1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : drivers.c |
---|
3 | // Date : 01/04/2012 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The drivers.c and drivers.h files are part ot the GIET nano kernel. |
---|
8 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
9 | // - vci_multi_tty |
---|
10 | // - vci_multi_timer |
---|
11 | // - vci_multi_dma |
---|
12 | // - vci_multi_icu |
---|
13 | // - vci_gcd |
---|
14 | // - vci_frame_buffer |
---|
15 | // - vci_block_device |
---|
16 | // |
---|
17 | // The following global parameters must be defined in the giet_config.h file: |
---|
18 | // - NB_CLUSTERS : number of clusters |
---|
19 | // - NB_PROCS : number of PROCS per cluster |
---|
20 | // - NB_TIMERS : number of TIMERS per cluster |
---|
21 | // - NB_DMAS : number of DMA channels |
---|
22 | // - NB_TTYS : number of TTY terminals |
---|
23 | // - NB_TIMERS : number of TIMERS per cluster |
---|
24 | // - CLUSTER_SPAN : address increment between clusters |
---|
25 | // |
---|
26 | // The following base addresses must be defined in the sys.ld file: |
---|
27 | // - seg_icu_base |
---|
28 | // - seg_timer_base |
---|
29 | // - seg_tty_base |
---|
30 | // - seg_gcd_base |
---|
31 | // - seg_dma_base |
---|
32 | // - seg_fb_base |
---|
33 | // - seg_ioc_base |
---|
34 | /////////////////////////////////////////////////////////////////////////////////// |
---|
35 | |
---|
36 | #include <vm_handler.h> |
---|
37 | #include <sys_handler.h> |
---|
38 | #include <giet_config.h> |
---|
39 | #include <drivers.h> |
---|
40 | #include <common.h> |
---|
41 | #include <hwr_mapping.h> |
---|
42 | #include <mips32_registers.h> |
---|
43 | #include <ctx_handler.h> |
---|
44 | |
---|
45 | #if !defined(NB_PROCS) |
---|
46 | # error: You must define NB_PROCS in 'giet_config.h' file! |
---|
47 | #endif |
---|
48 | #if !defined(NB_CLUSTERS) |
---|
49 | # error: You must define NB_CLUSTERS in 'giet_config.h' file! |
---|
50 | #endif |
---|
51 | #if !defined(CLUSTER_SPAN) |
---|
52 | # error: You must define CLUSTER_SPAN in 'giet_config.h' file! |
---|
53 | #endif |
---|
54 | #if !defined(NB_TTYS) |
---|
55 | # error: You must define NB_TTYS in 'giet_config.h' file! |
---|
56 | #endif |
---|
57 | #if !defined(NB_DMAS) |
---|
58 | # error: You must define NB_DMAS in 'giet_config.h' file! |
---|
59 | #endif |
---|
60 | #if !defined(NB_TIMERS) |
---|
61 | # error: You must define NB_TIMERS in 'giet_config.h' file! |
---|
62 | #endif |
---|
63 | |
---|
64 | #if (NB_TTYS < 1) |
---|
65 | # error: NB_TTYS cannot be smaller than 1! |
---|
66 | #endif |
---|
67 | |
---|
68 | #if (NB_TIMERS < NB_PROCS) |
---|
69 | # error: NB_TIMERS must be larger or equal to NB_PROCS! |
---|
70 | #endif |
---|
71 | |
---|
72 | #if (NB_PROCS > 8) |
---|
73 | # error: NB_PROCS cannot be larger than 8! |
---|
74 | #endif |
---|
75 | |
---|
76 | #if (NB_DMAS < 1) |
---|
77 | # error: NB_DMAS cannot be 0! |
---|
78 | #endif |
---|
79 | |
---|
80 | |
---|
81 | ///////////////////////////////////////////////////////////////////////////// |
---|
82 | // Global (uncachable) variables |
---|
83 | ///////////////////////////////////////////////////////////////////////////// |
---|
84 | |
---|
85 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
86 | |
---|
87 | in_unckdata volatile unsigned int _dma_status[NB_DMAS]; |
---|
88 | in_unckdata volatile unsigned char _dma_busy[NB_DMAS] = { [0 ... NB_DMAS-1] = 0 }; |
---|
89 | |
---|
90 | in_unckdata volatile unsigned char _ioc_status = 0; |
---|
91 | in_unckdata volatile unsigned char _ioc_done = 0; |
---|
92 | in_unckdata unsigned int _ioc_lock = 0; |
---|
93 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
94 | in_unckdata unsigned int _ioc_iommu_npages = 0; |
---|
95 | |
---|
96 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
---|
97 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS-1] = 0 }; |
---|
98 | in_unckdata unsigned int _tty_put_lock; |
---|
99 | |
---|
100 | ////////////////////////////////////////////////////////////////////////////// |
---|
101 | // VciMultiTimer driver |
---|
102 | ////////////////////////////////////////////////////////////////////////////// |
---|
103 | // There is one MULTI-TIMER component per cluster. |
---|
104 | // The number of timers per cluster must be larger or equal to the number |
---|
105 | // processors (NB_TIMERS >= NB_PROCS), because each processor uses a private |
---|
106 | // yimer for context switch. |
---|
107 | // The total number of timers is NB_CLUSTERS * NB_TIMERS |
---|
108 | // The global timer index = cluster_id*NB_TIMERS + timer_id |
---|
109 | ////////////////////////////////////////////////////////////////////////////// |
---|
110 | |
---|
111 | ////////////////////////////////////////////////////////////////////////////// |
---|
112 | // _timer_write() |
---|
113 | // |
---|
114 | // Write a 32-bit word in a memory mapped register of a timer device, |
---|
115 | // identified by the cluster index and the local timer index. |
---|
116 | // Returns 0 if success, > 0 if error. |
---|
117 | ////////////////////////////////////////////////////////////////////////////// |
---|
118 | unsigned int _timer_write( unsigned int cluster_index, |
---|
119 | unsigned int timer_index, |
---|
120 | unsigned int register_index, |
---|
121 | unsigned int value ) |
---|
122 | { |
---|
123 | unsigned int* timer_address; |
---|
124 | |
---|
125 | // parameters checking |
---|
126 | if ( register_index >= TIMER_SPAN) return 1; |
---|
127 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
128 | if ( timer_index >= NB_TIMERS ) return 1; |
---|
129 | |
---|
130 | timer_address = (unsigned int*)&seg_timer_base + |
---|
131 | ( cluster_index * CLUSTER_SPAN ) + |
---|
132 | ( timer_index * TIMER_SPAN ); |
---|
133 | |
---|
134 | timer_address[register_index] = value; // write word |
---|
135 | |
---|
136 | return 0; |
---|
137 | } |
---|
138 | |
---|
139 | ////////////////////////////////////////////////////////////////////////////// |
---|
140 | // _timer_read() |
---|
141 | // |
---|
142 | // Read a 32-bit word in a memory mapped register of a timer device, |
---|
143 | // identified by the cluster index and the local timer index. |
---|
144 | // Returns 0 if success, > 0 if error. |
---|
145 | ////////////////////////////////////////////////////////////////////////////// |
---|
146 | unsigned int _timer_read(unsigned int cluster_index, |
---|
147 | unsigned int timer_index, |
---|
148 | unsigned int register_index, |
---|
149 | unsigned int *buffer) |
---|
150 | { |
---|
151 | unsigned int *timer_address; |
---|
152 | |
---|
153 | // parameters checking |
---|
154 | if ( register_index >= TIMER_SPAN) return 1; |
---|
155 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
156 | if ( timer_index >= NB_TIMERS ) return 1; |
---|
157 | |
---|
158 | timer_address = (unsigned int*)&seg_timer_base + |
---|
159 | ( cluster_index * CLUSTER_SPAN ) + |
---|
160 | ( timer_index * TIMER_SPAN ); |
---|
161 | |
---|
162 | *buffer = timer_address[register_index]; // read word |
---|
163 | |
---|
164 | return 0; |
---|
165 | } |
---|
166 | |
---|
167 | ///////////////////////////////////////////////////////////////////////////////// |
---|
168 | // VciMultiTty driver |
---|
169 | ///////////////////////////////////////////////////////////////////////////////// |
---|
170 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
---|
171 | // The system terminal is TTY[0]. |
---|
172 | // The TTYs are allocated to applications by the GIET in the boot phase. |
---|
173 | // The nummber of TTYs allocated to each application, and used by each |
---|
174 | // task can be defined in the mapping_info data structure. |
---|
175 | // For each user task, the tty_id is stored in the context of the task (slot 34), |
---|
176 | // and must be explicitely defined in the boot code. |
---|
177 | // The TTY address is always computed as : seg_tty_base + tty_id*TTY_SPAN |
---|
178 | /////////////////////////////////////////////////////////////////////////////////// |
---|
179 | |
---|
180 | ////////////////////////////////////////////////////////////////////////////// |
---|
181 | // _tty_write() |
---|
182 | // |
---|
183 | // Write one or several characters directly from a fixed-length user buffer to |
---|
184 | // the TTY_WRITE register of the TTY controler. |
---|
185 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
186 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
187 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
188 | // The function returns the number of characters that have been written. |
---|
189 | ////////////////////////////////////////////////////////////////////////////// |
---|
190 | unsigned int _tty_write( const char *buffer, |
---|
191 | unsigned int length) |
---|
192 | { |
---|
193 | volatile unsigned int *tty_address; |
---|
194 | |
---|
195 | unsigned int proc_id; |
---|
196 | unsigned int task_id; |
---|
197 | unsigned int tty_id; |
---|
198 | unsigned int nwritten; |
---|
199 | |
---|
200 | proc_id = _procid(); |
---|
201 | |
---|
202 | task_id = _scheduler[proc_id].current; |
---|
203 | tty_id = _scheduler[proc_id].context[task_id][CTX_TTY_ID]; |
---|
204 | |
---|
205 | tty_address = (unsigned int*)&seg_tty_base + tty_id*TTY_SPAN; |
---|
206 | |
---|
207 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
208 | { |
---|
209 | // check tty's status |
---|
210 | if ((tty_address[TTY_STATUS] & 0x2) == 0x2) |
---|
211 | break; |
---|
212 | else |
---|
213 | // write character |
---|
214 | tty_address[TTY_WRITE] = (unsigned int)buffer[nwritten]; |
---|
215 | } |
---|
216 | return nwritten; |
---|
217 | } |
---|
218 | |
---|
219 | ////////////////////////////////////////////////////////////////////////////// |
---|
220 | // _tty_read_irq() |
---|
221 | // |
---|
222 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
223 | // the associated kernel buffer, that has been written by the ISR. |
---|
224 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
225 | // buffer, writes this character to the user buffer, and resets the |
---|
226 | // _tty_get_full[tty_id] buffer. |
---|
227 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
228 | ////////////////////////////////////////////////////////////////////////////// |
---|
229 | unsigned int _tty_read_irq( char *buffer, |
---|
230 | unsigned int length) |
---|
231 | { |
---|
232 | unsigned int proc_id; |
---|
233 | unsigned int task_id; |
---|
234 | unsigned int tty_id; |
---|
235 | unsigned int ret; |
---|
236 | |
---|
237 | proc_id = _procid(); |
---|
238 | task_id = _scheduler[proc_id].current; |
---|
239 | tty_id = _scheduler[proc_id].context[task_id][CTX_TTY_ID]; |
---|
240 | |
---|
241 | if (_tty_get_full[tty_id] == 0) |
---|
242 | { |
---|
243 | ret = 0; |
---|
244 | } |
---|
245 | else |
---|
246 | { |
---|
247 | *buffer = _tty_get_buf[tty_id]; |
---|
248 | _tty_get_full[tty_id] = 0; |
---|
249 | ret = 1; |
---|
250 | } |
---|
251 | return ret; |
---|
252 | } |
---|
253 | |
---|
254 | //////////////////////////////////////////////////////////////////////////////// |
---|
255 | // _tty_read() |
---|
256 | // |
---|
257 | // This non-blocking function fetches one character directly from the TTY_READ |
---|
258 | // register of the TTY controler, and writes this character to the user buffer. |
---|
259 | // It doesn't use the TTY_GET_IRQ interrupt and the associated kernel buffer. |
---|
260 | // Returns 0 if the register is empty, 1 if the register is full. |
---|
261 | //////////////////////////////////////////////////////////////////////////////// |
---|
262 | unsigned int _tty_read( char *buffer, |
---|
263 | unsigned int length) |
---|
264 | { |
---|
265 | volatile unsigned int *tty_address; |
---|
266 | |
---|
267 | unsigned int proc_id; |
---|
268 | unsigned int task_id; |
---|
269 | unsigned int tty_id; |
---|
270 | |
---|
271 | proc_id = _procid(); |
---|
272 | task_id = _scheduler[proc_id].current; |
---|
273 | tty_id = _scheduler[proc_id].context[task_id][CTX_TTY_ID]; |
---|
274 | |
---|
275 | tty_address = (unsigned int*)&seg_tty_base + tty_id*TTY_SPAN; |
---|
276 | |
---|
277 | if ((tty_address[TTY_STATUS] & 0x1) != 0x1) return 0; |
---|
278 | |
---|
279 | *buffer = (char)tty_address[TTY_READ]; |
---|
280 | return 1; |
---|
281 | } |
---|
282 | |
---|
283 | //////////////////////////////////////////////////////////////////////////////// |
---|
284 | // VciMultiIcu driver |
---|
285 | //////////////////////////////////////////////////////////////////////////////// |
---|
286 | // There is in principle one MULTI-ICU component per cluster, and the |
---|
287 | // number of independant ICUs is equal to NB_PROCS, because there is |
---|
288 | // one ICU per processor. |
---|
289 | //////////////////////////////////////////////////////////////////////////////// |
---|
290 | |
---|
291 | //////////////////////////////////////////////////////////////////////////////// |
---|
292 | // _icu_write() |
---|
293 | // |
---|
294 | // Write a 32-bit word in a memory mapped register of the MULTI_ICU device, |
---|
295 | // identified by the cluster index, and a processor local index. |
---|
296 | // Returns 0 if success, > 0 if error. |
---|
297 | //////////////////////////////////////////////////////////////////////////////// |
---|
298 | unsigned int _icu_write( unsigned int cluster_index, |
---|
299 | unsigned int proc_index, |
---|
300 | unsigned int register_index, |
---|
301 | unsigned int value ) |
---|
302 | { |
---|
303 | unsigned int *icu_address; |
---|
304 | |
---|
305 | // parameters checking |
---|
306 | if ( register_index >= ICU_SPAN) return 1; |
---|
307 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
308 | if ( proc_index >= NB_PROCS ) return 1; |
---|
309 | |
---|
310 | icu_address = (unsigned int*)&seg_icu_base + |
---|
311 | ( cluster_index * CLUSTER_SPAN ) + |
---|
312 | ( proc_index * ICU_SPAN ); |
---|
313 | |
---|
314 | icu_address[register_index] = value; // write word |
---|
315 | return 0; |
---|
316 | } |
---|
317 | |
---|
318 | //////////////////////////////////////////////////////////////////////////////// |
---|
319 | // _icu_read() |
---|
320 | // |
---|
321 | // Read a 32-bit word in a memory mapped register of the MULTI_ICU device, |
---|
322 | // identified by the cluster index and a processor local index. |
---|
323 | // Returns 0 if success, > 0 if error. |
---|
324 | //////////////////////////////////////////////////////////////////////////////// |
---|
325 | unsigned int _icu_read( unsigned int cluster_index, |
---|
326 | unsigned int proc_index, |
---|
327 | unsigned int register_index, |
---|
328 | unsigned int* buffer ) |
---|
329 | { |
---|
330 | unsigned int *icu_address; |
---|
331 | |
---|
332 | // parameters checking |
---|
333 | if ( register_index >= ICU_SPAN) return 1; |
---|
334 | if ( cluster_index >= NB_CLUSTERS) return 1; |
---|
335 | if ( proc_index >= NB_PROCS ) return 1; |
---|
336 | |
---|
337 | icu_address = (unsigned int*)&seg_icu_base + |
---|
338 | ( cluster_index * CLUSTER_SPAN ) + |
---|
339 | ( proc_index * ICU_SPAN ); |
---|
340 | |
---|
341 | *buffer = icu_address[register_index]; // read word |
---|
342 | return 0; |
---|
343 | } |
---|
344 | |
---|
345 | //////////////////////////////////////////////////////////////////////////////// |
---|
346 | // VciGcd driver |
---|
347 | //////////////////////////////////////////////////////////////////////////////// |
---|
348 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
349 | // performing the computation of the GCD of two 32 bits integers. |
---|
350 | // It has no DMA capability. |
---|
351 | //////////////////////////////////////////////////////////////////////////////// |
---|
352 | |
---|
353 | //////////////////////////////////////////////////////////////////////////////// |
---|
354 | // _gcd_write() |
---|
355 | // |
---|
356 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
357 | // Returns 0 if success, > 0 if error. |
---|
358 | //////////////////////////////////////////////////////////////////////////////// |
---|
359 | unsigned int _gcd_write( unsigned int register_index, |
---|
360 | unsigned int value) |
---|
361 | { |
---|
362 | volatile unsigned int *gcd_address; |
---|
363 | |
---|
364 | // parameters checking |
---|
365 | if (register_index >= GCD_END) |
---|
366 | return 1; |
---|
367 | |
---|
368 | gcd_address = (unsigned int*)&seg_gcd_base; |
---|
369 | |
---|
370 | gcd_address[register_index] = value; // write word |
---|
371 | return 0; |
---|
372 | } |
---|
373 | |
---|
374 | //////////////////////////////////////////////////////////////////////////////// |
---|
375 | // _gcd_read() |
---|
376 | // |
---|
377 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
378 | // Returns 0 if success, > 0 if error. |
---|
379 | //////////////////////////////////////////////////////////////////////////////// |
---|
380 | unsigned int _gcd_read( unsigned int register_index, |
---|
381 | unsigned int *buffer) |
---|
382 | { |
---|
383 | volatile unsigned int *gcd_address; |
---|
384 | |
---|
385 | // parameters checking |
---|
386 | if (register_index >= GCD_END) |
---|
387 | return 1; |
---|
388 | |
---|
389 | gcd_address = (unsigned int*)&seg_gcd_base; |
---|
390 | |
---|
391 | *buffer = gcd_address[register_index]; // read word |
---|
392 | return 0; |
---|
393 | } |
---|
394 | |
---|
395 | //////////////////////////////////////////////////////////////////////////////// |
---|
396 | // VciBlockDevice driver |
---|
397 | //////////////////////////////////////////////////////////////////////////////// |
---|
398 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
399 | // |
---|
400 | // The IOMMU can be activated or not: |
---|
401 | // |
---|
402 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
403 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
404 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
405 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
406 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
407 | // The number of PT2 entries is dynamically computed and stored in the |
---|
408 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
409 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
410 | // the transfer is completed. |
---|
411 | // |
---|
412 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
413 | // contiguous physical buffer (this is generally true because the user space |
---|
414 | // page tables are statically constructed to use contiguous physical memory). |
---|
415 | // |
---|
416 | // Finally, the memory buffer must fulfill the following conditions: |
---|
417 | // - The user buffer must be word aligned, |
---|
418 | // - The user buffer must be mapped in user address space, |
---|
419 | // - The user buffer must be writable in case of (to_mem) access, |
---|
420 | // - The total number of physical pages occupied by the user buffer cannot |
---|
421 | // be larger than 512 pages if the IOMMU is activated, |
---|
422 | // - All physical pages occupied by the user buffer must be contiguous |
---|
423 | // if the IOMMU is not activated. |
---|
424 | // An error code is returned if these conditions are not verified. |
---|
425 | // |
---|
426 | // As the IOC component can be used by several programs running in parallel, |
---|
427 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
428 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
429 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
430 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
431 | // available. |
---|
432 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
433 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
434 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
435 | // variable. |
---|
436 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
437 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
438 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
439 | // variable. |
---|
440 | // |
---|
441 | // In a multi-processing environment, this polling policy should be replaced by |
---|
442 | // a descheduling policy for the requesting process. |
---|
443 | /////////////////////////////////////////////////////////////////////////////// |
---|
444 | |
---|
445 | /////////////////////////////////////////////////////////////////////////////// |
---|
446 | // _ioc_get_lock() |
---|
447 | // |
---|
448 | // This blocking helper is used by '_ioc_read()' and '_ioc_write()' functions |
---|
449 | // to get _ioc_lock using atomic LL/SC. |
---|
450 | /////////////////////////////////////////////////////////////////////////////// |
---|
451 | static inline void _ioc_get_lock() |
---|
452 | { |
---|
453 | register unsigned int delay = (_proctime() & 0xF) << 4; |
---|
454 | register unsigned int *plock = (unsigned int*)&_ioc_lock; |
---|
455 | |
---|
456 | asm volatile ( |
---|
457 | "_ioc_llsc: \n" |
---|
458 | "ll $2, 0(%0) \n" /* $2 <= _ioc_lock current value */ |
---|
459 | "bnez $2, _ioc_delay \n" /* delay if _ioc_lock already taken */ |
---|
460 | "li $3, 1 \n" /* $3 <= argument for sc */ |
---|
461 | "sc $3, 0(%0) \n" /* try to set _ioc_lock */ |
---|
462 | "bnez $3, _ioc_ok \n" /* exit if atomic */ |
---|
463 | "_ioc_delay: \n" |
---|
464 | "move $4, %1 \n" /* $4 <= delay */ |
---|
465 | "_ioc_loop: \n" |
---|
466 | "beqz $4, _ioc_loop \n" /* test end delay */ |
---|
467 | "addi $4, $4, -1 \n" /* $4 <= $4 - 1 */ |
---|
468 | "j _ioc_llsc \n" /* retry ll */ |
---|
469 | "nop \n" |
---|
470 | "_ioc_ok: \n" |
---|
471 | : |
---|
472 | :"r"(plock), "r"(delay) |
---|
473 | :"$2", "$3", "$4"); |
---|
474 | } |
---|
475 | |
---|
476 | /////////////////////////////////////////////////////////////////////////////// |
---|
477 | // _ioc_access() |
---|
478 | // This function transfer data between a memory buffer and the block device. |
---|
479 | // The buffer lentgth is (count*block_size) bytes. |
---|
480 | // |
---|
481 | // Arguments are: |
---|
482 | // - to_mem : from external storage to memory when non 0 |
---|
483 | // - lba : first block index on the external storage. |
---|
484 | // - user_vaddr : virtual base address of the memory buffer. |
---|
485 | // - count : number of blocks to be transfered. |
---|
486 | // Returns 0 if success, > 0 if error. |
---|
487 | /////////////////////////////////////////////////////////////////////////////// |
---|
488 | unsigned int _ioc_access( unsigned int to_mem, |
---|
489 | unsigned int lba, |
---|
490 | unsigned int user_vaddr, |
---|
491 | unsigned int count ) |
---|
492 | { |
---|
493 | unsigned int user_vpn_min; |
---|
494 | unsigned int user_vpn_max; |
---|
495 | unsigned int vpn; // virtual page number in user space |
---|
496 | unsigned int ppn; // physical page number |
---|
497 | unsigned int flags; // page protection flags |
---|
498 | unsigned int ix2; // Page index (for IOMMU page table) |
---|
499 | unsigned int addr; // buffer address for IOC |
---|
500 | page_table_t* user_ptp; // user page table pointer |
---|
501 | unsigned int ko; // bool returned by _v2p_translate() |
---|
502 | unsigned int ppn_first; // first physical page number for user buffer |
---|
503 | |
---|
504 | // check buffer alignment |
---|
505 | if ( (unsigned int)user_vaddr & 0x3 ) return 1; |
---|
506 | |
---|
507 | unsigned int* ioc_address = (unsigned int*)&seg_ioc_base; |
---|
508 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
509 | unsigned int length = count*block_size; |
---|
510 | |
---|
511 | // get user space page table base address |
---|
512 | user_ptp = (page_table_t*)(_get_ptpr() << 13); |
---|
513 | |
---|
514 | user_vpn_min = user_vaddr >> 12; |
---|
515 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
516 | ix2 = 0; |
---|
517 | |
---|
518 | // loop on all virtual pages covering the user buffer |
---|
519 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
520 | { |
---|
521 | // get ppn and flags for each vpn |
---|
522 | ko = _v2p_translate( user_ptp, // user page table pointer |
---|
523 | vpn, // virtual page number |
---|
524 | &ppn, // physical page number |
---|
525 | &flags ); // protection flags |
---|
526 | |
---|
527 | // check access rights |
---|
528 | if ( ko ) return 2; // unmapped |
---|
529 | if ( (flags & PTE_U) == 0 ) return 3; // not in user space |
---|
530 | if ( ( (flags & PTE_W) == 0 ) && to_mem ) return 4; // not writable |
---|
531 | |
---|
532 | // save first ppn value |
---|
533 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
534 | |
---|
535 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
536 | { |
---|
537 | // check buffer length < 2 Mbytes |
---|
538 | if ( ix2 > 511 ) return 2; |
---|
539 | |
---|
540 | // map the physical page in IOMMU page table |
---|
541 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
542 | ix2, // PT2 index |
---|
543 | ppn, // Physical page number |
---|
544 | flags ); // Protection flags |
---|
545 | |
---|
546 | // buffer base address for IOC with IOMMU |
---|
547 | } |
---|
548 | else // no IOMMU : check that physical pages are contiguous |
---|
549 | { |
---|
550 | if ( (ppn - ppn_first) != ix2 ) return 5; // split physical buffer |
---|
551 | } |
---|
552 | |
---|
553 | // increment page index |
---|
554 | ix2++; |
---|
555 | } // end for vpn |
---|
556 | |
---|
557 | // register the number of pages to be unmapped |
---|
558 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
559 | |
---|
560 | // invalidate data cache in case of memory write |
---|
561 | if ( to_mem ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
562 | |
---|
563 | // compute buffer base address for IOC depending on IOMMU activation |
---|
564 | if ( GIET_IOMMU_ACTIVE ) addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
565 | else addr = ppn_first | (user_vaddr & 0xFFF); |
---|
566 | |
---|
567 | // get the lock on ioc device |
---|
568 | _ioc_get_lock(); |
---|
569 | |
---|
570 | // peripheral configuration |
---|
571 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
---|
572 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
573 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
574 | if ( to_mem == 0 ) ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
575 | else ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
576 | |
---|
577 | return 0; |
---|
578 | } |
---|
579 | |
---|
580 | ///////////////////////////////////////////////////////////////////////////////// |
---|
581 | // _ioc_completed() |
---|
582 | // |
---|
583 | // This function checks completion of an I/O transfer and reports errors. |
---|
584 | // As it is a blocking call, the processor is stalled. |
---|
585 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
586 | // space are unmapped, and the IOB TLB is cleared. |
---|
587 | // Returns 0 if success, > 0 if error. |
---|
588 | ///////////////////////////////////////////////////////////////////////////////// |
---|
589 | unsigned int _ioc_completed() |
---|
590 | { |
---|
591 | unsigned int ret; |
---|
592 | unsigned int ix2; |
---|
593 | |
---|
594 | // busy waiting |
---|
595 | while (_ioc_done == 0) |
---|
596 | asm volatile("nop"); |
---|
597 | |
---|
598 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
599 | if ( GIET_IOMMU_ACTIVE ) |
---|
600 | { |
---|
601 | unsigned int* iob_address = (unsigned int*)&seg_iob_base; |
---|
602 | |
---|
603 | for ( ix2 = 0 ; ix2 < _ioc_iommu_npages ; ix2++ ) |
---|
604 | { |
---|
605 | // unmap the page in IOMMU page table |
---|
606 | _iommu_inval_pte2( _ioc_iommu_ix1, // PT1 index |
---|
607 | ix2 ); // PT2 index |
---|
608 | |
---|
609 | // clear IOMMU TLB |
---|
610 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2) << 12; |
---|
611 | } |
---|
612 | } |
---|
613 | |
---|
614 | // test IOC status |
---|
615 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
616 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
617 | else ret = 0; // success |
---|
618 | |
---|
619 | // reset synchronization variables |
---|
620 | _ioc_lock =0; |
---|
621 | _ioc_done =0; |
---|
622 | |
---|
623 | return ret; |
---|
624 | } |
---|
625 | |
---|
626 | /////////////////////////////////////////////////////////////////////////////// |
---|
627 | // _ioc_read() |
---|
628 | // Transfer data from the block device to a memory buffer in user space. |
---|
629 | // - lba : first block index on the block device |
---|
630 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
631 | // - count : number of blocks to be transfered. |
---|
632 | // Returns 0 if success, > 0 if error. |
---|
633 | /////////////////////////////////////////////////////////////////////////////// |
---|
634 | unsigned int _ioc_read( unsigned int lba, |
---|
635 | void* buffer, |
---|
636 | unsigned int count ) |
---|
637 | { |
---|
638 | return _ioc_access( 1, // read |
---|
639 | lba, |
---|
640 | (unsigned int)buffer, |
---|
641 | count ); |
---|
642 | } |
---|
643 | |
---|
644 | /////////////////////////////////////////////////////////////////////////////// |
---|
645 | // _ioc_write() |
---|
646 | // Transfer data from a memory buffer in user space to the block device. |
---|
647 | // - lba : first block index on the block device |
---|
648 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
649 | // - count : number of blocks to be transfered. |
---|
650 | // Returns 0 if success, > 0 if error. |
---|
651 | /////////////////////////////////////////////////////////////////////////////// |
---|
652 | unsigned int _ioc_write( unsigned int lba, |
---|
653 | const void* buffer, |
---|
654 | unsigned int count ) |
---|
655 | { |
---|
656 | return _ioc_access( 0, // write |
---|
657 | lba, |
---|
658 | (unsigned int)buffer, |
---|
659 | count ); |
---|
660 | } |
---|
661 | |
---|
662 | ////////////////////////////////////////////////////////////////////////////////// |
---|
663 | // VciFrameBuffer driver |
---|
664 | ////////////////////////////////////////////////////////////////////////////////// |
---|
665 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
---|
666 | // implement the transfer between a data buffer (user space) and the frame |
---|
667 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
668 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the DMA |
---|
669 | // coprocessor to transfer data between the user buffer and the frame buffer. |
---|
670 | // These functions use a polling policy to test the global variables _dma_busy[i] |
---|
671 | // and detect the transfer completion. |
---|
672 | // There is NB_PROCS DMA channels, that are indexed by the proc_id. |
---|
673 | // The _dma_busy[i] synchronisation variables (one per channel) are set by the OS, |
---|
674 | // and reset by the ISR. |
---|
675 | ////////////////////////////////////////////////////////////////////////////////// |
---|
676 | |
---|
677 | ////////////////////////////////////////////////////////////////////////////////// |
---|
678 | // _fb_sync_write() |
---|
679 | // Transfer data from an memory buffer to the frame_buffer device using |
---|
680 | // a memcpy. The source memory buffer must be in user address space. |
---|
681 | // - offset : offset (in bytes) in the frame buffer. |
---|
682 | // - buffer : base address of the memory buffer. |
---|
683 | // - length : number of bytes to be transfered. |
---|
684 | // Returns 0 if success, > 0 if error. |
---|
685 | ////////////////////////////////////////////////////////////////////////////////// |
---|
686 | unsigned int _fb_sync_write( unsigned int offset, |
---|
687 | const void* buffer, |
---|
688 | unsigned int length ) |
---|
689 | { |
---|
690 | volatile unsigned char *fb_address; |
---|
691 | |
---|
692 | /* buffer must be in user space */ |
---|
693 | if (((unsigned int)buffer >= 0x80000000) |
---|
694 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
695 | return 1; |
---|
696 | |
---|
697 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
698 | |
---|
699 | /* buffer copy */ |
---|
700 | memcpy((void*)fb_address, (void*)buffer, length); |
---|
701 | |
---|
702 | return 0; |
---|
703 | } |
---|
704 | |
---|
705 | ////////////////////////////////////////////////////////////////////////////////// |
---|
706 | // _fb_sync_read() |
---|
707 | // Transfer data from the frame_buffer device to a memory buffer using |
---|
708 | // a memcpy. The destination memory buffer must be in user address space. |
---|
709 | // - offset : offset (in bytes) in the frame buffer. |
---|
710 | // - buffer : base address of the memory buffer. |
---|
711 | // - length : number of bytes to be transfered. |
---|
712 | // Returns 0 if success, > 0 if error. |
---|
713 | ////////////////////////////////////////////////////////////////////////////////// |
---|
714 | unsigned int _fb_sync_read( unsigned int offset, |
---|
715 | const void* buffer, |
---|
716 | unsigned int length ) |
---|
717 | { |
---|
718 | volatile unsigned char *fb_address; |
---|
719 | |
---|
720 | /* parameters checking */ |
---|
721 | /* buffer must be in user space */ |
---|
722 | if (((unsigned int)buffer >= 0x80000000) |
---|
723 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
724 | return 1; |
---|
725 | |
---|
726 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
727 | |
---|
728 | /* buffer copy */ |
---|
729 | memcpy((void*)buffer, (void*)fb_address, length); |
---|
730 | |
---|
731 | return 0; |
---|
732 | } |
---|
733 | |
---|
734 | ////////////////////////////////////////////////////////////////////////////////// |
---|
735 | // _fb_write() |
---|
736 | // Transfer data from an memory buffer to the frame_buffer device using a DMA. |
---|
737 | // The source memory buffer must be in user address space. |
---|
738 | // - offset : offset (in bytes) in the frame buffer. |
---|
739 | // - buffer : base address of the memory buffer. |
---|
740 | // - length : number of bytes to be transfered. |
---|
741 | // Returns 0 if success, > 0 if error. |
---|
742 | ////////////////////////////////////////////////////////////////////////////////// |
---|
743 | unsigned int _fb_write( unsigned int offset, |
---|
744 | const void* buffer, |
---|
745 | unsigned int length ) |
---|
746 | { |
---|
747 | volatile unsigned char *fb_address; |
---|
748 | volatile unsigned int *dma; |
---|
749 | |
---|
750 | unsigned int proc_id; |
---|
751 | unsigned int delay; |
---|
752 | unsigned int i; |
---|
753 | |
---|
754 | /* buffer must be in user space */ |
---|
755 | if (((unsigned int)buffer >= 0x80000000) |
---|
756 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
757 | return 1; |
---|
758 | |
---|
759 | proc_id = _procid(); |
---|
760 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
761 | dma = (unsigned int*)&seg_dma_base + (proc_id * DMA_SPAN); |
---|
762 | |
---|
763 | /* waiting until DMA device is available */ |
---|
764 | while (_dma_busy[proc_id] != 0) |
---|
765 | { |
---|
766 | /* if the lock failed, busy wait with a pseudo random delay between bus |
---|
767 | * accesses */ |
---|
768 | delay = (_proctime() & 0xF) << 4; |
---|
769 | for (i = 0; i < delay; i++) |
---|
770 | asm volatile("nop"); |
---|
771 | } |
---|
772 | _dma_busy[proc_id] = 1; |
---|
773 | |
---|
774 | /* DMA configuration for write transfer */ |
---|
775 | dma[DMA_IRQ_DISABLE] = 0; |
---|
776 | dma[DMA_SRC] = (unsigned int)buffer; |
---|
777 | dma[DMA_DST] = (unsigned int)fb_address; |
---|
778 | dma[DMA_LEN] = (unsigned int)length; |
---|
779 | return 0; |
---|
780 | } |
---|
781 | |
---|
782 | ////////////////////////////////////////////////////////////////////////////////// |
---|
783 | // _fb_read() |
---|
784 | // Transfer data from the frame_buffer device to an memory buffer using a DMA. |
---|
785 | // The destination memory buffer must be in user address space. |
---|
786 | // - offset : offset (in bytes) in the frame buffer. |
---|
787 | // - buffer : base address of the memory buffer. |
---|
788 | // - length : number of bytes to be transfered. |
---|
789 | // All cache lines corresponding to the the target buffer are invalidated |
---|
790 | // for cache coherence. |
---|
791 | // Returns 0 if success, > 0 if error. |
---|
792 | ////////////////////////////////////////////////////////////////////////////////// |
---|
793 | unsigned int _fb_read( unsigned int offset, |
---|
794 | const void* buffer, |
---|
795 | unsigned int length ) |
---|
796 | { |
---|
797 | volatile unsigned char *fb_address; |
---|
798 | volatile unsigned int *dma; |
---|
799 | |
---|
800 | unsigned int proc_id; |
---|
801 | unsigned int delay; |
---|
802 | unsigned int i; |
---|
803 | |
---|
804 | /* buffer must be in user space */ |
---|
805 | if (((unsigned int)buffer >= 0x80000000) |
---|
806 | || (((unsigned int)buffer + length ) >= 0x80000000 )) |
---|
807 | return 1; |
---|
808 | |
---|
809 | proc_id = _procid(); |
---|
810 | fb_address = (unsigned char*)&seg_fb_base + offset; |
---|
811 | dma = (unsigned int*)&seg_dma_base + (proc_id * DMA_SPAN); |
---|
812 | |
---|
813 | /* waiting until DMA device is available */ |
---|
814 | while (_dma_busy[proc_id] != 0) |
---|
815 | { |
---|
816 | /* if the lock failed, busy wait with a pseudo random delay between bus |
---|
817 | * accesses */ |
---|
818 | delay = (_proctime() & 0xF) << 4; |
---|
819 | for (i = 0; i < delay; i++) |
---|
820 | asm volatile("nop"); |
---|
821 | } |
---|
822 | _dma_busy[proc_id] = 1; |
---|
823 | |
---|
824 | /* DMA configuration for write transfer */ |
---|
825 | dma[DMA_IRQ_DISABLE] = 0; |
---|
826 | dma[DMA_SRC] = (unsigned int)fb_address; |
---|
827 | dma[DMA_DST] = (unsigned int)buffer; |
---|
828 | dma[DMA_LEN] = (unsigned int)length; |
---|
829 | |
---|
830 | /* invalidation of data cache */ |
---|
831 | _dcache_buf_invalidate(buffer, length); |
---|
832 | |
---|
833 | return 0; |
---|
834 | } |
---|
835 | |
---|
836 | ////////////////////////////////////////////////////////////////////////////////// |
---|
837 | // _fb_completed() |
---|
838 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
839 | // As it is a blocking call, the processor is stalled until the next interrupt. |
---|
840 | // Returns 0 if success, > 0 if error. |
---|
841 | ////////////////////////////////////////////////////////////////////////////////// |
---|
842 | unsigned int _fb_completed() |
---|
843 | { |
---|
844 | unsigned int proc_id; |
---|
845 | |
---|
846 | proc_id = _procid(); |
---|
847 | |
---|
848 | while (_dma_busy[proc_id] != 0) |
---|
849 | asm volatile("nop"); |
---|
850 | |
---|
851 | if (_dma_status[proc_id] != 0) |
---|
852 | return 1; |
---|
853 | |
---|
854 | return 0; |
---|
855 | } |
---|
856 | |
---|