned int offset, |
---|
| 1053 | const void* buffer, |
---|
| 1054 | unsigned int length ) |
---|
| 1055 | { |
---|
| 1056 | unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset; |
---|
| 1057 | memcpy((void*)buffer, (void*)fb_address, length); |
---|
| 1058 | return 0; |
---|
| 1059 | } |
---|
| 1060 | |
---|
| 1061 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[169] | 1062 | // _fb_write() |
---|
| 1063 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
---|
| 1064 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1065 | // - buffer : base address of the memory buffer. |
---|
| 1066 | // - length : number of bytes to be transfered. |
---|
| 1067 | // Returns 0 if success, > 0 if error. |
---|
| 1068 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1069 | unsigned int _fb_write( unsigned int offset, |
---|
[218] | 1070 | const void* buffer, |
---|
[169] | 1071 | unsigned int length ) |
---|
| 1072 | { |
---|
[218] | 1073 | return _dma_transfer( 0, // frame buffer |
---|
| 1074 | 0, // write |
---|
| 1075 | offset, |
---|
| 1076 | (unsigned int)buffer, |
---|
| 1077 | length ); |
---|
[158] | 1078 | } |
---|
| 1079 | |
---|
| 1080 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1081 | // _fb_read() |
---|
[169] | 1082 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
---|
[158] | 1083 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1084 | // - buffer : base address of the memory buffer. |
---|
| 1085 | // - length : number of bytes to be transfered. |
---|
| 1086 | // Returns 0 if success, > 0 if error. |
---|
| 1087 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1088 | unsigned int _fb_read( unsigned int offset, |
---|
[169] | 1089 | const void* buffer, |
---|
[158] | 1090 | unsigned int length ) |
---|
| 1091 | { |
---|
[218] | 1092 | return _dma_transfer( 0, // frame buffer |
---|
| 1093 | 1, // read |
---|
| 1094 | offset, |
---|
| 1095 | (unsigned int)buffer, |
---|
| 1096 | length ); |
---|
[158] | 1097 | } |
---|
| 1098 | |
---|
| 1099 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1100 | // _fb_completed() |
---|
| 1101 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
[169] | 1102 | // As it is a blocking call, the processor is busy waiting. |
---|
| 1103 | // Returns 0 if success, > 0 if error |
---|
| 1104 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
[158] | 1105 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1106 | unsigned int _fb_completed() |
---|
| 1107 | { |
---|
[218] | 1108 | return _dma_completed(); |
---|
| 1109 | } |
---|
[158] | 1110 | |
---|
[218] | 1111 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1112 | // VciMultiNic driver |
---|
| 1113 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1114 | // The VciMultiNic device can be accessed directly by software with memcpy(), |
---|
| 1115 | // or it can be accessed through a multi-channels DMA component: |
---|
| 1116 | // |
---|
| 1117 | // The '_nic_sync_write' and '_nic_sync_read' functions use a memcpy strategy to |
---|
| 1118 | // implement the transfer between a data buffer (user space) and the NIC |
---|
| 1119 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
| 1120 | // |
---|
| 1121 | // The '_nic_write()', '_nic_read()' and '_nic_completed()' functions use the |
---|
| 1122 | // VciMultiDma components (distributed in the clusters) to transfer data |
---|
| 1123 | // between the user buffer and the NIC. A NIDMA channel is allocated to each |
---|
| 1124 | // task requesting it in the mapping_info data structure. |
---|
| 1125 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 1126 | |
---|
[218] | 1127 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1128 | // _nic_sync_write() |
---|
| 1129 | // Transfer data from an memory buffer to the NIC device using a memcpy. |
---|
| 1130 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1131 | // - buffer : base address of the memory buffer. |
---|
| 1132 | // - length : number of bytes to be transfered. |
---|
| 1133 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1134 | unsigned int _nic_sync_write( unsigned int offset, |
---|
| 1135 | const void* buffer, |
---|
| 1136 | unsigned int length ) |
---|
| 1137 | { |
---|
| 1138 | unsigned char *nic_address = (unsigned char*)&seg_nic_base + offset; |
---|
| 1139 | memcpy((void*)nic_address, (void*)buffer, length); |
---|
| 1140 | return 0; |
---|
| 1141 | } |
---|
[158] | 1142 | |
---|
[218] | 1143 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1144 | // _nic_sync_read() |
---|
| 1145 | // Transfer data from the NIC device to a memory buffer using a memcpy. |
---|
| 1146 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1147 | // - buffer : base address of the memory buffer. |
---|
| 1148 | // - length : number of bytes to be transfered. |
---|
| 1149 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1150 | unsigned int _nic_sync_read( unsigned int offset, |
---|
| 1151 | const void* buffer, |
---|
| 1152 | unsigned int length ) |
---|
| 1153 | { |
---|
| 1154 | unsigned char *nic_address = (unsigned char*)&seg_nic_base + offset; |
---|
| 1155 | memcpy((void*)buffer, (void*)nic_address, length); |
---|
| 1156 | return 0; |
---|
| 1157 | } |
---|
[158] | 1158 | |
---|
[218] | 1159 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1160 | // _nic_write() |
---|
| 1161 | // Transfer data from a memory buffer to the NIC device using DMA. |
---|
| 1162 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1163 | // - buffer : base address of the memory buffer. |
---|
| 1164 | // - length : number of bytes to be transfered. |
---|
| 1165 | // Returns 0 if success, > 0 if error. |
---|
| 1166 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1167 | unsigned int _nic_write( unsigned int offset, |
---|
| 1168 | const void* buffer, |
---|
| 1169 | unsigned int length ) |
---|
| 1170 | { |
---|
| 1171 | return _dma_transfer( 1, // NIC |
---|
| 1172 | 0, // write |
---|
| 1173 | offset, |
---|
| 1174 | (unsigned int)buffer, |
---|
| 1175 | length ); |
---|
| 1176 | } |
---|
[169] | 1177 | |
---|
[218] | 1178 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1179 | // _nic_read() |
---|
| 1180 | // Transfer data from the NIC device to a memory buffer using DMA. |
---|
| 1181 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1182 | // - buffer : base address of the memory buffer. |
---|
| 1183 | // - length : number of bytes to be transfered. |
---|
| 1184 | // Returns 0 if success, > 0 if error. |
---|
| 1185 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1186 | unsigned int _nic_read( unsigned int offset, |
---|
| 1187 | const void* buffer, |
---|
| 1188 | unsigned int length ) |
---|
| 1189 | { |
---|
| 1190 | return _dma_transfer( 1, // NIC |
---|
| 1191 | 1, // read |
---|
| 1192 | offset, |
---|
| 1193 | (unsigned int)buffer, |
---|
| 1194 | length ); |
---|
| 1195 | } |
---|
[189] | 1196 | |
---|
[218] | 1197 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1198 | // _nic_completed() |
---|
| 1199 | // This function checks completion of a DMA transfer to or fom a NIC channel. |
---|
| 1200 | // As it is a blocking call, the processor is busy waiting. |
---|
| 1201 | // Returns 0 if success, > 0 if error |
---|
| 1202 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
| 1203 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1204 | unsigned int _nic_completed() |
---|
| 1205 | { |
---|
| 1206 | return _dma_completed(); |
---|
[158] | 1207 | } |
---|
| 1208 | |
---|