1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : drivers.c |
---|
3 | // Date : 23/05/2013 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The drivers.c and drivers.h files are part ot the GIET-VM kernel. |
---|
8 | // |
---|
9 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
10 | // - vci_multi_tty |
---|
11 | // - vci_multi_timer |
---|
12 | // - vci_multi_dma |
---|
13 | // - vci_multi_icu |
---|
14 | // - vci_xicu |
---|
15 | // - vci_gcd |
---|
16 | // - vci_frame_buffer |
---|
17 | // - vci_block_device |
---|
18 | // - vci_multi_nic |
---|
19 | // - vci_chbuf_dma |
---|
20 | // |
---|
21 | // For the peripherals replicated in each cluster (ICU, TIMER, XCU, DMA, MMC), |
---|
22 | // the corresponding (virtual) base addresses must be completed by an offset |
---|
23 | // depending on the cluster index. |
---|
24 | // |
---|
25 | // The following global parameters must be defined in the hard_config.h file: |
---|
26 | // - NB_CLUSTERS |
---|
27 | // - NB_PROCS_MAX |
---|
28 | // - NB_TIM_CHANNELS |
---|
29 | // - NB_DMA_CHANNELS |
---|
30 | // - NB_TTY_CHANNELS_MAX |
---|
31 | // |
---|
32 | // The following virtual base addresses must be defined in the giet_vsegs.ld file: |
---|
33 | // - seg_icu_base |
---|
34 | // - seg_xcu_base |
---|
35 | // - seg_tim_base |
---|
36 | // - seg_dma_base |
---|
37 | // - seg_tty_base |
---|
38 | // - seg_gcd_base |
---|
39 | // - seg_fbf_base |
---|
40 | // - seg_ioc_base |
---|
41 | // - seg_nic_base |
---|
42 | // - seg_cma_base |
---|
43 | // - seg_iob_base |
---|
44 | // - seg_mmc_base |
---|
45 | // - vseg_cluster_increment |
---|
46 | /////////////////////////////////////////////////////////////////////////////////// |
---|
47 | |
---|
48 | #include <vm_handler.h> |
---|
49 | #include <sys_handler.h> |
---|
50 | #include <giet_config.h> |
---|
51 | #include <drivers.h> |
---|
52 | #include <common.h> |
---|
53 | #include <hwr_mapping.h> |
---|
54 | #include <mips32_registers.h> |
---|
55 | #include <ctx_handler.h> |
---|
56 | |
---|
57 | #if !defined(NB_CLUSTERS) |
---|
58 | # error: You must define NB_CLUSTERS in the hard_config.h file |
---|
59 | #endif |
---|
60 | |
---|
61 | #if (NB_CLUSTERS > 256) |
---|
62 | # error: NB_CLUSTERS cannot be larger than 256! |
---|
63 | #endif |
---|
64 | |
---|
65 | #if !defined(NB_PROCS_MAX) |
---|
66 | # error: You must define NB_PROCS_MAX in the hard_config.h file |
---|
67 | #endif |
---|
68 | |
---|
69 | #if (NB_PROCS_MAX > 8) |
---|
70 | # error: NB_PROCS_MAX cannot be larger than 8! |
---|
71 | #endif |
---|
72 | |
---|
73 | #if !defined(GIET_USE_IOMMU) |
---|
74 | # error: You must define GIET_USE_IOMMU in the giet_config.h file |
---|
75 | #endif |
---|
76 | |
---|
77 | #if !defined(NB_TTY_CHANNELS) |
---|
78 | # error: You must define NB_TTY_CHANNELS in the hard_config.h file |
---|
79 | #endif |
---|
80 | |
---|
81 | #if (NB_TTY_CHANNELS < 1) |
---|
82 | # error: NB_TTY_CHANNELS cannot be smaller than 1! |
---|
83 | #endif |
---|
84 | |
---|
85 | #if !defined(NB_DMA_CHANNELS) |
---|
86 | # error: You must define NB_DMA_CHANNELS in the hard_config.h file |
---|
87 | #endif |
---|
88 | |
---|
89 | #if (NB_DMA_CHANNELS > 8) |
---|
90 | # error: NB_DMA_CHANNELS cannot be smaller than 8! |
---|
91 | #endif |
---|
92 | |
---|
93 | #if !defined(NB_TIM_CHANNELS) |
---|
94 | #define NB_TIM_CHANNELS 0 |
---|
95 | #endif |
---|
96 | |
---|
97 | #if ( (NB_TIM_CHANNELS + NB_PROC_MAX) > 32 ) |
---|
98 | # error: NB_TIM_CHANNELS + NB_PROCS_MAX cannot be larger than 32 |
---|
99 | #endif |
---|
100 | |
---|
101 | #if !defined(NB_IOC_CHANNELS) |
---|
102 | # error: You must define NB_IOC_CHANNELS in the hard_config.h file |
---|
103 | #endif |
---|
104 | |
---|
105 | #if ( NB_IOC_CHANNELS > 8 ) |
---|
106 | # error: NB_IOC_CHANNELS cannot be larger than 8 |
---|
107 | #endif |
---|
108 | |
---|
109 | #if !defined(NB_NIC_CHANNELS) |
---|
110 | # error: You must define NB_NIC_CHANNELS in the hard_config.h file |
---|
111 | #endif |
---|
112 | |
---|
113 | #if ( NB_NIC_CHANNELS > 8 ) |
---|
114 | # error: NB_NIC_CHANNELS cannot be larger than 8 |
---|
115 | #endif |
---|
116 | |
---|
117 | #if !defined(NB_CMA_CHANNELS) |
---|
118 | # error: You must define NB_CMA_CHANNELS in the hard_config.h file |
---|
119 | #endif |
---|
120 | |
---|
121 | #if ( NB_CMA_CHANNELS > 8 ) |
---|
122 | # error: NB_CMA_CHANNELS cannot be larger than 8 |
---|
123 | #endif |
---|
124 | |
---|
125 | #if !defined( USE_XICU ) |
---|
126 | # error: You must define USE_XICU in the hard_config.h file |
---|
127 | #endif |
---|
128 | |
---|
129 | #if !defined( USE_IOB ) |
---|
130 | # error: You must define USE_IOB in the hard_config.h file |
---|
131 | #endif |
---|
132 | |
---|
133 | |
---|
134 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
135 | |
---|
136 | ////////////////////////////////////////////////////////////////////////////// |
---|
137 | // Timers driver |
---|
138 | ////////////////////////////////////////////////////////////////////////////// |
---|
139 | // This peripheral is replicated in all clusters. |
---|
140 | // The timers can be implemented in a vci_timer component or in a vci_xicu |
---|
141 | // component (depending on the USE_XICU parameter). |
---|
142 | // There is one timer (or xicu) component per cluster. |
---|
143 | // There is two types of timers: |
---|
144 | // - "system" timers : one per processor, used for context switch. |
---|
145 | // local_id in [0, NB_PROCS_MAX-1], |
---|
146 | // - "user" timers : requested by the task in the mapping_info data structure. |
---|
147 | // For each user timer, the timer_id is stored in the context of the task. |
---|
148 | // The global index is cluster_id * (NB_PROCS_MAX+NB_TIM_CHANNELS) + local_id |
---|
149 | ////////////////////////////////////////////////////////////////////////////// |
---|
150 | // The (virtual) base address of the associated segment is: |
---|
151 | // |
---|
152 | // timer_address = seg_tim_base + cluster_id * vseg_cluster_increment |
---|
153 | // or timer_address = seg_xcu_base + cluster_id * vseg_cluster_increment |
---|
154 | // |
---|
155 | //////////////////////////////////////////////////////////////////////////////// |
---|
156 | |
---|
157 | // User Timer signaling variables |
---|
158 | |
---|
159 | #if (NB_TIM_CHANNELS > 0) |
---|
160 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS * NB_TIM_CHANNELS] |
---|
161 | = { [0 ... ((NB_CLUSTERS * NB_TIM_CHANNELS) - 1)] = 0 }; |
---|
162 | #endif |
---|
163 | |
---|
164 | ////////////////////////////////////////////////////////////////////////////// |
---|
165 | // _timer_start() |
---|
166 | // This function activates a timer in the vci_timer (or vci_xicu) component |
---|
167 | // by writing in the proper register the period value. |
---|
168 | // It can be used by both the kernel to initialise a "system" timer, |
---|
169 | // or by a task (through a system call) to configure an "user" timer. |
---|
170 | // Returns 0 if success, > 0 if error. |
---|
171 | ////////////////////////////////////////////////////////////////////////////// |
---|
172 | unsigned int _timer_start( unsigned int cluster_id, |
---|
173 | unsigned int local_id, |
---|
174 | unsigned int period) |
---|
175 | { |
---|
176 | // parameters checking |
---|
177 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
178 | if (local_id >= NB_TIM_CHANNELS) return 2; |
---|
179 | |
---|
180 | #if USE_XICU |
---|
181 | unsigned int* timer_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
182 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
183 | |
---|
184 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period; |
---|
185 | #else |
---|
186 | unsigned int* timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
187 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
188 | |
---|
189 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period; |
---|
190 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0x3; |
---|
191 | #endif |
---|
192 | return 0; |
---|
193 | } |
---|
194 | |
---|
195 | ////////////////////////////////////////////////////////////////////////////// |
---|
196 | // _timer_stop() |
---|
197 | // This function desactivates a timer in the vci_timer (or vci_xicu) component |
---|
198 | // by writing in the proper register. |
---|
199 | // Returns 0 if success, > 0 if error. |
---|
200 | ////////////////////////////////////////////////////////////////////////////// |
---|
201 | unsigned int _timer_stop( unsigned int cluster_id, |
---|
202 | unsigned int local_id) |
---|
203 | { |
---|
204 | // parameters checking |
---|
205 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
206 | if (local_id >= NB_TIM_CHANNELS) return 2; |
---|
207 | |
---|
208 | #if USE_XICU |
---|
209 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
210 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
211 | |
---|
212 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
213 | #else |
---|
214 | unsigned int* timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
215 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
216 | |
---|
217 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0; |
---|
218 | #endif |
---|
219 | return 0; |
---|
220 | } |
---|
221 | |
---|
222 | ////////////////////////////////////////////////////////////////////////////// |
---|
223 | // _timer_reset_irq() |
---|
224 | // This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu) |
---|
225 | // component by reading/writing in the proper register. |
---|
226 | // It can be used by both the isr_switch() for a "system" timer, |
---|
227 | // or by the _isr_timer() for an "user" timer. |
---|
228 | // Returns 0 if success, > 0 if error. |
---|
229 | ////////////////////////////////////////////////////////////////////////////// |
---|
230 | unsigned int _timer_reset_irq( unsigned int cluster_id, |
---|
231 | unsigned int local_id ) |
---|
232 | { |
---|
233 | // parameters checking |
---|
234 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
235 | if (local_id >= NB_TIM_CHANNELS) return 2; |
---|
236 | |
---|
237 | #if USE_XICU |
---|
238 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
239 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
240 | |
---|
241 | unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)]; |
---|
242 | bloup++; // to avoid a warning |
---|
243 | #else |
---|
244 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
245 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
246 | |
---|
247 | timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0; |
---|
248 | #endif |
---|
249 | return 0; |
---|
250 | } |
---|
251 | |
---|
252 | /////////////////////////////////////////////////////////////////////// |
---|
253 | // _timer_reset_irq_cpt() |
---|
254 | /////////////////////////////////////////////////////////////////////// |
---|
255 | // This function resets the period at the end of which |
---|
256 | // an interrupt is sent. To do so, we re-write the period |
---|
257 | // in the proper register, what causes the count to restart. |
---|
258 | // The period value is read from the same (TIMER_PERIOD) register, |
---|
259 | // this is why in appearance we do nothing useful (read a value |
---|
260 | // from a register and write this value in the same register) |
---|
261 | // This function is called during a context switch (user or preemptive) |
---|
262 | /////////////////////////////////////////////////////////////////////// |
---|
263 | unsigned int _timer_reset_irq_cpt( unsigned int cluster_id, |
---|
264 | unsigned int local_id) { |
---|
265 | // parameters checking |
---|
266 | if (cluster_id >= NB_CLUSTERS) { |
---|
267 | return 1; |
---|
268 | } |
---|
269 | if (local_id >= NB_TIM_CHANNELS) { |
---|
270 | return 2; |
---|
271 | } |
---|
272 | |
---|
273 | #if USE_XICU |
---|
274 | unsigned int * timer_address = (unsigned int *) ((unsigned int) &seg_xcu_base + |
---|
275 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
276 | |
---|
277 | unsigned int timer_period = timer_address[XICU_REG(XICU_PTI_PER, local_id)]; |
---|
278 | |
---|
279 | // we write 0 first because if the timer is currently running, |
---|
280 | //the corresponding timer counter is not reset |
---|
281 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
282 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = timer_period; |
---|
283 | #else |
---|
284 | // We suppose that the TIMER_MODE register value is 0x3 |
---|
285 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
286 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
287 | |
---|
288 | unsigned int timer_period = timer_address[local_id * TIMER_SPAN + TIMER_PERIOD]; |
---|
289 | |
---|
290 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = timer_period; |
---|
291 | #endif |
---|
292 | |
---|
293 | return 0; |
---|
294 | } |
---|
295 | |
---|
296 | ///////////////////////////////////////////////////////////////////////////////// |
---|
297 | // VciMultiTty driver |
---|
298 | ///////////////////////////////////////////////////////////////////////////////// |
---|
299 | // There is only one multi_tty controler in the architecture. |
---|
300 | // The total number of TTYs is defined by the configuration parameter NB_TTY_CHANNELS. |
---|
301 | // The "system" terminal is TTY[0]. |
---|
302 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
---|
303 | // as defined in the mapping_info data structure. The corresponding tty_id must |
---|
304 | // be stored in the context of the task by the boot code. |
---|
305 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
---|
306 | ///////////////////////////////////////////////////////////////////////////////// |
---|
307 | |
---|
308 | // TTY variables |
---|
309 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTY_CHANNELS]; |
---|
310 | in_unckdata volatile unsigned char _tty_get_full[NB_TTY_CHANNELS] |
---|
311 | = { [0 ... NB_TTY_CHANNELS - 1] = 0 }; |
---|
312 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
---|
313 | |
---|
314 | //////////////////////////////////////////////////////////////////////////////// |
---|
315 | // _tty_error() |
---|
316 | //////////////////////////////////////////////////////////////////////////////// |
---|
317 | void _tty_error(unsigned int tty_id, unsigned int task_id) |
---|
318 | { |
---|
319 | unsigned int proc_id = _procid(); |
---|
320 | |
---|
321 | _get_lock(&_tty_put_lock); |
---|
322 | if (tty_id == 0xFFFFFFFF) _puts("\n[GIET ERROR] no TTY assigned to the task "); |
---|
323 | else _puts("\n[GIET ERROR] TTY index too large for task "); |
---|
324 | _putd(task_id); |
---|
325 | _puts(" on processor "); |
---|
326 | _putd(proc_id); |
---|
327 | _puts("\n"); |
---|
328 | _release_lock(&_tty_put_lock); |
---|
329 | } |
---|
330 | |
---|
331 | |
---|
332 | ///////////////////////////////////////////////////////////////////////////////// |
---|
333 | // _tty_write() |
---|
334 | // Write one or several characters directly from a fixed-length user buffer to |
---|
335 | // the TTY_WRITE register of the TTY controler. |
---|
336 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
337 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
338 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
339 | // The function returns the number of characters that have been written. |
---|
340 | ///////////////////////////////////////////////////////////////////////////////// |
---|
341 | unsigned int _tty_write(const char * buffer, |
---|
342 | unsigned int length) |
---|
343 | { |
---|
344 | unsigned int nwritten; |
---|
345 | unsigned int tty_id = _get_context_slot(CTX_TTY_ID); |
---|
346 | unsigned int* tty_address = (unsigned int *) &seg_tty_base; |
---|
347 | |
---|
348 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
349 | { |
---|
350 | // check tty's status |
---|
351 | if ((tty_address[tty_id * TTY_SPAN + TTY_STATUS] & 0x2) == 0x2) break; |
---|
352 | tty_address[tty_id * TTY_SPAN + TTY_WRITE] = (unsigned int) buffer[nwritten]; |
---|
353 | } |
---|
354 | return nwritten; |
---|
355 | } |
---|
356 | |
---|
357 | ////////////////////////////////////////////////////////////////////////////// |
---|
358 | // _tty_read() |
---|
359 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
360 | // the associated kernel buffer, that has been written by the ISR. |
---|
361 | // It get the TTY terminal index from the context of the current task. |
---|
362 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
363 | // buffer, writes this character to the user buffer, and resets the |
---|
364 | // _tty_get_full[tty_id] buffer. |
---|
365 | // The length argument is not used. |
---|
366 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
367 | ////////////////////////////////////////////////////////////////////////////// |
---|
368 | unsigned int _tty_read(char * buffer, |
---|
369 | unsigned int length) |
---|
370 | { |
---|
371 | unsigned int tty_id = _get_context_slot(CTX_TTY_ID); |
---|
372 | |
---|
373 | if (_tty_get_full[tty_id] == 0) |
---|
374 | { |
---|
375 | return 0; |
---|
376 | } |
---|
377 | else |
---|
378 | { |
---|
379 | *buffer = _tty_get_buf[tty_id]; |
---|
380 | _tty_get_full[tty_id] = 0; |
---|
381 | return 1; |
---|
382 | } |
---|
383 | } |
---|
384 | |
---|
385 | //////////////////////////////////////////////////////////////////////////////// |
---|
386 | // _tty_get_char() |
---|
387 | // This function is used by the _isr_tty to read a character in the TTY |
---|
388 | // terminal defined by the tty_id argument. The character is stored |
---|
389 | // in requested buffer, and the IRQ is acknowledged. |
---|
390 | // Returns 0 if success, 1 if tty_id too large. |
---|
391 | //////////////////////////////////////////////////////////////////////////////// |
---|
392 | unsigned int _tty_get_char(unsigned int tty_id, |
---|
393 | unsigned char * buffer) |
---|
394 | { |
---|
395 | // checking argument |
---|
396 | if (tty_id >= NB_TTY_CHANNELS) { return 1; } |
---|
397 | |
---|
398 | // compute terminal base address |
---|
399 | unsigned int * tty_address = (unsigned int *) &seg_tty_base; |
---|
400 | |
---|
401 | *buffer = (unsigned char) tty_address[tty_id * TTY_SPAN + TTY_READ]; |
---|
402 | return 0; |
---|
403 | } |
---|
404 | |
---|
405 | |
---|
406 | //////////////////////////////////////////////////////////////////////////////// |
---|
407 | // VciMultiIcu or VciXicu driver |
---|
408 | //////////////////////////////////////////////////////////////////////////////// |
---|
409 | // This hardware component is replicated in all clusters. |
---|
410 | // There is one vci_multi_icu (or vci_xicu) component per cluster, |
---|
411 | // and the number of ICU channels is equal to NB_PROCS_MAX, |
---|
412 | // because there is one private interrupt controler per processor. |
---|
413 | //////////////////////////////////////////////////////////////////////////////// |
---|
414 | // The (virtual) base address of the associated segment is: |
---|
415 | // |
---|
416 | // icu_address = seg_icu_base + cluster_id * vseg_cluster_increment |
---|
417 | // or icu_address = seg_xcu_base + cluster_id * vseg_cluster_increment |
---|
418 | // |
---|
419 | //////////////////////////////////////////////////////////////////////////////// |
---|
420 | |
---|
421 | //////////////////////////////////////////////////////////////////////////////// |
---|
422 | // _icu_set_mask() |
---|
423 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
424 | // It set the mask register for the ICU channel identified by the cluster index |
---|
425 | // and the processor index: all '1' bits are set / all '0' bits are not modified. |
---|
426 | // Returns 0 if success, > 0 if error. |
---|
427 | //////////////////////////////////////////////////////////////////////////////// |
---|
428 | unsigned int _icu_set_mask( unsigned int cluster_id, |
---|
429 | unsigned int proc_id, |
---|
430 | unsigned int value, |
---|
431 | unsigned int is_PTI) |
---|
432 | { |
---|
433 | // parameters checking |
---|
434 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
435 | if (proc_id >= NB_PROCS_MAX) return 1; |
---|
436 | |
---|
437 | #if USE_XICU |
---|
438 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
439 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
440 | if (is_PTI) |
---|
441 | { |
---|
442 | icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value; |
---|
443 | } |
---|
444 | else |
---|
445 | { |
---|
446 | icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value; |
---|
447 | } |
---|
448 | #else |
---|
449 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_icu_base + |
---|
450 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
451 | |
---|
452 | icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; |
---|
453 | #endif |
---|
454 | return 0; |
---|
455 | } |
---|
456 | |
---|
457 | //////////////////////////////////////////////////////////////////////////////// |
---|
458 | // _icu_get_index() |
---|
459 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
460 | // It returns the index of the highest priority (smaller index) active HWI. |
---|
461 | // The ICU channel is identified by the cluster index and the processor index. |
---|
462 | // Returns 0 if success, > 0 if error. |
---|
463 | //////////////////////////////////////////////////////////////////////////////// |
---|
464 | unsigned int _icu_get_index( unsigned int cluster_id, |
---|
465 | unsigned int proc_id, |
---|
466 | unsigned int * buffer) |
---|
467 | { |
---|
468 | // parameters checking |
---|
469 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
470 | if (proc_id >= NB_PROCS_MAX) return 1; |
---|
471 | |
---|
472 | #if USE_XICU |
---|
473 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
474 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
475 | |
---|
476 | unsigned int prio = icu_address[XICU_REG(XICU_PRIO, proc_id)]; |
---|
477 | unsigned int pti_ok = (prio & 0x00000001); |
---|
478 | unsigned int hwi_ok = (prio & 0x00000002); |
---|
479 | unsigned int swi_ok = (prio & 0x00000004); |
---|
480 | unsigned int pti_id = (prio & 0x00001F00) >> 8; |
---|
481 | unsigned int hwi_id = (prio & 0x001F0000) >> 16; |
---|
482 | unsigned int swi_id = (prio & 0x1F000000) >> 24; |
---|
483 | if (pti_ok) { *buffer = pti_id; } |
---|
484 | else if (hwi_ok) { *buffer = hwi_id; } |
---|
485 | else if (swi_ok) { *buffer = swi_id; } |
---|
486 | else { *buffer = 32; } |
---|
487 | #else |
---|
488 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_icu_base + |
---|
489 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
490 | |
---|
491 | *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; |
---|
492 | #endif |
---|
493 | return 0; |
---|
494 | } |
---|
495 | |
---|
496 | //////////////////////////////////////////////////////////////////////////////// |
---|
497 | // VciGcd driver |
---|
498 | //////////////////////////////////////////////////////////////////////////////// |
---|
499 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
500 | // performing the computation of the GCD of two 32 bits integers. |
---|
501 | // It has no DMA capability. |
---|
502 | //////////////////////////////////////////////////////////////////////////////// |
---|
503 | |
---|
504 | //////////////////////////////////////////////////////////////////////////////// |
---|
505 | // _gcd_write() |
---|
506 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
507 | // Returns 0 if success, > 0 if error. |
---|
508 | //////////////////////////////////////////////////////////////////////////////// |
---|
509 | unsigned int _gcd_write( unsigned int register_index, |
---|
510 | unsigned int value) |
---|
511 | { |
---|
512 | // parameters checking |
---|
513 | if (register_index >= GCD_END) return 1; |
---|
514 | |
---|
515 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
---|
516 | |
---|
517 | gcd_address[register_index] = value; // write word |
---|
518 | return 0; |
---|
519 | } |
---|
520 | |
---|
521 | |
---|
522 | //////////////////////////////////////////////////////////////////////////////// |
---|
523 | // _gcd_read() |
---|
524 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
525 | // Returns 0 if success, > 0 if error. |
---|
526 | //////////////////////////////////////////////////////////////////////////////// |
---|
527 | unsigned int _gcd_read( unsigned int register_index, |
---|
528 | unsigned int * buffer ) |
---|
529 | { |
---|
530 | // parameters checking |
---|
531 | if (register_index >= GCD_END) return 1; |
---|
532 | |
---|
533 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
---|
534 | |
---|
535 | *buffer = gcd_address[register_index]; // read word |
---|
536 | return 0; |
---|
537 | } |
---|
538 | |
---|
539 | //////////////////////////////////////////////////////////////////////////////// |
---|
540 | // VciBlockDevice driver |
---|
541 | //////////////////////////////////////////////////////////////////////////////// |
---|
542 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
543 | // |
---|
544 | // The IOMMU can be activated or not: |
---|
545 | // |
---|
546 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
547 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
548 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
549 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
550 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
551 | // The number of PT2 entries is dynamically computed and stored in the |
---|
552 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
553 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
554 | // the transfer is completed. |
---|
555 | // |
---|
556 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
557 | // contiguous physical buffer (this is generally true because the user space |
---|
558 | // page tables are statically constructed to use contiguous physical memory). |
---|
559 | // |
---|
560 | // Finally, the memory buffer must fulfill the following conditions: |
---|
561 | // - The user buffer must be word aligned, |
---|
562 | // - The user buffer must be mapped in user address space, |
---|
563 | // - The user buffer must be writable in case of (to_mem) access, |
---|
564 | // - The total number of physical pages occupied by the user buffer cannot |
---|
565 | // be larger than 512 pages if the IOMMU is activated, |
---|
566 | // - All physical pages occupied by the user buffer must be contiguous |
---|
567 | // if the IOMMU is not activated. |
---|
568 | // An error code is returned if these conditions are not verified. |
---|
569 | // |
---|
570 | // As the IOC component can be used by several programs running in parallel, |
---|
571 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
572 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
573 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
574 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
575 | // available. |
---|
576 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
577 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
578 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
579 | // variable. |
---|
580 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
581 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
582 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
583 | // variable. |
---|
584 | // |
---|
585 | // In a multi-processing environment, this polling policy should be replaced by |
---|
586 | // a descheduling policy for the requesting process. |
---|
587 | /////////////////////////////////////////////////////////////////////////////// |
---|
588 | |
---|
589 | // IOC global variables |
---|
590 | in_unckdata volatile unsigned int _ioc_status= 0; |
---|
591 | in_unckdata volatile unsigned int _ioc_done = 0; |
---|
592 | in_unckdata unsigned int _ioc_lock = 0; |
---|
593 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
594 | in_unckdata unsigned int _ioc_iommu_npages; |
---|
595 | |
---|
596 | /////////////////////////////////////////////////////////////////////////////// |
---|
597 | // _ioc_access() |
---|
598 | // This function transfer data between a memory buffer and the block device. |
---|
599 | // The buffer lentgth is (count*block_size) bytes. |
---|
600 | // Arguments are: |
---|
601 | // - to_mem : from external storage to memory when non 0 |
---|
602 | // - lba : first block index on the external storage. |
---|
603 | // - user_vaddr : virtual base address of the memory buffer. |
---|
604 | // - count : number of blocks to be transfered. |
---|
605 | // Returns 0 if success, > 0 if error. |
---|
606 | /////////////////////////////////////////////////////////////////////////////// |
---|
607 | unsigned int _ioc_access( unsigned int to_mem, |
---|
608 | unsigned int lba, |
---|
609 | unsigned int user_vaddr, |
---|
610 | unsigned int count) |
---|
611 | { |
---|
612 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
613 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
614 | unsigned int vpn; // current virtual page index in user space |
---|
615 | unsigned int ppn; // physical page number |
---|
616 | unsigned int flags; // page protection flags |
---|
617 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
618 | unsigned int ppn_first; // first physical page number for user buffer |
---|
619 | unsigned int buf_xaddr = 0; // user buffer virtual address in IO space (if IOMMU) |
---|
620 | paddr_t buf_paddr = 0; // user buffer physical address (if no IOMMU), |
---|
621 | |
---|
622 | // check buffer alignment |
---|
623 | if ((unsigned int) user_vaddr & 0x3) |
---|
624 | { |
---|
625 | _get_lock(&_tty_put_lock); |
---|
626 | _puts("[GIET ERROR] in _ioc_access() : user buffer not word aligned\n"); |
---|
627 | _release_lock(&_tty_put_lock); |
---|
628 | return 1; |
---|
629 | } |
---|
630 | |
---|
631 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base ; |
---|
632 | |
---|
633 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
634 | unsigned int length = count * block_size; |
---|
635 | |
---|
636 | // get user space page table virtual address |
---|
637 | unsigned int user_pt_vbase = _get_context_slot(CTX_PTAB_ID); |
---|
638 | |
---|
639 | user_vpn_min = user_vaddr >> 12; |
---|
640 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
641 | |
---|
642 | // loop on all virtual pages covering the user buffer |
---|
643 | for (vpn = user_vpn_min, ix2 = 0 ; |
---|
644 | vpn <= user_vpn_max ; |
---|
645 | vpn++, ix2++ ) |
---|
646 | { |
---|
647 | // get ppn and flags for each vpn |
---|
648 | unsigned int ko = _v2p_translate((page_table_t *) user_pt_vbase, |
---|
649 | vpn, |
---|
650 | &ppn, |
---|
651 | &flags); |
---|
652 | // check access rights |
---|
653 | if (ko) |
---|
654 | { |
---|
655 | _get_lock(&_tty_put_lock); |
---|
656 | _puts("[GIET ERROR] in _ioc_access() : user buffer unmapped\n"); |
---|
657 | _release_lock(&_tty_put_lock); |
---|
658 | return 1; |
---|
659 | } |
---|
660 | if ((flags & PTE_U) == 0) |
---|
661 | { |
---|
662 | _get_lock(&_tty_put_lock); |
---|
663 | _puts("[GIET ERROR] in _ioc_access() : user buffer not in user space\n"); |
---|
664 | _release_lock(&_tty_put_lock); |
---|
665 | return 1; |
---|
666 | } |
---|
667 | if (((flags & PTE_W) == 0 ) && to_mem) |
---|
668 | { |
---|
669 | _get_lock(&_tty_put_lock); |
---|
670 | _puts("[GIET ERROR] in _ioc_access() : user buffer not writable\n"); |
---|
671 | _release_lock(&_tty_put_lock); |
---|
672 | return 1; |
---|
673 | } |
---|
674 | |
---|
675 | // save first ppn value |
---|
676 | if (ix2 == 0) ppn_first = ppn; |
---|
677 | |
---|
678 | if ( GIET_USE_IOMMU && USE_IOB ) // user buffer remapped in the I/0 space |
---|
679 | { |
---|
680 | // check buffer length < 2 Mbytes |
---|
681 | if (ix2 > 511) |
---|
682 | { |
---|
683 | _get_lock(&_tty_put_lock); |
---|
684 | _puts("[GIET ERROR] in _ioc_access() : user buffer > 2 Mbytes\n"); |
---|
685 | _release_lock(&_tty_put_lock); |
---|
686 | return 1; |
---|
687 | } |
---|
688 | |
---|
689 | // map the physical page in IOMMU page table |
---|
690 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
691 | ix2, // PT2 index |
---|
692 | ppn, // Physical page number |
---|
693 | flags); // Protection flags |
---|
694 | |
---|
695 | // compute user buffer virtual adress in IO space |
---|
696 | buf_xaddr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
697 | } |
---|
698 | else // No IOMMU |
---|
699 | { |
---|
700 | // check that physical pages are contiguous |
---|
701 | if ((ppn - ppn_first) != ix2) |
---|
702 | { |
---|
703 | _get_lock(&_tty_put_lock); |
---|
704 | _puts("[GIET ERROR] in _ioc_access() : split physical user buffer\n"); |
---|
705 | _release_lock(&_tty_put_lock); |
---|
706 | return 1; |
---|
707 | } |
---|
708 | |
---|
709 | // compute user buffer physical adress |
---|
710 | buf_paddr = (((paddr_t)ppn_first) << 12) | (user_vaddr & 0xFFF); |
---|
711 | } |
---|
712 | } // end for vpn |
---|
713 | |
---|
714 | // register the number of pages to be unmapped |
---|
715 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
716 | |
---|
717 | // If no IOB, invalidate L1 cache in case of memory write |
---|
718 | if ( to_mem && (USE_IOB == 0) ) _dcache_buf_invalidate((void *) user_vaddr, length); |
---|
719 | |
---|
720 | #if GIET_DEBUG_IOC_DRIVER |
---|
721 | _get_lock(&_tty_put_lock); |
---|
722 | _puts("\n[GIET DEBUG] IOC_ACCESS at cycle "); |
---|
723 | _putd( _proctime() ); |
---|
724 | _puts("\n - proc_id = "); |
---|
725 | _putd( _procid() ); |
---|
726 | _puts("\n - ioc_vbase = "); |
---|
727 | _putx( (unsigned int)ioc_address ); |
---|
728 | _puts("\n - psched_vbase = "); |
---|
729 | _putx( (unsigned int)_get_sched() ); |
---|
730 | _puts("\n - pt_vbase = "); |
---|
731 | _putx( user_pt_vbase ); |
---|
732 | _puts("\n - user_buf_vbase = "); |
---|
733 | _putx( user_vaddr ); |
---|
734 | _puts("\n - user_buf_length = "); |
---|
735 | _putx( length ); |
---|
736 | _puts("\n - user_buf_paddr = "); |
---|
737 | _putl( buf_paddr ); |
---|
738 | _puts("\n - user_buf_xaddr = "); |
---|
739 | _putx( buf_xaddr ); |
---|
740 | _puts("\n"); |
---|
741 | _release_lock(&_tty_put_lock); |
---|
742 | #endif |
---|
743 | |
---|
744 | // If IOB, invalidate L2 cache in case of memory write |
---|
745 | if ( to_mem && USE_IOB ) _memc_inval( buf_paddr, length ); |
---|
746 | |
---|
747 | // get the lock on ioc device |
---|
748 | _get_lock(&_ioc_lock); |
---|
749 | |
---|
750 | // peripheral configuration |
---|
751 | if ( GIET_USE_IOMMU && USE_IOB ) |
---|
752 | { |
---|
753 | ioc_address[BLOCK_DEVICE_BUFFER] = buf_xaddr; |
---|
754 | } |
---|
755 | else |
---|
756 | { |
---|
757 | ioc_address[BLOCK_DEVICE_BUFFER] = (unsigned int)buf_paddr; |
---|
758 | ioc_address[BLOCK_DEVICE_BUFFER_EXT] = (unsigned int)(buf_paddr>>32); |
---|
759 | } |
---|
760 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
761 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
762 | if (to_mem == 0) |
---|
763 | { |
---|
764 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
765 | } |
---|
766 | else |
---|
767 | { |
---|
768 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
769 | } |
---|
770 | return 0; |
---|
771 | } |
---|
772 | |
---|
773 | ///////////////////////////////////////////////////////////////////////////////// |
---|
774 | // _ioc_completed() |
---|
775 | // |
---|
776 | // This function checks completion of an I/O transfer and reports errors. |
---|
777 | // As it is a blocking call, the processor is stalled. |
---|
778 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
779 | // space are unmapped, and the IOB TLB is cleared. |
---|
780 | // Returns 0 if success, > 0 if error. |
---|
781 | ///////////////////////////////////////////////////////////////////////////////// |
---|
782 | unsigned int _ioc_completed() |
---|
783 | { |
---|
784 | unsigned int ret; |
---|
785 | unsigned int ix2; |
---|
786 | |
---|
787 | // busy waiting |
---|
788 | while (_ioc_done == 0) { asm volatile("nop"); } |
---|
789 | |
---|
790 | #if GIET_DEBUG_IOC_DRIVER |
---|
791 | _get_lock(&_tty_put_lock); |
---|
792 | _puts("\n[GIET DEBUG] IOC_COMPLETED at cycle "); |
---|
793 | _putd( _proctime() ); |
---|
794 | _puts("\n - proc_id = "); |
---|
795 | _putd( _procid() ); |
---|
796 | _puts("\n"); |
---|
797 | _release_lock(&_tty_put_lock); |
---|
798 | #endif |
---|
799 | |
---|
800 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
801 | if ( GIET_USE_IOMMU && USE_IOB ) |
---|
802 | { |
---|
803 | unsigned int * iob_address = (unsigned int *) &seg_iob_base; |
---|
804 | |
---|
805 | for (ix2 = 0; ix2 < _ioc_iommu_npages; ix2++) |
---|
806 | { |
---|
807 | // unmap the page in IOMMU page table |
---|
808 | _iommu_inval_pte2( |
---|
809 | _ioc_iommu_ix1, // PT1 index |
---|
810 | ix2 ); // PT2 index |
---|
811 | |
---|
812 | // clear IOMMU TLB |
---|
813 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
---|
814 | } |
---|
815 | } |
---|
816 | |
---|
817 | // test IOC status |
---|
818 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
819 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
820 | else ret = 0; // success |
---|
821 | |
---|
822 | // reset synchronization variables |
---|
823 | _ioc_done = 0; |
---|
824 | asm volatile("sync"); |
---|
825 | _ioc_lock = 0; |
---|
826 | |
---|
827 | return ret; |
---|
828 | } |
---|
829 | |
---|
830 | |
---|
831 | /////////////////////////////////////////////////////////////////////////////// |
---|
832 | // _ioc_read() |
---|
833 | // Transfer data from the block device to a memory buffer in user space. |
---|
834 | // - lba : first block index on the block device |
---|
835 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
836 | // - count : number of blocks to be transfered. |
---|
837 | // Returns 0 if success, > 0 if error. |
---|
838 | /////////////////////////////////////////////////////////////////////////////// |
---|
839 | unsigned int _ioc_read( unsigned int lba, |
---|
840 | void * buffer, |
---|
841 | unsigned int count) |
---|
842 | { |
---|
843 | return _ioc_access( |
---|
844 | 1, // read access |
---|
845 | lba, |
---|
846 | (unsigned int) buffer, |
---|
847 | count); |
---|
848 | } |
---|
849 | |
---|
850 | |
---|
851 | /////////////////////////////////////////////////////////////////////////////// |
---|
852 | // _ioc_write() |
---|
853 | // Transfer data from a memory buffer in user space to the block device. |
---|
854 | // - lba : first block index on the block device |
---|
855 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
856 | // - count : number of blocks to be transfered. |
---|
857 | // Returns 0 if success, > 0 if error. |
---|
858 | /////////////////////////////////////////////////////////////////////////////// |
---|
859 | unsigned int _ioc_write( unsigned int lba, |
---|
860 | const void * buffer, |
---|
861 | unsigned int count) |
---|
862 | { |
---|
863 | return _ioc_access( |
---|
864 | 0, // write access |
---|
865 | lba, |
---|
866 | (unsigned int) buffer, |
---|
867 | count); |
---|
868 | } |
---|
869 | |
---|
870 | |
---|
871 | /////////////////////////////////////////////////////////////////////////////// |
---|
872 | // _ioc_get_status() |
---|
873 | // This function returns the transfert status, and acknowledge the IRQ. |
---|
874 | // Returns 0 if success, > 0 if error. |
---|
875 | /////////////////////////////////////////////////////////////////////////////// |
---|
876 | unsigned int _ioc_get_status(unsigned int * status) |
---|
877 | { |
---|
878 | // get IOC base address |
---|
879 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base; |
---|
880 | |
---|
881 | *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ |
---|
882 | return 0; |
---|
883 | } |
---|
884 | |
---|
885 | |
---|
886 | /////////////////////////////////////////////////////////////////////////////// |
---|
887 | // _ioc_get_block_size() |
---|
888 | // This function returns the block_size with which the IOC has been configured. |
---|
889 | /////////////////////////////////////////////////////////////////////////////// |
---|
890 | unsigned int _ioc_get_block_size() |
---|
891 | { |
---|
892 | // get IOC base address |
---|
893 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base; |
---|
894 | |
---|
895 | return ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
896 | } |
---|
897 | |
---|
898 | |
---|
899 | ////////////////////////////////////////////////////////////////////////////////// |
---|
900 | // VciMultiDma driver |
---|
901 | ////////////////////////////////////////////////////////////////////////////////// |
---|
902 | // The DMA controllers are physically distributed in the clusters. |
---|
903 | // There is (NB_CLUSTERS * NB_DMA_CHANNELS) channels, indexed by a global index: |
---|
904 | // dma_id = cluster_id * NB_DMA_CHANNELS + loc_id |
---|
905 | // |
---|
906 | // As a DMA channel is a private ressource allocated to a task, |
---|
907 | // there is no lock protecting exclusive access to the channel. |
---|
908 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
---|
909 | // synchronisation variables (set by the ISR, and reset by the OS). |
---|
910 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
---|
911 | ////////////////////////////////////////////////////////////////////////////////// |
---|
912 | // The (virtual) base address of the associated segment is: |
---|
913 | // |
---|
914 | // dma_address = seg_dma_base + cluster_id * vseg_cluster_increment |
---|
915 | // |
---|
916 | //////////////////////////////////////////////////////////////////////////////// |
---|
917 | |
---|
918 | #if NB_DMA_CHANNELS > 0 |
---|
919 | |
---|
920 | // in_unckdata unsigned int _dma_lock[NB_DMA_CHANNELS * NB_CLUSTERS] |
---|
921 | // = { [0 ... (NB_DMA_CHANNELS * NB_CLUSTERS) - 1] = 0 }; |
---|
922 | |
---|
923 | in_unckdata volatile unsigned int _dma_done[NB_DMA_CHANNELS * NB_CLUSTERS] |
---|
924 | = { [0 ... (NB_DMA_CHANNELS * NB_CLUSTERS) - 1] = 0 }; |
---|
925 | in_unckdata volatile unsigned int _dma_status[NB_DMA_CHANNELS * NB_CLUSTERS]; |
---|
926 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
---|
927 | in_unckdata unsigned int _dma_iommu_npages[NB_DMA_CHANNELS * NB_CLUSTERS]; |
---|
928 | #endif |
---|
929 | |
---|
930 | ////////////////////////////////////////////////////////////////////////////////// |
---|
931 | // _dma_reset_irq() |
---|
932 | ////////////////////////////////////////////////////////////////////////////////// |
---|
933 | unsigned int _dma_reset_irq( unsigned int cluster_id, |
---|
934 | unsigned int channel_id) |
---|
935 | { |
---|
936 | #if NB_DMA_CHANNELS > 0 |
---|
937 | // parameters checking |
---|
938 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
939 | if (channel_id >= NB_DMA_CHANNELS) return 1; |
---|
940 | |
---|
941 | // compute DMA base address |
---|
942 | unsigned int * dma_address = (unsigned int *) ((unsigned int)&seg_dma_base + |
---|
943 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
944 | |
---|
945 | dma_address[channel_id * DMA_SPAN + DMA_RESET] = 0; |
---|
946 | return 0; |
---|
947 | #else |
---|
948 | return -1; |
---|
949 | #endif |
---|
950 | } |
---|
951 | |
---|
952 | ////////////////////////////////////////////////////////////////////////////////// |
---|
953 | // _dma_get_status() |
---|
954 | ////////////////////////////////////////////////////////////////////////////////// |
---|
955 | unsigned int _dma_get_status( unsigned int cluster_id, |
---|
956 | unsigned int channel_id, |
---|
957 | unsigned int * status) |
---|
958 | { |
---|
959 | #if NB_DMA_CHANNELS > 0 |
---|
960 | // parameters checking |
---|
961 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
962 | if (channel_id >= NB_DMA_CHANNELS) return 1; |
---|
963 | |
---|
964 | // compute DMA base address |
---|
965 | unsigned int * dma_address = (unsigned int *) ((unsigned int)&seg_dma_base + |
---|
966 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
967 | |
---|
968 | *status = dma_address[channel_id * DMA_SPAN + DMA_LEN]; |
---|
969 | return 0; |
---|
970 | #else |
---|
971 | return -1; |
---|
972 | #endif |
---|
973 | } |
---|
974 | |
---|
975 | ////////////////////////////////////////////////////////////////////////////////// |
---|
976 | // _dma_transfer() |
---|
977 | // Transfer data between a user buffer and a device buffer using DMA. |
---|
978 | // Only one device type is supported: Frame Buffer (dev_type == 0) |
---|
979 | // Arguments are: |
---|
980 | // - dev_type : device type. |
---|
981 | // - to_user : from device buffer to user buffer when true. |
---|
982 | // - offset : offset (in bytes) in the device buffer. |
---|
983 | // - user_vaddr : virtual base address of the user buffer. |
---|
984 | // - length : number of bytes to be transfered. |
---|
985 | // |
---|
986 | // The cluster_id and channel_id are obtained from task context (CTX_DMA_ID). |
---|
987 | // The user buffer must be mapped in user address space and word-aligned. |
---|
988 | // The user buffer length must be multiple of 4 bytes. |
---|
989 | // We compute the physical base addresses for both the device buffer |
---|
990 | // and the user buffer before programming the DMA transfer. |
---|
991 | // The GIET being fully static, we don't need to split the transfer in 4 Kbytes |
---|
992 | // pages, because the user buffer is contiguous in physical space. |
---|
993 | // Returns 0 if success, > 0 if error. |
---|
994 | ////////////////////////////////////////////////////////////////////////////////// |
---|
995 | unsigned int _dma_transfer( unsigned int dev_type, |
---|
996 | unsigned int to_user, |
---|
997 | unsigned int offset, |
---|
998 | unsigned int user_vaddr, |
---|
999 | unsigned int length ) |
---|
1000 | { |
---|
1001 | #if NB_DMA_CHANNELS > 0 |
---|
1002 | unsigned int ko; // unsuccessfull V2P translation |
---|
1003 | unsigned int device_vbase; // device buffer vbase address |
---|
1004 | unsigned int flags; // protection flags |
---|
1005 | unsigned int ppn; // physical page number |
---|
1006 | paddr_t user_pbase; // user buffer pbase address |
---|
1007 | paddr_t device_pbase; // frame buffer pbase address |
---|
1008 | |
---|
1009 | // check user buffer address and length alignment |
---|
1010 | if ((user_vaddr & 0x3) || (length & 0x3)) |
---|
1011 | { |
---|
1012 | _get_lock(&_tty_put_lock); |
---|
1013 | _puts("\n[GIET ERROR] in _dma_transfer : user buffer not word aligned\n"); |
---|
1014 | _release_lock(&_tty_put_lock); |
---|
1015 | return 1; |
---|
1016 | } |
---|
1017 | |
---|
1018 | // get DMA channel and compute DMA vbase address |
---|
1019 | unsigned int dma_id = _get_context_slot(CTX_DMA_ID); |
---|
1020 | if ( dma_id == 0xFFFFFFFF ) |
---|
1021 | { |
---|
1022 | _get_lock(&_tty_put_lock); |
---|
1023 | _puts("\n[GIET ERROR] in _dma_transfer : no DMA channel allocated\n"); |
---|
1024 | _release_lock(&_tty_put_lock); |
---|
1025 | return 1; |
---|
1026 | } |
---|
1027 | unsigned int cluster_id = dma_id / NB_DMA_CHANNELS; |
---|
1028 | unsigned int channel_id = dma_id % NB_DMA_CHANNELS; |
---|
1029 | unsigned int * dma_vbase = (unsigned int *) ((unsigned int)&seg_dma_base + |
---|
1030 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
1031 | // get page table address |
---|
1032 | unsigned int user_ptab = _get_context_slot(CTX_PTAB_ID); |
---|
1033 | |
---|
1034 | // get devic buffer virtual address, depending on peripheral type |
---|
1035 | if (dev_type == 0) |
---|
1036 | { |
---|
1037 | device_vbase = (unsigned int) &seg_fbf_base + offset; |
---|
1038 | } |
---|
1039 | else |
---|
1040 | { |
---|
1041 | _get_lock(&_tty_put_lock); |
---|
1042 | _puts("\n[GIET ERROR] in _dma_transfer : device type not supported\n"); |
---|
1043 | _release_lock(&_tty_put_lock); |
---|
1044 | return 1; |
---|
1045 | } |
---|
1046 | |
---|
1047 | // get device buffer physical address |
---|
1048 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
1049 | (device_vbase >> 12), |
---|
1050 | &ppn, |
---|
1051 | &flags ); |
---|
1052 | if (ko) |
---|
1053 | { |
---|
1054 | _get_lock(&_tty_put_lock); |
---|
1055 | _puts("\n[GIET ERROR] in _dma_transfer : device buffer unmapped\n"); |
---|
1056 | _release_lock(&_tty_put_lock); |
---|
1057 | return 1; |
---|
1058 | } |
---|
1059 | device_pbase = ((paddr_t)ppn << 12) | (device_vbase & 0x00000FFF); |
---|
1060 | |
---|
1061 | // Compute user buffer physical address |
---|
1062 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
1063 | (user_vaddr >> 12), |
---|
1064 | &ppn, |
---|
1065 | &flags ); |
---|
1066 | if (ko) |
---|
1067 | { |
---|
1068 | _get_lock(&_tty_put_lock); |
---|
1069 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer unmapped\n"); |
---|
1070 | _release_lock(&_tty_put_lock); |
---|
1071 | return 1; |
---|
1072 | } |
---|
1073 | if ((flags & PTE_U) == 0) |
---|
1074 | { |
---|
1075 | _get_lock(&_tty_put_lock); |
---|
1076 | _puts("[GIET ERROR] in _dma_transfer() : user buffer not in user space\n"); |
---|
1077 | _release_lock(&_tty_put_lock); |
---|
1078 | return 1; |
---|
1079 | } |
---|
1080 | if (((flags & PTE_W) == 0 ) && to_user) |
---|
1081 | { |
---|
1082 | _get_lock(&_tty_put_lock); |
---|
1083 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer not writable\n"); |
---|
1084 | _release_lock(&_tty_put_lock); |
---|
1085 | return 1; |
---|
1086 | } |
---|
1087 | user_pbase = (((paddr_t)ppn) << 12) | (user_vaddr & 0x00000FFF); |
---|
1088 | |
---|
1089 | /* This is a draft for IOMMU support |
---|
1090 | |
---|
1091 | // loop on all virtual pages covering the user buffer |
---|
1092 | unsigned int user_vpn_min = user_vaddr >> 12; |
---|
1093 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
1094 | unsigned int ix2 = 0; |
---|
1095 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
1096 | |
---|
1097 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
1098 | { |
---|
1099 | // get ppn and flags for each vpn |
---|
1100 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
1101 | vpn, |
---|
1102 | &ppn, |
---|
1103 | &flags ); |
---|
1104 | |
---|
1105 | // check access rights |
---|
1106 | if ( ko ) return 3; // unmapped |
---|
1107 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
---|
1108 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
---|
1109 | |
---|
1110 | // save first ppn value |
---|
1111 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
1112 | |
---|
1113 | if ( GIET_USE_IOMMU && USE_IOB ) // user buffer remapped in the I/0 space |
---|
1114 | { |
---|
1115 | // check buffer length < 2 Mbytes |
---|
1116 | if ( ix2 > 511 ) return 2; |
---|
1117 | |
---|
1118 | // map the physical page in IOMMU page table |
---|
1119 | _iommu_add_pte2( ix1, // PT1 index |
---|
1120 | ix2, // PT2 index |
---|
1121 | ppn, // physical page number |
---|
1122 | flags ); // protection flags |
---|
1123 | } |
---|
1124 | else // no IOMMU : check that physical pages are contiguous |
---|
1125 | { |
---|
1126 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
---|
1127 | } |
---|
1128 | |
---|
1129 | // increment page index |
---|
1130 | ix2++; |
---|
1131 | } // end for vpn |
---|
1132 | |
---|
1133 | // register the number of pages to be unmapped if iommu activated |
---|
1134 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
---|
1135 | |
---|
1136 | */ |
---|
1137 | |
---|
1138 | // invalidate data cache in case of memory write |
---|
1139 | if (to_user) _dcache_buf_invalidate((void *) user_vaddr, length); |
---|
1140 | |
---|
1141 | // get the lock |
---|
1142 | // _get_lock(&_dma_lock[dma_id]); |
---|
1143 | |
---|
1144 | #if GIET_DEBUG_DMA_DRIVER |
---|
1145 | _get_lock(&_tty_put_lock); |
---|
1146 | _puts("\n[GIET DEBUG] DMA TRANSFER at cycle "); |
---|
1147 | _putd( _proctime() ); |
---|
1148 | _puts("\n - cluster_id = "); |
---|
1149 | _putx( cluster_id ); |
---|
1150 | _puts("\n - channel_id = "); |
---|
1151 | _putx( channel_id ); |
---|
1152 | _puts("\n - dma_vbase = "); |
---|
1153 | _putx( (unsigned int)dma_vbase ); |
---|
1154 | _puts("\n - device_buf_vbase = "); |
---|
1155 | _putx( device_vbase ); |
---|
1156 | _puts("\n - device_buf_pbase = "); |
---|
1157 | _putl( device_pbase ); |
---|
1158 | _puts("\n - user_buf_vbase = "); |
---|
1159 | _putx( user_vaddr ); |
---|
1160 | _puts("\n - user_buf_pbase = "); |
---|
1161 | _putl( user_pbase ); |
---|
1162 | _puts("\n"); |
---|
1163 | _release_lock(&_tty_put_lock); |
---|
1164 | #endif |
---|
1165 | |
---|
1166 | // DMA configuration |
---|
1167 | if (to_user) |
---|
1168 | { |
---|
1169 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC] = (unsigned int)(device_pbase); |
---|
1170 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC_EXT] = (unsigned int)(device_pbase>>32); |
---|
1171 | dma_vbase[channel_id * DMA_SPAN + DMA_DST] = (unsigned int)(user_pbase); |
---|
1172 | dma_vbase[channel_id * DMA_SPAN + DMA_DST_EXT] = (unsigned int)(user_pbase>>32); |
---|
1173 | } |
---|
1174 | else |
---|
1175 | { |
---|
1176 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC] = (unsigned int)(user_pbase); |
---|
1177 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC_EXT] = (unsigned int)(user_pbase>>32); |
---|
1178 | dma_vbase[channel_id * DMA_SPAN + DMA_DST] = (unsigned int)(device_pbase); |
---|
1179 | dma_vbase[channel_id * DMA_SPAN + DMA_DST_EXT] = (unsigned int)(device_pbase>>32); |
---|
1180 | } |
---|
1181 | dma_vbase[channel_id * DMA_SPAN + DMA_LEN] = (unsigned int) length; |
---|
1182 | |
---|
1183 | return 0; |
---|
1184 | |
---|
1185 | #else // NB_DMA_CHANNELS == 0 |
---|
1186 | _get_lock(&_tty_put_lock); |
---|
1187 | _puts("\n[GIET ERROR] in _dma_transfer() : NB_DMA_CHANNELS == 0"); |
---|
1188 | _release_lock(&_tty_put_lock); |
---|
1189 | return 1; |
---|
1190 | #endif |
---|
1191 | |
---|
1192 | } // end _dma_transfer() |
---|
1193 | |
---|
1194 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1195 | // _dma_completed() |
---|
1196 | // This function checks completion of a DMA transfer to or from a peripheral |
---|
1197 | // device (Frame Buffer or Multi-Nic). |
---|
1198 | // As it is a blocking call, the processor is busy waiting. |
---|
1199 | // Returns 0 if success, > 0 if error |
---|
1200 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
1201 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1202 | unsigned int _dma_completed() |
---|
1203 | { |
---|
1204 | #if NB_DMA_CHANNELS > 0 |
---|
1205 | unsigned int dma_id = _get_context_slot(CTX_DMA_ID); |
---|
1206 | unsigned int dma_ret; |
---|
1207 | |
---|
1208 | // busy waiting with a pseudo random delay between bus access |
---|
1209 | while (_dma_done[dma_id] == 0) |
---|
1210 | { |
---|
1211 | unsigned int delay = (( _proctime() ^ _procid() << 4) & 0x3F) + 1; |
---|
1212 | asm volatile( |
---|
1213 | "move $3, %0 \n" |
---|
1214 | "loop_nic_completed: \n" |
---|
1215 | "addi $3, $3, -1 \n" |
---|
1216 | "bnez $3, loop_nic_completed \n" |
---|
1217 | "nop \n" |
---|
1218 | : |
---|
1219 | : "r" (delay) |
---|
1220 | : "$3"); |
---|
1221 | } |
---|
1222 | |
---|
1223 | #if GIET_DEBUG_DMA_DRIVER |
---|
1224 | _get_lock(&_tty_put_lock); |
---|
1225 | _puts("\n[GIET DEBUG] DMA COMPLETED at cycle "); |
---|
1226 | _putd( _proctime() ); |
---|
1227 | _puts("\n - cluster_id = "); |
---|
1228 | _putx( dma_id/NB_DMA_CHANNELS ); |
---|
1229 | _puts("\n - channel_id = "); |
---|
1230 | _putx( dma_id%NB_DMA_CHANNELS ); |
---|
1231 | _puts("\n"); |
---|
1232 | _release_lock(&_tty_put_lock); |
---|
1233 | #endif |
---|
1234 | |
---|
1235 | // reset synchronization variables |
---|
1236 | _dma_done[dma_id] = 0; |
---|
1237 | dma_ret = _dma_status[dma_id]; |
---|
1238 | asm volatile("sync\n"); |
---|
1239 | |
---|
1240 | // _dma_lock[dma_id] = 0; |
---|
1241 | |
---|
1242 | return dma_ret; |
---|
1243 | |
---|
1244 | #else // NB_DMA_CHANNELS == 0 |
---|
1245 | return -1; |
---|
1246 | #endif |
---|
1247 | |
---|
1248 | } // end _dma_completed |
---|
1249 | |
---|
1250 | |
---|
1251 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1252 | // VciFrameBuffer driver |
---|
1253 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1254 | // There three methods to access the VciFrameBuffer device: |
---|
1255 | // |
---|
1256 | // 1) The _fb_sync_write() and _fb_sync_read() functions use a memcpy strategy |
---|
1257 | // to implement the transfer between a data buffer (user space) and the frame |
---|
1258 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
1259 | // |
---|
1260 | // 2) The _fb_dma_write(), _fb_dma_read() and _fb_mdma_completed() functions use |
---|
1261 | // the VciMultiDma components (distributed in the clusters) to transfer data |
---|
1262 | // between the user buffer and the frame buffer. |
---|
1263 | // A DMA channel is allocated to the task requesting it in the mapping_info, |
---|
1264 | // and stored in the task context. |
---|
1265 | // |
---|
1266 | // 3) The _fb_cma_init(), _fb_cma_write() and _fb_cma_stop() functions use |
---|
1267 | // the VciChbufDma component (non replicated) to transfer a flow of images from |
---|
1268 | // an user space chained buffer (two buffers) to the frame buffer. |
---|
1269 | // A CMA channel must be allocated to the task requesting it in the mapping_info, |
---|
1270 | // and stored in the task context. |
---|
1271 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1272 | |
---|
1273 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1274 | // _fb_sync_write() |
---|
1275 | // Transfer data from an memory buffer to the frame_buffer device using a memcpy. |
---|
1276 | // - offset : offset (in bytes) in the frame buffer. |
---|
1277 | // - buffer : base address of the memory buffer. |
---|
1278 | // - length : number of bytes to be transfered. |
---|
1279 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1280 | |
---|
1281 | unsigned int _fb_sync_write(unsigned int offset, |
---|
1282 | const void * buffer, |
---|
1283 | unsigned int length) |
---|
1284 | { |
---|
1285 | unsigned char * fb_address = (unsigned char *) &seg_fbf_base + offset; |
---|
1286 | memcpy((void *) fb_address, (void *) buffer, length); |
---|
1287 | return 0; |
---|
1288 | } |
---|
1289 | |
---|
1290 | |
---|
1291 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1292 | // _fb_sync_read() |
---|
1293 | // Transfer data from the frame_buffer device to a memory buffer using a memcpy. |
---|
1294 | // - offset : offset (in bytes) in the frame buffer. |
---|
1295 | // - buffer : base address of the memory buffer. |
---|
1296 | // - length : number of bytes to be transfered. |
---|
1297 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1298 | unsigned int _fb_sync_read( unsigned int offset, |
---|
1299 | const void* buffer, |
---|
1300 | unsigned int length) |
---|
1301 | { |
---|
1302 | unsigned char* fb_address = (unsigned char *) &seg_fbf_base + offset; |
---|
1303 | memcpy((void *) buffer, (void *) fb_address, length); |
---|
1304 | return 0; |
---|
1305 | } |
---|
1306 | |
---|
1307 | |
---|
1308 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1309 | // _fb_dma_write() |
---|
1310 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
---|
1311 | // - offset : offset (in bytes) in the frame buffer. |
---|
1312 | // - buffer : base address of the memory buffer. |
---|
1313 | // - length : number of bytes to be transfered. |
---|
1314 | // Returns 0 if success, > 0 if error. |
---|
1315 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1316 | unsigned int _fb_dma_write( unsigned int offset, |
---|
1317 | const void* buffer, |
---|
1318 | unsigned int length) |
---|
1319 | { |
---|
1320 | return _dma_transfer( 0, // frame buffer |
---|
1321 | 0, // write |
---|
1322 | offset, |
---|
1323 | (unsigned int) buffer, |
---|
1324 | length ); |
---|
1325 | } |
---|
1326 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1327 | // _fb_dma_read() |
---|
1328 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
---|
1329 | // - offset : offset (in bytes) in the frame buffer. |
---|
1330 | // - buffer : virtual base address of the user buffer. |
---|
1331 | // - length : buffer size (number of bytes) |
---|
1332 | // Returns 0 if success, > 0 if error. |
---|
1333 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1334 | unsigned int _fb_dma_read( unsigned int offset, |
---|
1335 | const void* buffer, |
---|
1336 | unsigned int length ) |
---|
1337 | { |
---|
1338 | return _dma_transfer( 0, // frame buffer |
---|
1339 | 1, // read |
---|
1340 | offset, |
---|
1341 | (unsigned int) buffer, |
---|
1342 | length ); |
---|
1343 | } |
---|
1344 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1345 | // _fb_completed() |
---|
1346 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
1347 | // As it is a blocking call, the processor is busy waiting. |
---|
1348 | // Returns 0 if success, > 0 if error |
---|
1349 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
1350 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1351 | unsigned int _fb_dma_completed() |
---|
1352 | { |
---|
1353 | return _dma_completed(); |
---|
1354 | } |
---|
1355 | |
---|
1356 | // This structure contains two chbuf descriptors that can be used by |
---|
1357 | // the VciChbufDma component to tranfer a flow of images: |
---|
1358 | // - The SRC chbuf descriptor contain two slots (two user buffers) |
---|
1359 | // - The DST chbuf descriptor contains only one slot (frame buffer) |
---|
1360 | |
---|
1361 | typedef struct fb_cma_channel_s |
---|
1362 | { |
---|
1363 | paddr_t buf0; // physical address + status for user buffer 0 |
---|
1364 | paddr_t buf1; // physical address + status for user buffer 1 |
---|
1365 | paddr_t fbf; // physical address + status for frame buffer |
---|
1366 | unsigned int length; // buffer length (number of bytes) |
---|
1367 | unsigned int padding; // unused (just to hahe channel size = 32 bytes) |
---|
1368 | } fb_cma_channel_t; |
---|
1369 | |
---|
1370 | in_unckdata volatile fb_cma_channel_t _fb_cma_channel[NB_CMA_CHANNELS] __attribute__((aligned(64))); |
---|
1371 | in_unckdata volatile paddr_t _fb_cma_desc_paddr[NB_CMA_CHANNELS]; |
---|
1372 | |
---|
1373 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1374 | // _fb_cma_init() |
---|
1375 | // This function uses the _fb_cma_channel[] and _fb_cma_desc_paddr[] arrays, |
---|
1376 | // that are both indexed by the channel index. |
---|
1377 | // where each entry contains one fb_cma_channel structure (defining two |
---|
1378 | // SRC and DST chbuf descriptors), and does four things: |
---|
1379 | // |
---|
1380 | // 1) computes the physical addresses for the two source user buffers, for |
---|
1381 | // the destination frame buffer. It initialises the channel descriptor |
---|
1382 | // _fb_cma_channel[i], containing the SRC chbuf descriptor (two buffers), |
---|
1383 | // the DST chbuf descriptor (one single frame buffer), and the buffer length. |
---|
1384 | // |
---|
1385 | // 2) computes the physical address for the channel descriptor and register it |
---|
1386 | // in the _fb_cma_desc_paddr[i]. |
---|
1387 | // |
---|
1388 | // 3) makes a SYNC request to L2 cache for channel descriptor, because the |
---|
1389 | // channel descriptor is directly accessed in XRAM by the CMA component. |
---|
1390 | // |
---|
1391 | // 4) Starts the CMA hardware channel, that will poll the channel descriptor |
---|
1392 | // to fransfer an user buffer to the frame buffer as soon as the source |
---|
1393 | // user buffer is marked valid. |
---|
1394 | // |
---|
1395 | // Arguments are: |
---|
1396 | // - vbase0 : virtual base address of the first user buffer. |
---|
1397 | // - vbase1 : virtual base address of the second user buffer. |
---|
1398 | // - length : user buffer size (number of bytes) |
---|
1399 | // Returns 0 if success, > 0 if error |
---|
1400 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1401 | unsigned int _fb_cma_init( const void* vbase0, |
---|
1402 | const void* vbase1, |
---|
1403 | unsigned int length ) |
---|
1404 | { |
---|
1405 | #if NB_CMA_CHANNELS > 0 |
---|
1406 | |
---|
1407 | unsigned int channel_id; // CMA channel index |
---|
1408 | unsigned int user_ptab; // page table virtual address |
---|
1409 | unsigned int ko; // unsuccessfull V2P translation |
---|
1410 | unsigned int vaddr; // virtual address |
---|
1411 | unsigned int flags; // protection flags |
---|
1412 | unsigned int ppn; // physical page number |
---|
1413 | paddr_t channel_pbase; // physical address of channel descriptor |
---|
1414 | |
---|
1415 | // get CMA channel index |
---|
1416 | channel_id = _get_context_slot(CTX_CMA_ID); |
---|
1417 | if ( channel_id >= NB_CMA_CHANNELS ) |
---|
1418 | { |
---|
1419 | _get_lock(&_tty_put_lock); |
---|
1420 | _puts("\n[GIET ERROR] in _fb_cma_init() : CMA channel index too large\n"); |
---|
1421 | _release_lock(&_tty_put_lock); |
---|
1422 | return 1; |
---|
1423 | } |
---|
1424 | |
---|
1425 | // checking size for channel descriptor |
---|
1426 | if ( sizeof(fb_cma_channel_t) != 32 ) |
---|
1427 | { |
---|
1428 | _get_lock(&_tty_put_lock); |
---|
1429 | _puts("\n[GIET ERROR] in _fb_cma_init() : bad fb_cma_channel size\n"); |
---|
1430 | _release_lock(&_tty_put_lock); |
---|
1431 | return 1; |
---|
1432 | } |
---|
1433 | |
---|
1434 | // checking channel descriptor alignment (32 bytes) |
---|
1435 | if ( (unsigned int)(&_fb_cma_channel[channel_id]) & 0x1F ) |
---|
1436 | { |
---|
1437 | _get_lock(&_tty_put_lock); |
---|
1438 | _puts("\n[GIET ERROR] in _fb_cma_init() : bad fb_cma_channel alignment\n"); |
---|
1439 | _release_lock(&_tty_put_lock); |
---|
1440 | return 1; |
---|
1441 | } |
---|
1442 | |
---|
1443 | // checking user buffer virtual addresses and length alignment |
---|
1444 | if ( ((unsigned int)vbase0 & 0x3) || ((unsigned int)vbase1 & 0x3) || (length & 0x3) ) |
---|
1445 | { |
---|
1446 | _get_lock(&_tty_put_lock); |
---|
1447 | _puts("\n[GIET ERROR] in _fb_cma_init() : user buffer not word aligned\n"); |
---|
1448 | _release_lock(&_tty_put_lock); |
---|
1449 | return 1; |
---|
1450 | } |
---|
1451 | |
---|
1452 | // get page table virtual address |
---|
1453 | user_ptab = _get_context_slot(CTX_PTAB_ID); |
---|
1454 | |
---|
1455 | // compute and register frame buffer physical address |
---|
1456 | vaddr = ((unsigned int)&seg_fbf_base); |
---|
1457 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
1458 | (vaddr >> 12), |
---|
1459 | &ppn, |
---|
1460 | &flags ); |
---|
1461 | if (ko) |
---|
1462 | { |
---|
1463 | _get_lock(&_tty_put_lock); |
---|
1464 | _puts("\n[GIET ERROR] in _fb_cma_init() : frame buffer unmapped\n"); |
---|
1465 | _release_lock(&_tty_put_lock); |
---|
1466 | return 1; |
---|
1467 | } |
---|
1468 | _fb_cma_channel[channel_id].fbf = ((paddr_t)ppn << 12) | (vaddr & 0x00000FFF); |
---|
1469 | |
---|
1470 | // Compute and register first user buffer physical address |
---|
1471 | vaddr = (unsigned int)vbase0; |
---|
1472 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
1473 | (vaddr >> 12), |
---|
1474 | &ppn, |
---|
1475 | &flags ); |
---|
1476 | if (ko) |
---|
1477 | { |
---|
1478 | _get_lock(&_tty_put_lock); |
---|
1479 | _puts("\n[GIET ERROR] in _fb_cma_init() : user buffer 0 unmapped\n"); |
---|
1480 | _release_lock(&_tty_put_lock); |
---|
1481 | return 1; |
---|
1482 | } |
---|
1483 | if ((flags & PTE_U) == 0) |
---|
1484 | { |
---|
1485 | _get_lock(&_tty_put_lock); |
---|
1486 | _puts("[GIET ERROR] in _fb_cma_init() : user buffer 0 not in user space\n"); |
---|
1487 | _release_lock(&_tty_put_lock); |
---|
1488 | return 1; |
---|
1489 | } |
---|
1490 | _fb_cma_channel[channel_id].buf0 = ((paddr_t)ppn << 12) | (vaddr & 0x00000FFF); |
---|
1491 | |
---|
1492 | // Compute and register second user buffer physical address |
---|
1493 | vaddr = (unsigned int)vbase1; |
---|
1494 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
1495 | (vaddr >> 12), |
---|
1496 | &ppn, |
---|
1497 | &flags ); |
---|
1498 | if (ko) |
---|
1499 | { |
---|
1500 | _get_lock(&_tty_put_lock); |
---|
1501 | _puts("\n[GIET ERROR] in _fb_cma_init() : user buffer 1 unmapped\n"); |
---|
1502 | _release_lock(&_tty_put_lock); |
---|
1503 | return 1; |
---|
1504 | } |
---|
1505 | if ((flags & PTE_U) == 0) |
---|
1506 | { |
---|
1507 | _get_lock(&_tty_put_lock); |
---|
1508 | _puts("[GIET ERROR] in _fb_cma_init() : user buffer 1 not in user space\n"); |
---|
1509 | _release_lock(&_tty_put_lock); |
---|
1510 | return 1; |
---|
1511 | } |
---|
1512 | _fb_cma_channel[channel_id].buf1 = ((paddr_t)ppn << 12) | (vaddr & 0x00000FFF); |
---|
1513 | |
---|
1514 | // register buffer length in channel descriptor |
---|
1515 | _fb_cma_channel[channel_id].length = length; |
---|
1516 | |
---|
1517 | // Compute and register physical adress of the channel descriptor |
---|
1518 | vaddr = (unsigned int)(&_fb_cma_channel[channel_id]); |
---|
1519 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
1520 | (vaddr >> 12), |
---|
1521 | &ppn, |
---|
1522 | &flags ); |
---|
1523 | if (ko) |
---|
1524 | { |
---|
1525 | _get_lock(&_tty_put_lock); |
---|
1526 | _puts("\n[GIET ERROR] in _fb_cma_init() : channel descriptor unmapped\n"); |
---|
1527 | _release_lock(&_tty_put_lock); |
---|
1528 | return 1; |
---|
1529 | } |
---|
1530 | channel_pbase = (((paddr_t)ppn) << 12) | (vaddr & 0x00000FFF); |
---|
1531 | _fb_cma_desc_paddr[channel_id] = channel_pbase; |
---|
1532 | |
---|
1533 | #if GIET_DEBUG_CMA_DRIVER |
---|
1534 | _puts("\n"); |
---|
1535 | _puts("- fbf pbase = "); |
---|
1536 | _putl( _fb_cma_channel[channel_id].fbf ); |
---|
1537 | _puts("\n"); |
---|
1538 | _puts("- buf0 pbase = "); |
---|
1539 | _putl( _fb_cma_channel[channel_id].buf0 ); |
---|
1540 | _puts("\n"); |
---|
1541 | _puts("- buf1 pbase = "); |
---|
1542 | _putl( _fb_cma_channel[channel_id].buf1 ); |
---|
1543 | _puts("\n"); |
---|
1544 | _puts("- channel pbase = "); |
---|
1545 | _putl( channel_pbase ); |
---|
1546 | _puts("\n"); |
---|
1547 | #endif |
---|
1548 | |
---|
1549 | // SYNC request for channel descriptor |
---|
1550 | _memc_sync( channel_pbase, 32 ); |
---|
1551 | |
---|
1552 | // CMA channel activation |
---|
1553 | unsigned int* cma_vbase = (unsigned int *)&seg_cma_base; |
---|
1554 | unsigned int offset = channel_id * CHBUF_CHANNEL_SPAN; |
---|
1555 | |
---|
1556 | cma_vbase[offset + CHBUF_SRC_DESC] = (unsigned int)(channel_pbase & 0xFFFFFFFF); |
---|
1557 | cma_vbase[offset + CHBUF_SRC_EXT] = (unsigned int)(channel_pbase >> 32); |
---|
1558 | cma_vbase[offset + CHBUF_SRC_NBUFS] = 2; |
---|
1559 | cma_vbase[offset + CHBUF_DST_DESC] = (unsigned int)(channel_pbase & 0xFFFFFFFF) + 16; |
---|
1560 | cma_vbase[offset + CHBUF_DST_EXT] = (unsigned int)(channel_pbase >> 32); |
---|
1561 | cma_vbase[offset + CHBUF_DST_NBUFS] = 1; |
---|
1562 | cma_vbase[offset + CHBUF_BUF_SIZE] = length; |
---|
1563 | cma_vbase[offset + CHBUF_PERIOD] = 300; |
---|
1564 | cma_vbase[offset + CHBUF_RUN] = 1; |
---|
1565 | |
---|
1566 | return 0; |
---|
1567 | |
---|
1568 | #else |
---|
1569 | |
---|
1570 | _get_lock(&_tty_put_lock); |
---|
1571 | _puts("\n[GIET ERROR] in _fb_cma_init() : no CMA channel allocated\n"); |
---|
1572 | _release_lock(&_tty_put_lock); |
---|
1573 | |
---|
1574 | return 1; |
---|
1575 | #endif |
---|
1576 | } |
---|
1577 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1578 | // _fb_cma_write() |
---|
1579 | // This function makes a SYNC request for the source user buffer. |
---|
1580 | // Then it updates the status of the SRC and DST chbuf descriptors, to allow |
---|
1581 | // the CMA component to transfer the source user buffer buffer to the destination |
---|
1582 | // frame buffer, and makes a SYNC request for the channel descriptor. |
---|
1583 | // |
---|
1584 | // - buffer_id : user buffer index (0 => buf0 / not 0 => buf1) |
---|
1585 | // Returns 0 if success, > 0 if error |
---|
1586 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1587 | unsigned int _fb_cma_write( unsigned int buffer_id ) |
---|
1588 | { |
---|
1589 | #if NB_CMA_CHANNELS > 0 |
---|
1590 | |
---|
1591 | paddr_t buf_paddr; |
---|
1592 | unsigned int buf_length; |
---|
1593 | |
---|
1594 | // get CMA channel index |
---|
1595 | unsigned int channel_id = _get_context_slot(CTX_CMA_ID); |
---|
1596 | |
---|
1597 | // SYNC request for the source user buffer |
---|
1598 | if ( buffer_id == 0 ) buf_paddr = _fb_cma_channel[channel_id].buf0; |
---|
1599 | else buf_paddr = _fb_cma_channel[channel_id].buf1; |
---|
1600 | buf_length = _fb_cma_channel[channel_id].length; |
---|
1601 | _memc_sync( buf_paddr, buf_length ); |
---|
1602 | |
---|
1603 | // set SRC full |
---|
1604 | if ( buffer_id == 0 ) |
---|
1605 | _fb_cma_channel[channel_id].buf0 = buf_paddr | 0x8000000000000000ULL; |
---|
1606 | else |
---|
1607 | _fb_cma_channel[channel_id].buf1 = buf_paddr | 0x8000000000000000ULL; |
---|
1608 | |
---|
1609 | // set DST empty |
---|
1610 | _fb_cma_channel[channel_id].fbf = _fb_cma_channel[channel_id].fbf |
---|
1611 | & 0x7FFFFFFFFFFFFFFFULL; |
---|
1612 | |
---|
1613 | // SYNC request for the channel descriptor |
---|
1614 | buf_paddr = _fb_cma_desc_paddr[channel_id]; |
---|
1615 | buf_length = 32; |
---|
1616 | _memc_sync( buf_paddr, buf_length ); |
---|
1617 | |
---|
1618 | return 0; |
---|
1619 | |
---|
1620 | #else |
---|
1621 | |
---|
1622 | _get_lock(&_tty_put_lock); |
---|
1623 | _puts("\n[GIET ERROR] in _fb_cma_channel() : no CMA channel allocated\n"); |
---|
1624 | _release_lock(&_tty_put_lock); |
---|
1625 | return 1; |
---|
1626 | |
---|
1627 | #endif |
---|
1628 | } |
---|
1629 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1630 | // _fb_cma_stop() |
---|
1631 | // This function desactivates the CMA channel allocated to the calling task. |
---|
1632 | // Returns 0 if success, > 0 if error |
---|
1633 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1634 | unsigned int _fb_cma_stop( unsigned int buffer_id ) |
---|
1635 | { |
---|
1636 | #if NB_CMA_CHANNELS > 0 |
---|
1637 | |
---|
1638 | // get CMA channel allocated |
---|
1639 | unsigned int channel_id = _get_context_slot(CTX_CMA_ID); |
---|
1640 | |
---|
1641 | // CMA channel desactivation |
---|
1642 | unsigned int* cma_vbase = (unsigned int *)&seg_cma_base; |
---|
1643 | unsigned int offset = channel_id * CHBUF_CHANNEL_SPAN; |
---|
1644 | cma_vbase[offset + CHBUF_RUN] = 0; |
---|
1645 | return 0; |
---|
1646 | |
---|
1647 | #else |
---|
1648 | |
---|
1649 | _get_lock(&_tty_put_lock); |
---|
1650 | _puts("\n[GIET ERROR] in _fb_cma_stop() : no CMA channel allocated\n"); |
---|
1651 | _release_lock(&_tty_put_lock); |
---|
1652 | return 1; |
---|
1653 | |
---|
1654 | #endif |
---|
1655 | } |
---|
1656 | |
---|
1657 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1658 | // VciMultiNic driver |
---|
1659 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1660 | // The VciMultiNic device can be accessed directly by software with memcpy(), |
---|
1661 | // or it can be accessed through a multi-channels CMA component: |
---|
1662 | // |
---|
1663 | // The '_nic_sync_write' and '_nic_sync_read' functions use a memcpy strategy to |
---|
1664 | // implement the transfer between a data buffer (user space) and the NIC |
---|
1665 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
1666 | // |
---|
1667 | // The _nic_cma_init() and _nic_cma_stop() functions use the VciChbufDma component |
---|
1668 | // to transfer a flow of packets from the NIC RX hard chbuf (two containers) |
---|
1669 | // to an user RX chbuf (two containers), and to transfer another flow of packets |
---|
1670 | // from an user TX chbuf (two containers) to the NIC TX chbuf (two containers). |
---|
1671 | // One NIC channel and two CMA channels must be allocated to the task |
---|
1672 | // in the mapping_info data structure. |
---|
1673 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1674 | |
---|
1675 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1676 | // _nic_sync_write() |
---|
1677 | // Transfer data from an memory buffer to the NIC device using a memcpy. |
---|
1678 | // - buffer : base address of the memory buffer. |
---|
1679 | // - length : number of bytes to be transfered. |
---|
1680 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1681 | unsigned int _nic_sync_write( const void* buffer, |
---|
1682 | unsigned int length ) |
---|
1683 | { |
---|
1684 | // To be defined |
---|
1685 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
1686 | // memcpy((void *) nic_address, (void *) buffer, length); |
---|
1687 | return 0; |
---|
1688 | } |
---|
1689 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1690 | // _nic_sync_read() |
---|
1691 | // Transfer data from the NIC device to a memory buffer using a memcpy. |
---|
1692 | // - buffer : base address of the memory buffer. |
---|
1693 | // - length : number of bytes to be transfered. |
---|
1694 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1695 | unsigned int _nic_sync_read( const void* buffer, |
---|
1696 | unsigned int length ) |
---|
1697 | { |
---|
1698 | // To be defined |
---|
1699 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
1700 | // memcpy((void *) buffer, (void *) nic_address, length); |
---|
1701 | return 0; |
---|
1702 | } |
---|
1703 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1704 | // _nic_cma_rx_init() |
---|
1705 | // Returns 0 if success, > 0 if error. |
---|
1706 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1707 | unsigned int _nic_cma_rx_init( const void* buf0, |
---|
1708 | const void* buf1, |
---|
1709 | unsigned int length ) |
---|
1710 | { |
---|
1711 | // to be defined |
---|
1712 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
1713 | return 0; |
---|
1714 | } |
---|
1715 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1716 | // _nic_cma_tx_init() |
---|
1717 | // Returns 0 if success, > 0 if error. |
---|
1718 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1719 | unsigned int _nic_cma_tx_init( const void* buf0, |
---|
1720 | const void* buf1, |
---|
1721 | unsigned int length ) |
---|
1722 | { |
---|
1723 | // to be defined |
---|
1724 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
1725 | return 0; |
---|
1726 | }////////////////////////////////////////////////////////////////////////////////// |
---|
1727 | // _nic_cma_stop() |
---|
1728 | // Returns 0 if success, > 0 if error. |
---|
1729 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1730 | unsigned int _nic_cma_stop() |
---|
1731 | { |
---|
1732 | // to be defined |
---|
1733 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
1734 | return 0; |
---|
1735 | } |
---|
1736 | |
---|
1737 | |
---|
1738 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1739 | // VciMemCache driver |
---|
1740 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1741 | // The VciMemCache device can be accessed through a configuration interface. |
---|
1742 | // as a set of uncached, memory mapped registers. |
---|
1743 | /////////////////////////////////////////////////////////////////////////////////// |
---|
1744 | // The (virtual) base address of the associated segment is: |
---|
1745 | // |
---|
1746 | // mmc_address = seg_mmc_base + cluster_id * vseg_cluster_increment |
---|
1747 | // |
---|
1748 | //////////////////////////////////////////////////////////////////////////////// |
---|
1749 | |
---|
1750 | /////////////////////////////////////////////////////////////////////////////////// |
---|
1751 | // _memc_inval() |
---|
1752 | // This function invalidates all cache lines covering a memory buffer defined |
---|
1753 | // by the physical base address, and the length. |
---|
1754 | // The buffer address MSB are used to compute the cluster index. |
---|
1755 | /////////////////////////////////////////////////////////////////////////////////// |
---|
1756 | void _memc_inval( paddr_t buf_paddr, |
---|
1757 | unsigned int buf_length ) |
---|
1758 | { |
---|
1759 | unsigned int cluster_id = (unsigned int)((buf_paddr>>32)/(256/NB_CLUSTERS)); |
---|
1760 | |
---|
1761 | unsigned int * mmc_address = (unsigned int *) ((unsigned int)&seg_mmc_base + |
---|
1762 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
1763 | |
---|
1764 | // get the lock protecting exclusive access to MEMC |
---|
1765 | while ( mmc_address[MEMC_LOCK] ) { asm volatile("nop"); } |
---|
1766 | |
---|
1767 | // write inval arguments |
---|
1768 | mmc_address[MEMC_ADDR_LO] = (unsigned int)buf_paddr; |
---|
1769 | mmc_address[MEMC_ADDR_HI] = (unsigned int)(buf_paddr>>32); |
---|
1770 | mmc_address[MEMC_BUF_LENGTH] = buf_length; |
---|
1771 | mmc_address[MEMC_CMD_TYPE] = MEMC_CMD_INVAL; |
---|
1772 | |
---|
1773 | // release the lock protecting MEMC |
---|
1774 | mmc_address[MEMC_LOCK] = 0; |
---|
1775 | } |
---|
1776 | /////////////////////////////////////////////////////////////////////////////////// |
---|
1777 | // _memc_sync() |
---|
1778 | // This function copies to external RAM all cache lines covering a memory buffer |
---|
1779 | // defined by the physical base address, and the length, if they are dirty. |
---|
1780 | // The buffer address MSB are used to compute the cluster index. |
---|
1781 | /////////////////////////////////////////////////////////////////////////////////// |
---|
1782 | void _memc_sync( paddr_t buf_paddr, |
---|
1783 | unsigned int buf_length ) |
---|
1784 | { |
---|
1785 | unsigned int cluster_id = (unsigned int)((buf_paddr>>32)/(256/NB_CLUSTERS)); |
---|
1786 | |
---|
1787 | unsigned int * mmc_address = (unsigned int *) ((unsigned int)&seg_mmc_base + |
---|
1788 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
1789 | |
---|
1790 | // get the lock protecting exclusive access to MEMC |
---|
1791 | while ( mmc_address[MEMC_LOCK] ) { asm volatile("nop"); } |
---|
1792 | |
---|
1793 | // write inval arguments |
---|
1794 | mmc_address[MEMC_ADDR_LO] = (unsigned int)buf_paddr; |
---|
1795 | mmc_address[MEMC_ADDR_HI] = (unsigned int)(buf_paddr>>32); |
---|
1796 | mmc_address[MEMC_BUF_LENGTH] = buf_length; |
---|
1797 | mmc_address[MEMC_CMD_TYPE] = MEMC_CMD_SYNC; |
---|
1798 | |
---|
1799 | // release the lock protecting MEMC |
---|
1800 | mmc_address[MEMC_LOCK] = 0; |
---|
1801 | } |
---|
1802 | |
---|
1803 | /////////////////////////////////////////////////////////////////////////////////// |
---|
1804 | // _heap_info() |
---|
1805 | // This function returns the information associated to a heap (size and vaddr) |
---|
1806 | // It uses the global task index (CTX_GTID_ID, unique for each giet task) and the |
---|
1807 | // vspace index (CTX_VSID_ID) defined in the task context. |
---|
1808 | /////////////////////////////////////////////////////////////////////////////////// |
---|
1809 | unsigned int _heap_info( unsigned int* vaddr, |
---|
1810 | unsigned int* size ) |
---|
1811 | { |
---|
1812 | mapping_header_t * header = (mapping_header_t *) (&seg_mapping_base); |
---|
1813 | mapping_task_t * tasks = _get_task_base(header); |
---|
1814 | mapping_vobj_t * vobjs = _get_vobj_base(header); |
---|
1815 | mapping_vspace_t * vspaces = _get_vspace_base(header); |
---|
1816 | |
---|
1817 | unsigned int taskid = _get_context_slot(CTX_GTID_ID); |
---|
1818 | unsigned int vspaceid = _get_context_slot(CTX_VSID_ID); |
---|
1819 | |
---|
1820 | int heap_local_vobjid = tasks[taskid].heap_vobjid; |
---|
1821 | if (heap_local_vobjid != -1) |
---|
1822 | { |
---|
1823 | unsigned int vobjheapid = heap_local_vobjid + vspaces[vspaceid].vobj_offset; |
---|
1824 | *vaddr = vobjs[vobjheapid].vaddr; |
---|
1825 | *size = vobjs[vobjheapid].length; |
---|
1826 | return 0; |
---|
1827 | } |
---|
1828 | else |
---|
1829 | { |
---|
1830 | *vaddr = 0; |
---|
1831 | *size = 0; |
---|
1832 | return 0; |
---|
1833 | } |
---|
1834 | } |
---|
1835 | |
---|
1836 | |
---|
1837 | //////////////////////////////////////////////////////////////////////////////// |
---|
1838 | // _sim_helper_access() |
---|
1839 | // Accesses the Simulation Helper Component |
---|
1840 | // If the access is on a writable register (except SIMHELPER_PAUSE_SIM), |
---|
1841 | // the function should never return since the simulation will stop before |
---|
1842 | // If the access is on a readable register, returns 0 on success, 1 on failure, |
---|
1843 | // and writes the return value at address retval |
---|
1844 | //////////////////////////////////////////////////////////////////////////////// |
---|
1845 | unsigned int _sim_helper_access(unsigned int register_index, |
---|
1846 | unsigned int value, |
---|
1847 | unsigned int * retval) { |
---|
1848 | unsigned int * sim_helper_address = (unsigned int *) &seg_sim_base; |
---|
1849 | |
---|
1850 | if (register_index == SIMHELPER_SC_STOP || |
---|
1851 | register_index == SIMHELPER_END_WITH_RETVAL || |
---|
1852 | register_index == SIMHELPER_EXCEPT_WITH_VAL || |
---|
1853 | register_index == SIMHELPER_PAUSE_SIM || |
---|
1854 | register_index == SIMHELPER_SIGINT) { |
---|
1855 | sim_helper_address[register_index] = value; |
---|
1856 | } |
---|
1857 | else if (register_index == SIMHELPER_CYCLES) { |
---|
1858 | *retval = sim_helper_address[register_index]; |
---|
1859 | } |
---|
1860 | else { |
---|
1861 | _get_lock(&_tty_put_lock); |
---|
1862 | _puts("\n[GIET ERROR] in _sim_helper_access() : access to unmapped register\n"); |
---|
1863 | _release_lock(&_tty_put_lock); |
---|
1864 | return -1; |
---|
1865 | } |
---|
1866 | |
---|
1867 | return 0; |
---|
1868 | } |
---|
1869 | |
---|
1870 | |
---|
1871 | |
---|
1872 | // Local Variables: |
---|
1873 | // tab-width: 4 |
---|
1874 | // c-basic-offset: 4 |
---|
1875 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
1876 | // indent-tabs-mode: nil |
---|
1877 | // End: |
---|
1878 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
1879 | |
---|