1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : drivers.c |
---|
3 | // Date : 01/04/2012 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The drivers.c and drivers.h files are part ot the GIET-VM nano kernel. |
---|
8 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
9 | // - vci_multi_tty |
---|
10 | // - vci_multi_timer |
---|
11 | // - vci_multi_dma |
---|
12 | // - vci_multi_icu |
---|
13 | // - vci_xicu & vci_multi_icu |
---|
14 | // - vci_gcd |
---|
15 | // - vci_frame_buffer |
---|
16 | // - vci_block_device |
---|
17 | // |
---|
18 | // The following global parameters must be defined in the giet_config.h file: |
---|
19 | // - CLUSTER_IO_ID |
---|
20 | // - CLUSTER_SIZE |
---|
21 | // - NB_CLUSTERS |
---|
22 | // - NB_PROCS_MAX |
---|
23 | // - NB_TIMERS_MAX |
---|
24 | // - NB_DMAS_MAX |
---|
25 | // - NB_TTYS |
---|
26 | // |
---|
27 | // The following virtual base addresses must be defined in the giet.ld file: |
---|
28 | // - seg_icu_base |
---|
29 | // - seg_tim_base |
---|
30 | // - seg_tty_base |
---|
31 | // - seg_gcd_base |
---|
32 | // - seg_dma_base |
---|
33 | // - seg_fbf_base |
---|
34 | // - seg_ioc_base |
---|
35 | // As some peripherals can be replicated in the clusters (ICU, TIMER, DMA) |
---|
36 | // These addresses must be completed by an offset depending on the cluster index |
---|
37 | // full_base_address = seg_***_base + cluster_id * CLUSTER_SIZE |
---|
38 | /////////////////////////////////////////////////////////////////////////////////// |
---|
39 | |
---|
40 | #include <vm_handler.h> |
---|
41 | #include <sys_handler.h> |
---|
42 | #include <giet_config.h> |
---|
43 | #include <drivers.h> |
---|
44 | #include <common.h> |
---|
45 | #include <hwr_mapping.h> |
---|
46 | #include <mips32_registers.h> |
---|
47 | #include <ctx_handler.h> |
---|
48 | |
---|
49 | #if !defined(NB_CLUSTERS) |
---|
50 | # error: You must define NB_CLUSTERS in 'giet_config.h' file |
---|
51 | #endif |
---|
52 | |
---|
53 | #if !defined(NB_PROCS_MAX) |
---|
54 | # error: You must define NB_PROCS_MAX in 'giet_config.h' file |
---|
55 | #endif |
---|
56 | |
---|
57 | #if (NB_PROCS_MAX > 8) |
---|
58 | # error: NB_PROCS_MAX cannot be larger than 8! |
---|
59 | #endif |
---|
60 | |
---|
61 | #if !defined(CLUSTER_SIZE) |
---|
62 | # error: You must define CLUSTER_SIZE in 'giet_config.h' file |
---|
63 | #endif |
---|
64 | |
---|
65 | #if !defined(NB_TTYS) |
---|
66 | # error: You must define NB_TTYS in 'giet_config.h' file |
---|
67 | #endif |
---|
68 | |
---|
69 | #if (NB_TTYS < 1) |
---|
70 | # error: NB_TTYS cannot be smaller than 1! |
---|
71 | #endif |
---|
72 | |
---|
73 | #if !defined(NB_DMAS_MAX) |
---|
74 | #define NB_DMAS_MAX 0 |
---|
75 | #endif |
---|
76 | |
---|
77 | #if !defined(NB_TIMERS_MAX) |
---|
78 | #define NB_TIMERS_MAX 0 |
---|
79 | #endif |
---|
80 | |
---|
81 | #if ( (NB_TIMERS_MAX + NB_PROCS_MAX) > 32 ) |
---|
82 | # error: NB_TIMERS_MAX + NB_PROCS_MAX cannot be larger than 32 |
---|
83 | #endif |
---|
84 | |
---|
85 | #if !defined(NB_IOCS) |
---|
86 | # error: You must define NB_IOCS in 'giet_config.h' file |
---|
87 | #endif |
---|
88 | |
---|
89 | #if ( NB_IOCS > 1 ) |
---|
90 | # error: NB_IOCS cannot be larger than 1 |
---|
91 | #endif |
---|
92 | |
---|
93 | |
---|
94 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
95 | |
---|
96 | ////////////////////////////////////////////////////////////////////////////// |
---|
97 | // Timers driver |
---|
98 | ////////////////////////////////////////////////////////////////////////////// |
---|
99 | // The timers can be implemented in a vci_timer component or in a vci_xicu |
---|
100 | // component (depending on the GIET_USE_XICU parameter). |
---|
101 | // There is one timer (or xicu) component per cluster. |
---|
102 | // There is two types of timers: |
---|
103 | // - "system" timers : one per processor, used for context switch. |
---|
104 | // local_id in [0, NB_PROCS_MAX-1], |
---|
105 | // - "user" timers : requested by the task in the mapping_info data structure. |
---|
106 | // local_id in [NB_PROC_MAX, NB_PROCS_MAX + NB_TIMERS_MAX - 1] |
---|
107 | // For each user timer, the timer_id is stored in the context of the task. |
---|
108 | // The global index is cluster_id * (NB_PROCS_MAX+NB_TIMERS_MAX) + local_id |
---|
109 | ////////////////////////////////////////////////////////////////////////////// |
---|
110 | |
---|
111 | // User Timer signaling variables |
---|
112 | |
---|
113 | #if (NB_TIMERS_MAX > 0) |
---|
114 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS*NB_TIMERS_MAX] |
---|
115 | = { [0 ... ((NB_CLUSTERS*NB_TIMERS_MAX)-1)] = 0 }; |
---|
116 | #endif |
---|
117 | |
---|
118 | ////////////////////////////////////////////////////////////////////////////// |
---|
119 | // _timer_start() |
---|
120 | // This function activates a timer in the vci_timer (or vci_xicu) component |
---|
121 | // by writing in the proper register the period value. |
---|
122 | // It can be used by both the kernel to initialise a "system" timer, |
---|
123 | // or by a task (through a system call) to configure an "user" timer. |
---|
124 | // Returns 0 if success, > 0 if error. |
---|
125 | ////////////////////////////////////////////////////////////////////////////// |
---|
126 | unsigned int _timer_start( unsigned int cluster_id, |
---|
127 | unsigned int local_id, |
---|
128 | unsigned int period ) |
---|
129 | { |
---|
130 | // parameters checking |
---|
131 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
132 | if ( local_id >= NB_TIMERS_MAX + NB_PROCS_MAX ) return 1; |
---|
133 | |
---|
134 | #if GIET_USE_XICU |
---|
135 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
136 | (cluster_id * CLUSTER_SIZE) ); |
---|
137 | |
---|
138 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period; |
---|
139 | #else |
---|
140 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
141 | (cluster_id * CLUSTER_SIZE) ); |
---|
142 | |
---|
143 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period; |
---|
144 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0x3; |
---|
145 | #endif |
---|
146 | |
---|
147 | return 0; |
---|
148 | } |
---|
149 | ////////////////////////////////////////////////////////////////////////////// |
---|
150 | // _timer_stop() |
---|
151 | // This function desactivates a timer in the vci_timer (or vci_xicu) component |
---|
152 | // by writing in the proper register. |
---|
153 | // Returns 0 if success, > 0 if error. |
---|
154 | ////////////////////////////////////////////////////////////////////////////// |
---|
155 | unsigned int _timer_stop( unsigned int cluster_id, |
---|
156 | unsigned int local_id ) |
---|
157 | { |
---|
158 | // parameters checking |
---|
159 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
160 | if ( local_id >= NB_TIMERS_MAX + NB_PROCS_MAX ) return 1; |
---|
161 | |
---|
162 | #if GIET_USE_XICU |
---|
163 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
164 | (cluster_id * CLUSTER_SIZE) ); |
---|
165 | |
---|
166 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
167 | #else |
---|
168 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
169 | (cluster_id * CLUSTER_SIZE) ); |
---|
170 | |
---|
171 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0; |
---|
172 | #endif |
---|
173 | |
---|
174 | return 0; |
---|
175 | } |
---|
176 | ////////////////////////////////////////////////////////////////////////////// |
---|
177 | // _timer_reset_irq() |
---|
178 | // This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu) |
---|
179 | // component by reading/writing in the proper register. |
---|
180 | // It can be used by both the isr_switch() for a "system" timer, |
---|
181 | // or by the _isr_timer() for an "user" timer. |
---|
182 | // Returns 0 if success, > 0 if error. |
---|
183 | ////////////////////////////////////////////////////////////////////////////// |
---|
184 | unsigned int _timer_reset_irq( unsigned int cluster_id, |
---|
185 | unsigned int local_id ) |
---|
186 | { |
---|
187 | // parameters checking |
---|
188 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
189 | if ( local_id >= NB_TIMERS_MAX + NB_PROCS_MAX ) return 1; |
---|
190 | |
---|
191 | #if GIET_USE_XICU |
---|
192 | unsigned int* timer_address = (unsigned int*)((char*)&seg_icu_base + |
---|
193 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
194 | |
---|
195 | unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)]; |
---|
196 | bloup++; // to avoid a warning |
---|
197 | #else |
---|
198 | unsigned int* timer_address = (unsigned int*)((char*)&seg_tim_base + |
---|
199 | (cluster_id * CLUSTER_SIZE) ); |
---|
200 | |
---|
201 | timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0; |
---|
202 | #endif |
---|
203 | |
---|
204 | return 0; |
---|
205 | } |
---|
206 | |
---|
207 | ///////////////////////////////////////////////////////////////////////////////// |
---|
208 | // VciMultiTty driver |
---|
209 | ///////////////////////////////////////////////////////////////////////////////// |
---|
210 | // There is only one multi_tty controler in the architecture. |
---|
211 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
---|
212 | // The "system" terminal is TTY[0]. |
---|
213 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
---|
214 | // as defined in the mapping_info data structure. The corresponding tty_id must |
---|
215 | // be stored in the context of the task by the boot code. |
---|
216 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
---|
217 | ///////////////////////////////////////////////////////////////////////////////// |
---|
218 | |
---|
219 | // TTY variables |
---|
220 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
---|
221 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS-1] = 0 }; |
---|
222 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
---|
223 | |
---|
224 | //////////////////////////////////////////////////////////////////////////////// |
---|
225 | // _tty_error() |
---|
226 | //////////////////////////////////////////////////////////////////////////////// |
---|
227 | void _tty_error( unsigned int task_id ) |
---|
228 | { |
---|
229 | unsigned int proc_id = _procid(); |
---|
230 | |
---|
231 | _get_lock(&_tty_put_lock); |
---|
232 | _puts("\n[GIET ERROR] TTY index too large for task "); |
---|
233 | _putw( task_id ); |
---|
234 | _puts(" on processor "); |
---|
235 | _putw( proc_id ); |
---|
236 | _puts("\n"); |
---|
237 | _release_lock(&_tty_put_lock); |
---|
238 | } |
---|
239 | ///////////////////////////////////////////////////////////////////////////////// |
---|
240 | // _tty_write() |
---|
241 | // Write one or several characters directly from a fixed-length user buffer to |
---|
242 | // the TTY_WRITE register of the TTY controler. |
---|
243 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
244 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
245 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
246 | // The function returns the number of characters that have been written. |
---|
247 | ///////////////////////////////////////////////////////////////////////////////// |
---|
248 | unsigned int _tty_write( const char *buffer, |
---|
249 | unsigned int length) |
---|
250 | { |
---|
251 | unsigned int nwritten; |
---|
252 | |
---|
253 | unsigned int task_id = _get_current_task_id(); |
---|
254 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
255 | |
---|
256 | if ( tty_id >= NB_TTYS ) |
---|
257 | { |
---|
258 | _tty_error( task_id ); |
---|
259 | return 0; |
---|
260 | } |
---|
261 | |
---|
262 | unsigned int* tty_address = (unsigned int*)( (char*)&seg_tty_base + |
---|
263 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
264 | |
---|
265 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
266 | { |
---|
267 | // check tty's status |
---|
268 | if ((tty_address[tty_id*TTY_SPAN + TTY_STATUS] & 0x2) == 0x2) |
---|
269 | break; |
---|
270 | else |
---|
271 | // write character |
---|
272 | tty_address[tty_id*TTY_SPAN + TTY_WRITE] = (unsigned int)buffer[nwritten]; |
---|
273 | } |
---|
274 | return nwritten; |
---|
275 | } |
---|
276 | ////////////////////////////////////////////////////////////////////////////// |
---|
277 | // _tty_read() |
---|
278 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
279 | // the associated kernel buffer, that has been written by the ISR. |
---|
280 | // It get the TTY terminal index from the context of the current task. |
---|
281 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
282 | // buffer, writes this character to the user buffer, and resets the |
---|
283 | // _tty_get_full[tty_id] buffer. |
---|
284 | // The length argument is not used. |
---|
285 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
286 | ////////////////////////////////////////////////////////////////////////////// |
---|
287 | unsigned int _tty_read( char *buffer, |
---|
288 | unsigned int length) |
---|
289 | { |
---|
290 | unsigned int task_id = _get_current_task_id(); |
---|
291 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
292 | |
---|
293 | if ( tty_id >= NB_TTYS ) |
---|
294 | { |
---|
295 | _tty_error( task_id ); |
---|
296 | return 0; |
---|
297 | } |
---|
298 | |
---|
299 | if (_tty_get_full[tty_id] == 0) |
---|
300 | { |
---|
301 | return 0; |
---|
302 | } |
---|
303 | else |
---|
304 | { |
---|
305 | *buffer = _tty_get_buf[tty_id]; |
---|
306 | _tty_get_full[tty_id] = 0; |
---|
307 | return 1; |
---|
308 | } |
---|
309 | } |
---|
310 | //////////////////////////////////////////////////////////////////////////////// |
---|
311 | // _tty_get_char() |
---|
312 | // This function is used by the _isr_tty to read a character in the TTY |
---|
313 | // terminal defined by the tty_id argument. The character is stored |
---|
314 | // in requested buffer, and the IRQ is acknowledged. |
---|
315 | // Returns 0 if success, 1 if tty_id too large. |
---|
316 | //////////////////////////////////////////////////////////////////////////////// |
---|
317 | unsigned int _tty_get_char( unsigned int tty_id, |
---|
318 | char* buffer ) |
---|
319 | { |
---|
320 | // checking argument |
---|
321 | if ( tty_id >= NB_TTYS ) return 1; |
---|
322 | |
---|
323 | // compute terminal base address |
---|
324 | unsigned int *tty_address = (unsigned int*)( (char*)&seg_tty_base + |
---|
325 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
326 | |
---|
327 | *buffer = (unsigned char)tty_address[tty_id*TTY_SPAN + TTY_READ]; |
---|
328 | return 0; |
---|
329 | } |
---|
330 | |
---|
331 | //////////////////////////////////////////////////////////////////////////////// |
---|
332 | // VciMultiIcu and VciXicu drivers |
---|
333 | //////////////////////////////////////////////////////////////////////////////// |
---|
334 | // There is one vci_multi_icu (or vci_xicu) component per cluster, |
---|
335 | // and the number of independant ICUs is equal to NB_PROCS_MAX, |
---|
336 | // because there is one private interrupr controler per processor. |
---|
337 | //////////////////////////////////////////////////////////////////////////////// |
---|
338 | |
---|
339 | //////////////////////////////////////////////////////////////////////////////// |
---|
340 | // _icu_set_mask() |
---|
341 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
342 | // It set the mask register for the ICU channel identified by the cluster index |
---|
343 | // and the processor index: all '1' bits are set / all '0' bits are not modified. |
---|
344 | // Returns 0 if success, > 0 if error. |
---|
345 | //////////////////////////////////////////////////////////////////////////////// |
---|
346 | unsigned int _icu_set_mask( unsigned int cluster_id, |
---|
347 | unsigned int proc_id, |
---|
348 | unsigned int value, |
---|
349 | unsigned int is_timer ) |
---|
350 | { |
---|
351 | // parameters checking |
---|
352 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
353 | if ( proc_id >= NB_PROCS_MAX ) return 1; |
---|
354 | |
---|
355 | unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + |
---|
356 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
357 | #if GIET_USE_XICU |
---|
358 | if ( is_timer ) icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value; |
---|
359 | else icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value; |
---|
360 | #else |
---|
361 | icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; |
---|
362 | #endif |
---|
363 | |
---|
364 | return 0; |
---|
365 | } |
---|
366 | //////////////////////////////////////////////////////////////////////////////// |
---|
367 | // _icu_get_index() |
---|
368 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
369 | // It returns the index of the highest priority (smaller index) active HWI. |
---|
370 | // The ICU channel is identified by the cluster index and the processor index. |
---|
371 | // Returns 0 if success, > 0 if error. |
---|
372 | //////////////////////////////////////////////////////////////////////////////// |
---|
373 | unsigned int _icu_get_index( unsigned int cluster_id, |
---|
374 | unsigned int proc_id, |
---|
375 | unsigned int* buffer ) |
---|
376 | { |
---|
377 | // parameters checking |
---|
378 | if ( cluster_id >= NB_CLUSTERS) return 1; |
---|
379 | if ( proc_id >= NB_PROCS_MAX ) return 1; |
---|
380 | |
---|
381 | unsigned int* icu_address = (unsigned int*)( (char*)&seg_icu_base + |
---|
382 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
383 | #if GIET_USE_XICU |
---|
384 | unsigned int prio = icu_address[XICU_REG(XICU_PRIO, proc_id)]; |
---|
385 | unsigned int pti_ok = (prio & 0x00000001); |
---|
386 | unsigned int hwi_ok = (prio & 0x00000002); |
---|
387 | unsigned int swi_ok = (prio & 0x00000004); |
---|
388 | unsigned int pti_id = (prio & 0x00001F00) >> 8; |
---|
389 | unsigned int hwi_id = (prio & 0x001F0000) >> 16; |
---|
390 | unsigned int swi_id = (prio & 0x1F000000) >> 24; |
---|
391 | if (pti_ok) *buffer = pti_id; |
---|
392 | else if (hwi_ok) *buffer = hwi_id; |
---|
393 | else if (swi_ok) *buffer = swi_id; |
---|
394 | else *buffer = 32; |
---|
395 | #else |
---|
396 | *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; |
---|
397 | #endif |
---|
398 | |
---|
399 | return 0; |
---|
400 | } |
---|
401 | |
---|
402 | //////////////////////////////////////////////////////////////////////////////// |
---|
403 | // VciGcd driver |
---|
404 | //////////////////////////////////////////////////////////////////////////////// |
---|
405 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
406 | // performing the computation of the GCD of two 32 bits integers. |
---|
407 | // It has no DMA capability. |
---|
408 | //////////////////////////////////////////////////////////////////////////////// |
---|
409 | |
---|
410 | //////////////////////////////////////////////////////////////////////////////// |
---|
411 | // _gcd_write() |
---|
412 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
413 | // Returns 0 if success, > 0 if error. |
---|
414 | //////////////////////////////////////////////////////////////////////////////// |
---|
415 | unsigned int _gcd_write( unsigned int register_index, |
---|
416 | unsigned int value) |
---|
417 | { |
---|
418 | // parameters checking |
---|
419 | if (register_index >= GCD_END) |
---|
420 | return 1; |
---|
421 | |
---|
422 | unsigned int* gcd_address = (unsigned int*)( (char*)&seg_gcd_base + |
---|
423 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
424 | |
---|
425 | gcd_address[register_index] = value; // write word |
---|
426 | return 0; |
---|
427 | } |
---|
428 | //////////////////////////////////////////////////////////////////////////////// |
---|
429 | // _gcd_read() |
---|
430 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
431 | // Returns 0 if success, > 0 if error. |
---|
432 | //////////////////////////////////////////////////////////////////////////////// |
---|
433 | unsigned int _gcd_read( unsigned int register_index, |
---|
434 | unsigned int *buffer) |
---|
435 | { |
---|
436 | // parameters checking |
---|
437 | if (register_index >= GCD_END) |
---|
438 | return 1; |
---|
439 | |
---|
440 | unsigned int* gcd_address = (unsigned int*)( (char*)&seg_gcd_base + |
---|
441 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
442 | |
---|
443 | *buffer = gcd_address[register_index]; // read word |
---|
444 | return 0; |
---|
445 | } |
---|
446 | |
---|
447 | //////////////////////////////////////////////////////////////////////////////// |
---|
448 | // VciBlockDevice driver |
---|
449 | //////////////////////////////////////////////////////////////////////////////// |
---|
450 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
451 | // |
---|
452 | // The IOMMU can be activated or not: |
---|
453 | // |
---|
454 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
455 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
456 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
457 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
458 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
459 | // The number of PT2 entries is dynamically computed and stored in the |
---|
460 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
461 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
462 | // the transfer is completed. |
---|
463 | // |
---|
464 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
465 | // contiguous physical buffer (this is generally true because the user space |
---|
466 | // page tables are statically constructed to use contiguous physical memory). |
---|
467 | // |
---|
468 | // Finally, the memory buffer must fulfill the following conditions: |
---|
469 | // - The user buffer must be word aligned, |
---|
470 | // - The user buffer must be mapped in user address space, |
---|
471 | // - The user buffer must be writable in case of (to_mem) access, |
---|
472 | // - The total number of physical pages occupied by the user buffer cannot |
---|
473 | // be larger than 512 pages if the IOMMU is activated, |
---|
474 | // - All physical pages occupied by the user buffer must be contiguous |
---|
475 | // if the IOMMU is not activated. |
---|
476 | // An error code is returned if these conditions are not verified. |
---|
477 | // |
---|
478 | // As the IOC component can be used by several programs running in parallel, |
---|
479 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
480 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
481 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
482 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
483 | // available. |
---|
484 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
485 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
486 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
487 | // variable. |
---|
488 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
489 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
490 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
491 | // variable. |
---|
492 | // |
---|
493 | // In a multi-processing environment, this polling policy should be replaced by |
---|
494 | // a descheduling policy for the requesting process. |
---|
495 | /////////////////////////////////////////////////////////////////////////////// |
---|
496 | |
---|
497 | // IOC global variables |
---|
498 | in_unckdata volatile unsigned int _ioc_status = 0; |
---|
499 | in_unckdata volatile unsigned int _ioc_done = 0; |
---|
500 | in_unckdata unsigned int _ioc_lock = 0; |
---|
501 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
502 | in_unckdata unsigned int _ioc_iommu_npages; |
---|
503 | |
---|
504 | /////////////////////////////////////////////////////////////////////////////// |
---|
505 | // _ioc_access() |
---|
506 | // This function transfer data between a memory buffer and the block device. |
---|
507 | // The buffer lentgth is (count*block_size) bytes. |
---|
508 | // Arguments are: |
---|
509 | // - to_mem : from external storage to memory when non 0 |
---|
510 | // - lba : first block index on the external storage. |
---|
511 | // - user_vaddr : virtual base address of the memory buffer. |
---|
512 | // - count : number of blocks to be transfered. |
---|
513 | // Returns 0 if success, > 0 if error. |
---|
514 | /////////////////////////////////////////////////////////////////////////////// |
---|
515 | unsigned int _ioc_access( unsigned int to_mem, |
---|
516 | unsigned int lba, |
---|
517 | unsigned int user_vaddr, |
---|
518 | unsigned int count ) |
---|
519 | { |
---|
520 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
521 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
522 | unsigned int vpn; // current virtual page index in user space |
---|
523 | unsigned int ppn; // physical page number |
---|
524 | unsigned int flags; // page protection flags |
---|
525 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
526 | unsigned int addr; // buffer address for IOC peripheral |
---|
527 | unsigned int ppn_first; // first physical page number for user buffer |
---|
528 | |
---|
529 | // check buffer alignment |
---|
530 | if ( (unsigned int)user_vaddr & 0x3 ) return 1; |
---|
531 | |
---|
532 | unsigned int* ioc_address = (unsigned int*)( (char*)&seg_ioc_base + |
---|
533 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
534 | |
---|
535 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
536 | unsigned int length = count*block_size; |
---|
537 | |
---|
538 | // get user space page table virtual address |
---|
539 | unsigned int task_id = _get_current_task_id(); |
---|
540 | unsigned int user_pt_vbase = _get_context_slot( task_id, CTX_PTAB_ID ); |
---|
541 | |
---|
542 | user_vpn_min = user_vaddr >> 12; |
---|
543 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
544 | ix2 = 0; |
---|
545 | |
---|
546 | // loop on all virtual pages covering the user buffer |
---|
547 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
548 | { |
---|
549 | // get ppn and flags for each vpn |
---|
550 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
551 | vpn, |
---|
552 | &ppn, |
---|
553 | &flags ); |
---|
554 | |
---|
555 | // check access rights |
---|
556 | if ( ko ) return 2; // unmapped |
---|
557 | if ( (flags & PTE_U) == 0 ) return 3; // not in user space |
---|
558 | if ( ( (flags & PTE_W) == 0 ) && to_mem ) return 4; // not writable |
---|
559 | |
---|
560 | // save first ppn value |
---|
561 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
562 | |
---|
563 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
564 | { |
---|
565 | // check buffer length < 2 Mbytes |
---|
566 | if ( ix2 > 511 ) return 2; |
---|
567 | |
---|
568 | // map the physical page in IOMMU page table |
---|
569 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
570 | ix2, // PT2 index |
---|
571 | ppn, // Physical page number |
---|
572 | flags ); // Protection flags |
---|
573 | } |
---|
574 | else // no IOMMU : check that physical pages are contiguous |
---|
575 | { |
---|
576 | if ( (ppn - ppn_first) != ix2 ) return 5; // split physical buffer |
---|
577 | } |
---|
578 | |
---|
579 | // increment page index |
---|
580 | ix2++; |
---|
581 | } // end for vpn |
---|
582 | |
---|
583 | // register the number of pages to be unmapped |
---|
584 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
585 | |
---|
586 | // invalidate data cache in case of memory write |
---|
587 | if ( to_mem ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
588 | |
---|
589 | // compute buffer base address for IOC depending on IOMMU activation |
---|
590 | if ( GIET_IOMMU_ACTIVE ) addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
591 | else addr = (ppn_first << 12) | (user_vaddr & 0xFFF); |
---|
592 | |
---|
593 | // get the lock on ioc device |
---|
594 | _get_lock( &_ioc_lock ); |
---|
595 | |
---|
596 | // peripheral configuration |
---|
597 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
---|
598 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
599 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
600 | if ( to_mem == 0 ) ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
601 | else ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
602 | |
---|
603 | return 0; |
---|
604 | } |
---|
605 | ///////////////////////////////////////////////////////////////////////////////// |
---|
606 | // _ioc_completed() |
---|
607 | // |
---|
608 | // This function checks completion of an I/O transfer and reports errors. |
---|
609 | // As it is a blocking call, the processor is stalled. |
---|
610 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
611 | // space are unmapped, and the IOB TLB is cleared. |
---|
612 | // Returns 0 if success, > 0 if error. |
---|
613 | ///////////////////////////////////////////////////////////////////////////////// |
---|
614 | unsigned int _ioc_completed() |
---|
615 | { |
---|
616 | unsigned int ret; |
---|
617 | unsigned int ix2; |
---|
618 | |
---|
619 | // busy waiting |
---|
620 | while (_ioc_done == 0) |
---|
621 | asm volatile("nop"); |
---|
622 | |
---|
623 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
624 | if ( GIET_IOMMU_ACTIVE ) |
---|
625 | { |
---|
626 | unsigned int* iob_address = (unsigned int*)( (char*)&seg_iob_base + |
---|
627 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
628 | |
---|
629 | for ( ix2 = 0 ; ix2 < _ioc_iommu_npages ; ix2++ ) |
---|
630 | { |
---|
631 | // unmap the page in IOMMU page table |
---|
632 | _iommu_inval_pte2( _ioc_iommu_ix1, // PT1 index |
---|
633 | ix2 ); // PT2 index |
---|
634 | |
---|
635 | // clear IOMMU TLB |
---|
636 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
---|
637 | } |
---|
638 | } |
---|
639 | |
---|
640 | // test IOC status |
---|
641 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
642 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
643 | else ret = 0; // success |
---|
644 | |
---|
645 | // reset synchronization variables |
---|
646 | _ioc_lock =0; |
---|
647 | _ioc_done =0; |
---|
648 | |
---|
649 | return ret; |
---|
650 | } |
---|
651 | /////////////////////////////////////////////////////////////////////////////// |
---|
652 | // _ioc_read() |
---|
653 | // Transfer data from the block device to a memory buffer in user space. |
---|
654 | // - lba : first block index on the block device |
---|
655 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
656 | // - count : number of blocks to be transfered. |
---|
657 | // Returns 0 if success, > 0 if error. |
---|
658 | /////////////////////////////////////////////////////////////////////////////// |
---|
659 | unsigned int _ioc_read( unsigned int lba, |
---|
660 | void* buffer, |
---|
661 | unsigned int count ) |
---|
662 | { |
---|
663 | return _ioc_access( 1, // read access |
---|
664 | lba, |
---|
665 | (unsigned int)buffer, |
---|
666 | count ); |
---|
667 | } |
---|
668 | /////////////////////////////////////////////////////////////////////////////// |
---|
669 | // _ioc_write() |
---|
670 | // Transfer data from a memory buffer in user space to the block device. |
---|
671 | // - lba : first block index on the block device |
---|
672 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
673 | // - count : number of blocks to be transfered. |
---|
674 | // Returns 0 if success, > 0 if error. |
---|
675 | /////////////////////////////////////////////////////////////////////////////// |
---|
676 | unsigned int _ioc_write( unsigned int lba, |
---|
677 | const void* buffer, |
---|
678 | unsigned int count ) |
---|
679 | { |
---|
680 | return _ioc_access( 0, // write access |
---|
681 | lba, |
---|
682 | (unsigned int)buffer, |
---|
683 | count ); |
---|
684 | } |
---|
685 | /////////////////////////////////////////////////////////////////////////////// |
---|
686 | // _ioc_get_status() |
---|
687 | // This function returns the transfert status, and acknowledge the IRQ. |
---|
688 | // Returns 0 if success, > 0 if error. |
---|
689 | /////////////////////////////////////////////////////////////////////////////// |
---|
690 | unsigned int _ioc_get_status(unsigned int* status) |
---|
691 | { |
---|
692 | // get IOC base address |
---|
693 | unsigned int* ioc_address = (unsigned int*)( (char*)&seg_ioc_base + |
---|
694 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
695 | |
---|
696 | *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ |
---|
697 | return 0; |
---|
698 | } |
---|
699 | |
---|
700 | ////////////////////////////////////////////////////////////////////////////////// |
---|
701 | // VciMultiDma driver |
---|
702 | ////////////////////////////////////////////////////////////////////////////////// |
---|
703 | // The DMA controllers are physically distributed in the clusters. |
---|
704 | // There is (NB_CLUSTERS * NB_DMAS_MAX) channels, indexed by a global index: |
---|
705 | // dma_id = cluster_id * NB_DMA_MAX + loc_id |
---|
706 | // |
---|
707 | // As a DMA channel can be used by several tasks, each DMA channel is protected |
---|
708 | // by a specific lock: _dma_lock[dma_id] |
---|
709 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
---|
710 | // synchronisation variables (set by the ISR, and reset by the OS). |
---|
711 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
---|
712 | // |
---|
713 | // These DMA channels can be used by the FB driver, or by the NIC driver. |
---|
714 | ////////////////////////////////////////////////////////////////////////////////// |
---|
715 | |
---|
716 | //+1: for the case where the NB_DMAS_MAX == 0 |
---|
717 | in_unckdata unsigned int _dma_lock[(NB_DMAS_MAX+1) * NB_CLUSTERS] |
---|
718 | = { [0 ... ((NB_DMAS_MAX+1) * NB_CLUSTERS)-1] = 0 }; |
---|
719 | |
---|
720 | in_unckdata volatile unsigned int _dma_done[(NB_DMAS_MAX+1) * NB_CLUSTERS] |
---|
721 | = { [0 ... ((NB_DMAS_MAX+1) * NB_CLUSTERS)-1] = 0 }; |
---|
722 | |
---|
723 | in_unckdata volatile unsigned int _dma_status[(NB_DMAS_MAX+1) * NB_CLUSTERS]; |
---|
724 | |
---|
725 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
---|
726 | |
---|
727 | in_unckdata unsigned int _dma_iommu_npages[(NB_DMAS_MAX+1) * NB_CLUSTERS]; |
---|
728 | |
---|
729 | ////////////////////////////////////////////////////////////////////////////////// |
---|
730 | // _dma_reset_irq() |
---|
731 | ////////////////////////////////////////////////////////////////////////////////// |
---|
732 | unsigned int _dma_reset_irq( unsigned int cluster_id, |
---|
733 | unsigned int local_id ) |
---|
734 | { |
---|
735 | // parameters checking |
---|
736 | if ( cluster_id >= NB_CLUSTERS ) return 1; |
---|
737 | if ( local_id >= NB_DMAS_MAX ) return 1; |
---|
738 | |
---|
739 | // compute DMA base address |
---|
740 | unsigned int* dma_address = (unsigned int*)( (char*)&seg_dma_base + |
---|
741 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
742 | |
---|
743 | dma_address[local_id*DMA_SPAN + DMA_RESET] = 0; |
---|
744 | return 0; |
---|
745 | } |
---|
746 | ////////////////////////////////////////////////////////////////////////////////// |
---|
747 | // _dma_get_status() |
---|
748 | ////////////////////////////////////////////////////////////////////////////////// |
---|
749 | unsigned int _dma_get_status( unsigned int cluster_id, |
---|
750 | unsigned int local_id, |
---|
751 | unsigned int* status ) |
---|
752 | { |
---|
753 | // parameters checking |
---|
754 | if ( cluster_id >= NB_CLUSTERS ) return 1; |
---|
755 | if ( local_id >= NB_DMAS_MAX ) return 1; |
---|
756 | |
---|
757 | // compute DMA base address |
---|
758 | unsigned int* dma_address = (unsigned int*)( (char*)&seg_dma_base + |
---|
759 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
760 | |
---|
761 | *status = dma_address[local_id*DMA_SPAN + DMA_LEN]; |
---|
762 | return 0; |
---|
763 | } |
---|
764 | |
---|
765 | ////////////////////////////////////////////////////////////////////////////////// |
---|
766 | // VciFrameBuffer driver |
---|
767 | ////////////////////////////////////////////////////////////////////////////////// |
---|
768 | // The vci_frame_buffer device can be accessed directly by software with memcpy(), |
---|
769 | // or it can be accessed through a multi-channels DMA component: |
---|
770 | // |
---|
771 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
---|
772 | // implement the transfer between a data buffer (user space) and the frame |
---|
773 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
774 | // |
---|
775 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the DMA |
---|
776 | // controlers (distributed in the clusters) to transfer data |
---|
777 | // between the user buffer and the frame buffer. A DMA channel is |
---|
778 | // allocated to each task requesting it in the mapping_info data structure. |
---|
779 | ////////////////////////////////////////////////////////////////////////////////// |
---|
780 | |
---|
781 | ////////////////////////////////////////////////////////////////////////////////// |
---|
782 | // _fb_sync_write() |
---|
783 | // Transfer data from an memory buffer to the frame_buffer device using |
---|
784 | // a memcpy. The source memory buffer must be in user address space. |
---|
785 | // - offset : offset (in bytes) in the frame buffer. |
---|
786 | // - buffer : base address of the memory buffer. |
---|
787 | // - length : number of bytes to be transfered. |
---|
788 | // Returns 0 if success, > 0 if error. |
---|
789 | ////////////////////////////////////////////////////////////////////////////////// |
---|
790 | unsigned int _fb_sync_write( unsigned int offset, |
---|
791 | const void* buffer, |
---|
792 | unsigned int length ) |
---|
793 | { |
---|
794 | |
---|
795 | // buffer must be mapped in user space |
---|
796 | if ( ((unsigned int)buffer + length ) >= 0x80000000 ) |
---|
797 | { |
---|
798 | return 1; |
---|
799 | } |
---|
800 | else |
---|
801 | { |
---|
802 | unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset; |
---|
803 | memcpy((void*)fb_address, (void*)buffer, length); |
---|
804 | return 0; |
---|
805 | } |
---|
806 | } |
---|
807 | |
---|
808 | ////////////////////////////////////////////////////////////////////////////////// |
---|
809 | // _fb_sync_read() |
---|
810 | // Transfer data from the frame_buffer device to a memory buffer using |
---|
811 | // a memcpy. The destination memory buffer must be in user address space. |
---|
812 | // - offset : offset (in bytes) in the frame buffer. |
---|
813 | // - buffer : base address of the memory buffer. |
---|
814 | // - length : number of bytes to be transfered. |
---|
815 | // Returns 0 if success, > 0 if error. |
---|
816 | ////////////////////////////////////////////////////////////////////////////////// |
---|
817 | unsigned int _fb_sync_read( unsigned int offset, |
---|
818 | const void* buffer, |
---|
819 | unsigned int length ) |
---|
820 | { |
---|
821 | // buffer must be mapped in user space |
---|
822 | if ( ((unsigned int)buffer + length ) >= 0x80000000 ) |
---|
823 | { |
---|
824 | return 1; |
---|
825 | } |
---|
826 | else |
---|
827 | { |
---|
828 | unsigned char *fb_address = (unsigned char*)&seg_fbf_base + offset; |
---|
829 | memcpy((void*)buffer, (void*)fb_address, length); |
---|
830 | return 0; |
---|
831 | } |
---|
832 | } |
---|
833 | |
---|
834 | ////////////////////////////////////////////////////////////////////////////////// |
---|
835 | // _fb_dma_access() |
---|
836 | // Transfer data between a user buffer and the frame_buffer using DMA. |
---|
837 | // - to_user : from frame buffer to user buffer when true. |
---|
838 | // - offset : offset (in bytes) in the frame buffer. |
---|
839 | // - user_vaddr : virtual base address of the memory buffer. |
---|
840 | // - length : number of bytes to be transfered. |
---|
841 | // The memory buffer must be mapped in user address space and word-aligned. |
---|
842 | // The user buffer length must be multiple of 4 bytes. |
---|
843 | // Me must compute the physical base addresses for both the frame buffer |
---|
844 | // and the user buffer before programming the DMA transfer. |
---|
845 | // The GIET being fully static, we don't need to split the transfer in 4Kbytes |
---|
846 | // pages, because the user buffer is contiguous in physical space. |
---|
847 | // Returns 0 if success, > 0 if error. |
---|
848 | ////////////////////////////////////////////////////////////////////////////////// |
---|
849 | unsigned int _fb_dma_access( unsigned int to_user, |
---|
850 | unsigned int offset, |
---|
851 | unsigned int user_vaddr, |
---|
852 | unsigned int length ) |
---|
853 | { |
---|
854 | unsigned int ko; // unsuccessfull V2P translation |
---|
855 | unsigned int flags; // protection flags |
---|
856 | unsigned int ppn; // physical page number |
---|
857 | unsigned int user_pbase; // user buffer pbase address |
---|
858 | unsigned int fb_pbase; // frame buffer pbase address |
---|
859 | |
---|
860 | // get DMA channel and compute DMA vbase address |
---|
861 | unsigned int task_id = _get_current_task_id(); |
---|
862 | unsigned int dma_id = _get_context_slot( task_id, CTX_FBDMA_ID ); |
---|
863 | unsigned int cluster_id = dma_id / NB_DMAS_MAX; |
---|
864 | unsigned int loc_id = dma_id % NB_DMAS_MAX; |
---|
865 | |
---|
866 | unsigned int* dma_base = (unsigned int*)( (char*)&seg_dma_base + |
---|
867 | (cluster_id * (unsigned)CLUSTER_SIZE) ); |
---|
868 | |
---|
869 | // check user buffer address and length alignment |
---|
870 | if ( (user_vaddr & 0x3) || (length & 0x3) ) |
---|
871 | { |
---|
872 | _get_lock(&_tty_put_lock); |
---|
873 | _puts("[GIET ERROR] in _fbdma_access() : user buffer not word aligned\n"); |
---|
874 | _release_lock(&_tty_put_lock); |
---|
875 | return 1; |
---|
876 | } |
---|
877 | |
---|
878 | // get user space page table virtual address |
---|
879 | unsigned int user_ptab = _get_context_slot( task_id, CTX_PTAB_ID ); |
---|
880 | |
---|
881 | // compute frame buffer pbase address |
---|
882 | unsigned int fb_vaddr = (unsigned int)&seg_fbf_base + offset; |
---|
883 | |
---|
884 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
885 | (fb_vaddr >> 12), |
---|
886 | &ppn, |
---|
887 | &flags ); |
---|
888 | fb_pbase = (ppn << 12) | (fb_vaddr & 0x00000FFF); |
---|
889 | |
---|
890 | if ( ko ) |
---|
891 | { |
---|
892 | _get_lock(&_tty_put_lock); |
---|
893 | _puts("[GIET ERROR] in _fbdma_access() : frame buffer unmapped\n"); |
---|
894 | _release_lock(&_tty_put_lock); |
---|
895 | return 2; |
---|
896 | } |
---|
897 | |
---|
898 | // Compute user buffer pbase address |
---|
899 | ko = _v2p_translate( (page_table_t*)user_ptab, |
---|
900 | (user_vaddr >> 12), |
---|
901 | &ppn, |
---|
902 | &flags ); |
---|
903 | user_pbase = (ppn << 12) | (user_vaddr & 0x00000FFF); |
---|
904 | |
---|
905 | if ( ko ) |
---|
906 | { |
---|
907 | _get_lock(&_tty_put_lock); |
---|
908 | _puts("[GIET ERROR] in _fbdma_access() : user buffer unmapped\n"); |
---|
909 | _release_lock(&_tty_put_lock); |
---|
910 | return 3; |
---|
911 | } |
---|
912 | if ( (flags & PTE_U) == 0 ) |
---|
913 | { |
---|
914 | _get_lock(&_tty_put_lock); |
---|
915 | _puts("[GIET ERROR] in _fbdma_access() : user buffer not in user space\n"); |
---|
916 | _release_lock(&_tty_put_lock); |
---|
917 | return 4; |
---|
918 | } |
---|
919 | if ( ( (flags & PTE_W) == 0 ) && to_user ) |
---|
920 | { |
---|
921 | _get_lock(&_tty_put_lock); |
---|
922 | _puts("[GIET ERROR] in _fbdma_access() : user buffer not writable\n"); |
---|
923 | _release_lock(&_tty_put_lock); |
---|
924 | return 5; |
---|
925 | } |
---|
926 | |
---|
927 | |
---|
928 | |
---|
929 | /* |
---|
930 | // loop on all virtual pages covering the user buffer |
---|
931 | unsigned int user_vpn_min = user_vaddr >> 12; |
---|
932 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
933 | unsigned int ix2 = 0; |
---|
934 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
935 | |
---|
936 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
937 | { |
---|
938 | // get ppn and flags for each vpn |
---|
939 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
940 | vpn, |
---|
941 | &ppn, |
---|
942 | &flags ); |
---|
943 | |
---|
944 | // check access rights |
---|
945 | if ( ko ) return 3; // unmapped |
---|
946 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
---|
947 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
---|
948 | |
---|
949 | // save first ppn value |
---|
950 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
951 | |
---|
952 | if ( GIET_IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
953 | { |
---|
954 | // check buffer length < 2 Mbytes |
---|
955 | if ( ix2 > 511 ) return 2; |
---|
956 | |
---|
957 | // map the physical page in IOMMU page table |
---|
958 | _iommu_add_pte2( ix1, // PT1 index |
---|
959 | ix2, // PT2 index |
---|
960 | ppn, // physical page number |
---|
961 | flags ); // protection flags |
---|
962 | } |
---|
963 | else // no IOMMU : check that physical pages are contiguous |
---|
964 | { |
---|
965 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
---|
966 | } |
---|
967 | |
---|
968 | // increment page index |
---|
969 | ix2++; |
---|
970 | } // end for vpn |
---|
971 | |
---|
972 | // register the number of pages to be unmapped if iommu activated |
---|
973 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
---|
974 | |
---|
975 | */ |
---|
976 | |
---|
977 | // invalidate data cache in case of memory write |
---|
978 | if ( to_user ) _dcache_buf_invalidate( (void*)user_vaddr, length ); |
---|
979 | |
---|
980 | // get the lock |
---|
981 | _get_lock( &_dma_lock[dma_id] ); |
---|
982 | |
---|
983 | // DMA configuration |
---|
984 | if ( to_user ) |
---|
985 | { |
---|
986 | dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)fb_pbase; |
---|
987 | dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)user_pbase; |
---|
988 | } |
---|
989 | else |
---|
990 | { |
---|
991 | dma_base[loc_id*DMA_SPAN + DMA_SRC] = (unsigned int)user_pbase; |
---|
992 | dma_base[loc_id*DMA_SPAN + DMA_DST] = (unsigned int)fb_pbase; |
---|
993 | } |
---|
994 | dma_base[loc_id*DMA_SPAN + DMA_LEN] = (unsigned int)length; |
---|
995 | |
---|
996 | return 0; |
---|
997 | } |
---|
998 | ////////////////////////////////////////////////////////////////////////////////// |
---|
999 | // _fb_write() |
---|
1000 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
---|
1001 | // - offset : offset (in bytes) in the frame buffer. |
---|
1002 | // - buffer : base address of the memory buffer. |
---|
1003 | // - length : number of bytes to be transfered. |
---|
1004 | // Returns 0 if success, > 0 if error. |
---|
1005 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1006 | unsigned int _fb_write( unsigned int offset, |
---|
1007 | const void* buffer, |
---|
1008 | unsigned int length ) |
---|
1009 | { |
---|
1010 | return _fb_dma_access( 0, // write to frame buffer |
---|
1011 | offset, |
---|
1012 | (unsigned int)buffer, |
---|
1013 | length ); |
---|
1014 | } |
---|
1015 | |
---|
1016 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1017 | // _fb_read() |
---|
1018 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
---|
1019 | // - offset : offset (in bytes) in the frame buffer. |
---|
1020 | // - buffer : base address of the memory buffer. |
---|
1021 | // - length : number of bytes to be transfered. |
---|
1022 | // Returns 0 if success, > 0 if error. |
---|
1023 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1024 | unsigned int _fb_read( unsigned int offset, |
---|
1025 | const void* buffer, |
---|
1026 | unsigned int length ) |
---|
1027 | { |
---|
1028 | return _fb_dma_access( 1, // read from frame buffer |
---|
1029 | offset, |
---|
1030 | (unsigned int)buffer, |
---|
1031 | length ); |
---|
1032 | } |
---|
1033 | |
---|
1034 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1035 | // _fb_completed() |
---|
1036 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
1037 | // As it is a blocking call, the processor is busy waiting. |
---|
1038 | // Returns 0 if success, > 0 if error |
---|
1039 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
1040 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1041 | unsigned int _fb_completed() |
---|
1042 | { |
---|
1043 | unsigned int task_id = _get_current_task_id(); |
---|
1044 | unsigned int dma_id = _get_context_slot( task_id, CTX_FBDMA_ID ); |
---|
1045 | |
---|
1046 | // busy waiting with a pseudo random delay between bus access |
---|
1047 | while (_dma_done[dma_id] == 0) |
---|
1048 | { |
---|
1049 | unsigned int i; |
---|
1050 | unsigned int delay = ( _proctime() ^ _procid()<<4 ) & 0xFF; |
---|
1051 | for (i = 0; i < delay; i++) |
---|
1052 | asm volatile("nop"); |
---|
1053 | } |
---|
1054 | |
---|
1055 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
1056 | if ( GIET_IOMMU_ACTIVE ) |
---|
1057 | { |
---|
1058 | unsigned int* iob_address = (unsigned int*)( (char*)&seg_iob_base + |
---|
1059 | (CLUSTER_IO_ID * (unsigned)CLUSTER_SIZE) ); |
---|
1060 | |
---|
1061 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
1062 | unsigned int ix2; |
---|
1063 | |
---|
1064 | for ( ix2 = 0 ; ix2 < _dma_iommu_npages[dma_id] ; ix2++ ) |
---|
1065 | { |
---|
1066 | // unmap the page in IOMMU page table |
---|
1067 | _iommu_inval_pte2( ix1, // PT1 index |
---|
1068 | ix2 ); // PT2 index |
---|
1069 | |
---|
1070 | // clear IOMMU TLB |
---|
1071 | iob_address[IOB_INVAL_PTE] = (ix1 << 21) | (ix2 << 12); |
---|
1072 | } |
---|
1073 | } |
---|
1074 | |
---|
1075 | // reset synchronization variables |
---|
1076 | _dma_lock[dma_id] = 0; |
---|
1077 | _dma_done[dma_id] = 0; |
---|
1078 | |
---|
1079 | return _dma_status[dma_id]; |
---|
1080 | } |
---|
1081 | |
---|