| 1 | /////////////////////////////////////////////////////////////////////////////////// |
|---|
| 2 | // File : drivers.c |
|---|
| 3 | // Date : 01/04/2012 |
|---|
| 4 | // Author : alain greiner |
|---|
| 5 | // Copyright (c) UPMC-LIP6 |
|---|
| 6 | /////////////////////////////////////////////////////////////////////////////////// |
|---|
| 7 | // The drivers.c and drivers.h files are part ot the GIET-VM nano kernel. |
|---|
| 8 | // They contains the drivers for the peripherals available in the SoCLib library: |
|---|
| 9 | // - vci_multi_tty |
|---|
| 10 | // - vci_multi_timer |
|---|
| 11 | // - vci_multi_dma |
|---|
| 12 | // - vci_multi_icu |
|---|
| 13 | // - vci_xicu & vci_multi_icu |
|---|
| 14 | // - vci_gcd |
|---|
| 15 | // - vci_frame_buffer |
|---|
| 16 | // - vci_block_device |
|---|
| 17 | // |
|---|
| 18 | // The following global parameters must be defined in the giet_config.h file: |
|---|
| 19 | // - CLUSTER_SIZE |
|---|
| 20 | // - NB_CLUSTERS |
|---|
| 21 | // - NB_PROCS_MAX |
|---|
| 22 | // - NB_TIMERS_MAX |
|---|
| 23 | // - NB_DMAS_MAX |
|---|
| 24 | // - NB_TTYS |
|---|
| 25 | // |
|---|
| 26 | // The following virtual base addresses must be defined in the giet_vsegs.ld file: |
|---|
| 27 | // - seg_icu_base |
|---|
| 28 | // - seg_tim_base |
|---|
| 29 | // - seg_tty_base |
|---|
| 30 | // - seg_gcd_base |
|---|
| 31 | // - seg_dma_base |
|---|
| 32 | // - seg_fbf_base |
|---|
| 33 | // - seg_ioc_base |
|---|
| 34 | // - seg_nic_base |
|---|
| 35 | // As some peripherals can be replicated in the clusters (ICU, TIMER, DMA) |
|---|
| 36 | // These addresses must be completed by an offset depending on the cluster index |
|---|
| 37 | // full_base_address = seg_***_base + cluster_id * CLUSTER_SIZE |
|---|
| 38 | /////////////////////////////////////////////////////////////////////////////////// |
|---|
| 39 | |
|---|
| 40 | #include <vm_handler.h> |
|---|
| 41 | #include <sys_handler.h> |
|---|
| 42 | #include <giet_config.h> |
|---|
| 43 | #include <drivers.h> |
|---|
| 44 | #include <common.h> |
|---|
| 45 | #include <hwr_mapping.h> |
|---|
| 46 | #include <mips32_registers.h> |
|---|
| 47 | #include <ctx_handler.h> |
|---|
| 48 | |
|---|
| 49 | #if !defined(NB_CLUSTERS) |
|---|
| 50 | # error: You must define NB_CLUSTERS in the configs file |
|---|
| 51 | #endif |
|---|
| 52 | |
|---|
| 53 | #if !defined(NB_PROCS_MAX) |
|---|
| 54 | # error: You must define NB_PROCS_MAX in the configs file |
|---|
| 55 | #endif |
|---|
| 56 | |
|---|
| 57 | #if (NB_PROCS_MAX > 8) |
|---|
| 58 | # error: NB_PROCS_MAX cannot be larger than 8! |
|---|
| 59 | #endif |
|---|
| 60 | |
|---|
| 61 | #if !defined(CLUSTER_SIZE) |
|---|
| 62 | # error: You must define CLUSTER_SIZE in the configs file |
|---|
| 63 | #endif |
|---|
| 64 | |
|---|
| 65 | #if !defined(NB_TTYS) |
|---|
| 66 | # error: You must define NB_TTYS in the configs file |
|---|
| 67 | #endif |
|---|
| 68 | |
|---|
| 69 | #if (NB_TTYS < 1) |
|---|
| 70 | # error: NB_TTYS cannot be smaller than 1! |
|---|
| 71 | #endif |
|---|
| 72 | |
|---|
| 73 | #if !defined(NB_DMAS_MAX) |
|---|
| 74 | #define NB_DMAS_MAX 0 |
|---|
| 75 | #endif |
|---|
| 76 | |
|---|
| 77 | #if !defined(NB_TIMERS_MAX) |
|---|
| 78 | #define NB_TIMERS_MAX 0 |
|---|
| 79 | #endif |
|---|
| 80 | |
|---|
| 81 | #if ( (NB_TIMERS_MAX) > 32 ) |
|---|
| 82 | # error: NB_TIMERS_MAX + NB_PROCS_MAX cannot be larger than 32 |
|---|
| 83 | #endif |
|---|
| 84 | |
|---|
| 85 | #if !defined(NB_IOCS) |
|---|
| 86 | # error: You must define NB_IOCS in the configs file |
|---|
| 87 | #endif |
|---|
| 88 | |
|---|
| 89 | #if ( NB_IOCS > 1 ) |
|---|
| 90 | # error: NB_IOCS cannot be larger than 1 |
|---|
| 91 | #endif |
|---|
| 92 | |
|---|
| 93 | #if !defined( USE_XICU ) |
|---|
| 94 | # error: You must define USE_XICU in the configs file |
|---|
| 95 | #endif |
|---|
| 96 | |
|---|
| 97 | #if !defined( IOMMU_ACTIVE ) |
|---|
| 98 | # error: You must define IOMMU_ACTIVE in the configs file |
|---|
| 99 | #endif |
|---|
| 100 | |
|---|
| 101 | |
|---|
| 102 | #define in_unckdata __attribute__((section (".unckdata"))) |
|---|
| 103 | |
|---|
| 104 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 105 | // Timers driver |
|---|
| 106 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 107 | // The timers can be implemented in a vci_timer component or in a vci_xicu |
|---|
| 108 | // component (depending on the USE_XICU parameter). |
|---|
| 109 | // There is one timer (or xicu) component per cluster. |
|---|
| 110 | // There is two types of timers: |
|---|
| 111 | // - "system" timers : one per processor, used for context switch. |
|---|
| 112 | // local_id in [0, NB_PROCS_MAX-1], |
|---|
| 113 | // - "user" timers : requested by the task in the mapping_info data structure. |
|---|
| 114 | // For each user timer, the timer_id is stored in the context of the task. |
|---|
| 115 | // The global index is cluster_id * (NB_PROCS_MAX+NB_TIMERS_MAX) + local_id |
|---|
| 116 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 117 | |
|---|
| 118 | // User Timer signaling variables |
|---|
| 119 | |
|---|
| 120 | #if (NB_TIMERS_MAX > 0) |
|---|
| 121 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS * NB_TIMERS_MAX] |
|---|
| 122 | = { [0 ... ((NB_CLUSTERS * NB_TIMERS_MAX) - 1)] = 0 }; |
|---|
| 123 | #endif |
|---|
| 124 | |
|---|
| 125 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 126 | // _timer_start() |
|---|
| 127 | // This function activates a timer in the vci_timer (or vci_xicu) component |
|---|
| 128 | // by writing in the proper register the period value. |
|---|
| 129 | // It can be used by both the kernel to initialise a "system" timer, |
|---|
| 130 | // or by a task (through a system call) to configure an "user" timer. |
|---|
| 131 | // Returns 0 if success, > 0 if error. |
|---|
| 132 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 133 | unsigned int _timer_start(unsigned int cluster_id, unsigned int local_id, unsigned int period) { |
|---|
| 134 | // parameters checking |
|---|
| 135 | if (cluster_id >= NB_CLUSTERS) { |
|---|
| 136 | return 1; |
|---|
| 137 | } |
|---|
| 138 | if (local_id >= NB_TIMERS_MAX) { |
|---|
| 139 | return 2; |
|---|
| 140 | } |
|---|
| 141 | |
|---|
| 142 | #if USE_XICU |
|---|
| 143 | unsigned int * timer_address = (unsigned int *) ((char *) &seg_icu_base + (cluster_id * CLUSTER_SIZE)); |
|---|
| 144 | |
|---|
| 145 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period; |
|---|
| 146 | #else |
|---|
| 147 | unsigned int* timer_address = (unsigned int *) ((char *) &seg_tim_base + (cluster_id * CLUSTER_SIZE)); |
|---|
| 148 | |
|---|
| 149 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period; |
|---|
| 150 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0x3; |
|---|
| 151 | #endif |
|---|
| 152 | return 0; |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | |
|---|
| 156 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 157 | // _timer_stop() |
|---|
| 158 | // This function desactivates a timer in the vci_timer (or vci_xicu) component |
|---|
| 159 | // by writing in the proper register. |
|---|
| 160 | // Returns 0 if success, > 0 if error. |
|---|
| 161 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 162 | unsigned int _timer_stop(unsigned int cluster_id, unsigned int local_id) { |
|---|
| 163 | // parameters checking |
|---|
| 164 | if (cluster_id >= NB_CLUSTERS) { |
|---|
| 165 | return 1; |
|---|
| 166 | } |
|---|
| 167 | if (local_id >= NB_TIMERS_MAX) { |
|---|
| 168 | return 2; |
|---|
| 169 | } |
|---|
| 170 | |
|---|
| 171 | #if USE_XICU |
|---|
| 172 | unsigned int * timer_address = (unsigned int *) ((char *) &seg_icu_base + (cluster_id * CLUSTER_SIZE)); |
|---|
| 173 | |
|---|
| 174 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
|---|
| 175 | #else |
|---|
| 176 | unsigned int* timer_address = (unsigned int *) ((char *) &seg_tim_base + (cluster_id * CLUSTER_SIZE)); |
|---|
| 177 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0; |
|---|
| 178 | #endif |
|---|
| 179 | return 0; |
|---|
| 180 | } |
|---|
| 181 | |
|---|
| 182 | |
|---|
| 183 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 184 | // _timer_reset_irq() |
|---|
| 185 | // This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu) |
|---|
| 186 | // component by reading/writing in the proper register. |
|---|
| 187 | // It can be used by both the isr_switch() for a "system" timer, |
|---|
| 188 | // or by the _isr_timer() for an "user" timer. |
|---|
| 189 | // Returns 0 if success, > 0 if error. |
|---|
| 190 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 191 | unsigned int _timer_reset_irq(unsigned int cluster_id, unsigned int local_id) { |
|---|
| 192 | // parameters checking |
|---|
| 193 | if (cluster_id >= NB_CLUSTERS) { |
|---|
| 194 | return 1; |
|---|
| 195 | } |
|---|
| 196 | if (local_id >= NB_TIMERS_MAX) { |
|---|
| 197 | return 2; |
|---|
| 198 | } |
|---|
| 199 | |
|---|
| 200 | #if USE_XICU |
|---|
| 201 | unsigned int * timer_address = (unsigned int *) ((char *) &seg_icu_base + |
|---|
| 202 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
|---|
| 203 | |
|---|
| 204 | unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)]; |
|---|
| 205 | bloup++; // to avoid a warning |
|---|
| 206 | #else |
|---|
| 207 | unsigned int * timer_address = (unsigned int *) ((char *) &seg_tim_base + |
|---|
| 208 | (cluster_id * CLUSTER_SIZE)); |
|---|
| 209 | |
|---|
| 210 | timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0; |
|---|
| 211 | #endif |
|---|
| 212 | |
|---|
| 213 | return 0; |
|---|
| 214 | } |
|---|
| 215 | |
|---|
| 216 | |
|---|
| 217 | //////////////////////////////////////////////// |
|---|
| 218 | // _timer_reset_irq_cpt() |
|---|
| 219 | //////////////////////////////////////////////// |
|---|
| 220 | //unsigned int _timer_reset_irq_cpt(unsigned int cluster_id, unsigned int local_id) { |
|---|
| 221 | // // parameters checking |
|---|
| 222 | // if ( cluster_id >= NB_CLUSTERS) return 1; |
|---|
| 223 | // if ( local_id >= NB_TIMERS_MAX ) return 2; |
|---|
| 224 | // |
|---|
| 225 | //#if USE_XICU |
|---|
| 226 | //#error // not implemented |
|---|
| 227 | //#else |
|---|
| 228 | // unsigned int * timer_address = (unsigned int *) ((char *) &seg_tim_base + (cluster_id * CLUSTER_SIZE)); |
|---|
| 229 | // |
|---|
| 230 | // timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 1; |
|---|
| 231 | //#endif |
|---|
| 232 | // |
|---|
| 233 | // return 0; |
|---|
| 234 | //} |
|---|
| 235 | |
|---|
| 236 | |
|---|
| 237 | ///////////////////////////////////////////////////////////////////////////////// |
|---|
| 238 | // VciMultiTty driver |
|---|
| 239 | ///////////////////////////////////////////////////////////////////////////////// |
|---|
| 240 | // There is only one multi_tty controler in the architecture. |
|---|
| 241 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
|---|
| 242 | // The "system" terminal is TTY[0]. |
|---|
| 243 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
|---|
| 244 | // as defined in the mapping_info data structure. The corresponding tty_id must |
|---|
| 245 | // be stored in the context of the task by the boot code. |
|---|
| 246 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
|---|
| 247 | ///////////////////////////////////////////////////////////////////////////////// |
|---|
| 248 | |
|---|
| 249 | // TTY variables |
|---|
| 250 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
|---|
| 251 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS - 1] = 0 }; |
|---|
| 252 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
|---|
| 253 | |
|---|
| 254 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 255 | // _tty_error() |
|---|
| 256 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 257 | void _tty_error(unsigned int tty_id, unsigned int task_id) { |
|---|
| 258 | unsigned int proc_id = _procid(); |
|---|
| 259 | |
|---|
| 260 | _get_lock(&_tty_put_lock); |
|---|
| 261 | if (tty_id == 0xFFFFFFFF) { |
|---|
| 262 | _puts("\n[GIET ERROR] no TTY assigned to the task "); |
|---|
| 263 | } |
|---|
| 264 | else { |
|---|
| 265 | _puts("\n[GIET ERROR] TTY index too large for task "); |
|---|
| 266 | } |
|---|
| 267 | _putd(task_id); |
|---|
| 268 | _puts(" on processor "); |
|---|
| 269 | _putd(proc_id); |
|---|
| 270 | _puts("\n"); |
|---|
| 271 | _release_lock(&_tty_put_lock); |
|---|
| 272 | } |
|---|
| 273 | |
|---|
| 274 | |
|---|
| 275 | ///////////////////////////////////////////////////////////////////////////////// |
|---|
| 276 | // _tty_write() |
|---|
| 277 | // Write one or several characters directly from a fixed-length user buffer to |
|---|
| 278 | // the TTY_WRITE register of the TTY controler. |
|---|
| 279 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
|---|
| 280 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
|---|
| 281 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
|---|
| 282 | // The function returns the number of characters that have been written. |
|---|
| 283 | ///////////////////////////////////////////////////////////////////////////////// |
|---|
| 284 | unsigned int _tty_write(const char * buffer, unsigned int length) { |
|---|
| 285 | unsigned int nwritten; |
|---|
| 286 | unsigned int task_id = _get_proc_task_id(); |
|---|
| 287 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
|---|
| 288 | |
|---|
| 289 | if (tty_id >= NB_TTYS) { |
|---|
| 290 | _tty_error(tty_id , task_id); |
|---|
| 291 | return 0; |
|---|
| 292 | } |
|---|
| 293 | |
|---|
| 294 | unsigned int * tty_address = (unsigned int *) &seg_tty_base; |
|---|
| 295 | |
|---|
| 296 | for (nwritten = 0; nwritten < length; nwritten++) { |
|---|
| 297 | // check tty's status |
|---|
| 298 | if ((tty_address[tty_id * TTY_SPAN + TTY_STATUS] & 0x2) == 0x2) { |
|---|
| 299 | break; |
|---|
| 300 | } |
|---|
| 301 | else { |
|---|
| 302 | // write character |
|---|
| 303 | tty_address[tty_id * TTY_SPAN + TTY_WRITE] = (unsigned int) buffer[nwritten]; |
|---|
| 304 | } |
|---|
| 305 | } |
|---|
| 306 | return nwritten; |
|---|
| 307 | } |
|---|
| 308 | |
|---|
| 309 | |
|---|
| 310 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 311 | // _tty_read() |
|---|
| 312 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
|---|
| 313 | // the associated kernel buffer, that has been written by the ISR. |
|---|
| 314 | // It get the TTY terminal index from the context of the current task. |
|---|
| 315 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
|---|
| 316 | // buffer, writes this character to the user buffer, and resets the |
|---|
| 317 | // _tty_get_full[tty_id] buffer. |
|---|
| 318 | // The length argument is not used. |
|---|
| 319 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
|---|
| 320 | ////////////////////////////////////////////////////////////////////////////// |
|---|
| 321 | unsigned int _tty_read(char * buffer, unsigned int length) { |
|---|
| 322 | unsigned int task_id = _get_proc_task_id(); |
|---|
| 323 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
|---|
| 324 | |
|---|
| 325 | if (tty_id >= NB_TTYS) { |
|---|
| 326 | _tty_error(tty_id, task_id); |
|---|
| 327 | return 0; |
|---|
| 328 | } |
|---|
| 329 | |
|---|
| 330 | if (_tty_get_full[tty_id] == 0) { |
|---|
| 331 | return 0; |
|---|
| 332 | } |
|---|
| 333 | else { |
|---|
| 334 | *buffer = _tty_get_buf[tty_id]; |
|---|
| 335 | _tty_get_full[tty_id] = 0; |
|---|
| 336 | return 1; |
|---|
| 337 | } |
|---|
| 338 | } |
|---|
| 339 | |
|---|
| 340 | |
|---|
| 341 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 342 | // _tty_get_char() |
|---|
| 343 | // This function is used by the _isr_tty to read a character in the TTY |
|---|
| 344 | // terminal defined by the tty_id argument. The character is stored |
|---|
| 345 | // in requested buffer, and the IRQ is acknowledged. |
|---|
| 346 | // Returns 0 if success, 1 if tty_id too large. |
|---|
| 347 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 348 | unsigned int _tty_get_char(unsigned int tty_id, unsigned char * buffer) { |
|---|
| 349 | // checking argument |
|---|
| 350 | if (tty_id >= NB_TTYS) { |
|---|
| 351 | return 1; |
|---|
| 352 | } |
|---|
| 353 | |
|---|
| 354 | // compute terminal base address |
|---|
| 355 | unsigned int * tty_address = (unsigned int *) &seg_tty_base; |
|---|
| 356 | |
|---|
| 357 | *buffer = (unsigned char) tty_address[tty_id * TTY_SPAN + TTY_READ]; |
|---|
| 358 | return 0; |
|---|
| 359 | } |
|---|
| 360 | |
|---|
| 361 | |
|---|
| 362 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 363 | // VciMultiIcu and VciXicu drivers |
|---|
| 364 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 365 | // There is one vci_multi_icu (or vci_xicu) component per cluster, |
|---|
| 366 | // and the number of independant ICUs is equal to NB_PROCS_MAX, |
|---|
| 367 | // because there is one private interrupr controler per processor. |
|---|
| 368 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 369 | |
|---|
| 370 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 371 | // _icu_set_mask() |
|---|
| 372 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
|---|
| 373 | // It set the mask register for the ICU channel identified by the cluster index |
|---|
| 374 | // and the processor index: all '1' bits are set / all '0' bits are not modified. |
|---|
| 375 | // Returns 0 if success, > 0 if error. |
|---|
| 376 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 377 | unsigned int _icu_set_mask( |
|---|
| 378 | unsigned int cluster_id, |
|---|
| 379 | unsigned int proc_id, |
|---|
| 380 | unsigned int value, |
|---|
| 381 | unsigned int is_timer) { |
|---|
| 382 | // parameters checking |
|---|
| 383 | if (cluster_id >= NB_CLUSTERS) { |
|---|
| 384 | return 1; |
|---|
| 385 | } |
|---|
| 386 | if (proc_id >= NB_PROCS_MAX) { |
|---|
| 387 | return 1; |
|---|
| 388 | } |
|---|
| 389 | |
|---|
| 390 | unsigned int * icu_address = (unsigned int *) ((char *) &seg_icu_base + |
|---|
| 391 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
|---|
| 392 | #if USE_XICU |
|---|
| 393 | if (is_timer) { |
|---|
| 394 | icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value; |
|---|
| 395 | } |
|---|
| 396 | else { |
|---|
| 397 | icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value; |
|---|
| 398 | } |
|---|
| 399 | #else |
|---|
| 400 | icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; |
|---|
| 401 | #endif |
|---|
| 402 | |
|---|
| 403 | return 0; |
|---|
| 404 | } |
|---|
| 405 | |
|---|
| 406 | |
|---|
| 407 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 408 | // _icu_get_index() |
|---|
| 409 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
|---|
| 410 | // It returns the index of the highest priority (smaller index) active HWI. |
|---|
| 411 | // The ICU channel is identified by the cluster index and the processor index. |
|---|
| 412 | // Returns 0 if success, > 0 if error. |
|---|
| 413 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 414 | unsigned int _icu_get_index(unsigned int cluster_id, unsigned int proc_id, unsigned int * buffer) { |
|---|
| 415 | // parameters checking |
|---|
| 416 | if (cluster_id >= NB_CLUSTERS) { |
|---|
| 417 | return 1; |
|---|
| 418 | } |
|---|
| 419 | if (proc_id >= NB_PROCS_MAX) { |
|---|
| 420 | return 1; |
|---|
| 421 | } |
|---|
| 422 | |
|---|
| 423 | unsigned int * icu_address = (unsigned int *) ((char *) &seg_icu_base + |
|---|
| 424 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
|---|
| 425 | #if USE_XICU |
|---|
| 426 | unsigned int prio = icu_address[XICU_REG(XICU_PRIO, proc_id)]; |
|---|
| 427 | unsigned int pti_ok = (prio & 0x00000001); |
|---|
| 428 | unsigned int hwi_ok = (prio & 0x00000002); |
|---|
| 429 | unsigned int swi_ok = (prio & 0x00000004); |
|---|
| 430 | unsigned int pti_id = (prio & 0x00001F00) >> 8; |
|---|
| 431 | unsigned int hwi_id = (prio & 0x001F0000) >> 16; |
|---|
| 432 | unsigned int swi_id = (prio & 0x1F000000) >> 24; |
|---|
| 433 | if (pti_ok) { |
|---|
| 434 | *buffer = pti_id; |
|---|
| 435 | } |
|---|
| 436 | else if (hwi_ok) { |
|---|
| 437 | *buffer = hwi_id; |
|---|
| 438 | } |
|---|
| 439 | else if (swi_ok) { |
|---|
| 440 | *buffer = swi_id; |
|---|
| 441 | } |
|---|
| 442 | else { |
|---|
| 443 | *buffer = 32; |
|---|
| 444 | } |
|---|
| 445 | #else |
|---|
| 446 | *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; |
|---|
| 447 | #endif |
|---|
| 448 | |
|---|
| 449 | return 0; |
|---|
| 450 | } |
|---|
| 451 | |
|---|
| 452 | |
|---|
| 453 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 454 | // VciGcd driver |
|---|
| 455 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 456 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
|---|
| 457 | // performing the computation of the GCD of two 32 bits integers. |
|---|
| 458 | // It has no DMA capability. |
|---|
| 459 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 460 | |
|---|
| 461 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 462 | // _gcd_write() |
|---|
| 463 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
|---|
| 464 | // Returns 0 if success, > 0 if error. |
|---|
| 465 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 466 | unsigned int _gcd_write(unsigned int register_index, unsigned int value) { |
|---|
| 467 | // parameters checking |
|---|
| 468 | if (register_index >= GCD_END) { |
|---|
| 469 | return 1; |
|---|
| 470 | } |
|---|
| 471 | |
|---|
| 472 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
|---|
| 473 | |
|---|
| 474 | gcd_address[register_index] = value; // write word |
|---|
| 475 | return 0; |
|---|
| 476 | } |
|---|
| 477 | |
|---|
| 478 | |
|---|
| 479 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 480 | // _gcd_read() |
|---|
| 481 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
|---|
| 482 | // Returns 0 if success, > 0 if error. |
|---|
| 483 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 484 | unsigned int _gcd_read(unsigned int register_index, unsigned int * buffer) { |
|---|
| 485 | // parameters checking |
|---|
| 486 | if (register_index >= GCD_END) { |
|---|
| 487 | return 1; |
|---|
| 488 | } |
|---|
| 489 | |
|---|
| 490 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
|---|
| 491 | |
|---|
| 492 | *buffer = gcd_address[register_index]; // read word |
|---|
| 493 | return 0; |
|---|
| 494 | } |
|---|
| 495 | |
|---|
| 496 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 497 | // VciBlockDevice driver |
|---|
| 498 | //////////////////////////////////////////////////////////////////////////////// |
|---|
| 499 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
|---|
| 500 | // |
|---|
| 501 | // The IOMMU can be activated or not: |
|---|
| 502 | // |
|---|
| 503 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
|---|
| 504 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
|---|
| 505 | // dynamically remapped in the IOMMU page table. The corresponding entry |
|---|
| 506 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
|---|
| 507 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
|---|
| 508 | // The number of PT2 entries is dynamically computed and stored in the |
|---|
| 509 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
|---|
| 510 | // The user buffer is unmapped by the _ioc_completed() function when |
|---|
| 511 | // the transfer is completed. |
|---|
| 512 | // |
|---|
| 513 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
|---|
| 514 | // contiguous physical buffer (this is generally true because the user space |
|---|
| 515 | // page tables are statically constructed to use contiguous physical memory). |
|---|
| 516 | // |
|---|
| 517 | // Finally, the memory buffer must fulfill the following conditions: |
|---|
| 518 | // - The user buffer must be word aligned, |
|---|
| 519 | // - The user buffer must be mapped in user address space, |
|---|
| 520 | // - The user buffer must be writable in case of (to_mem) access, |
|---|
| 521 | // - The total number of physical pages occupied by the user buffer cannot |
|---|
| 522 | // be larger than 512 pages if the IOMMU is activated, |
|---|
| 523 | // - All physical pages occupied by the user buffer must be contiguous |
|---|
| 524 | // if the IOMMU is not activated. |
|---|
| 525 | // An error code is returned if these conditions are not verified. |
|---|
| 526 | // |
|---|
| 527 | // As the IOC component can be used by several programs running in parallel, |
|---|
| 528 | // the _ioc_lock variable guaranties exclusive access to the device. The |
|---|
| 529 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
|---|
| 530 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
|---|
| 531 | // functions are blocking, polling the _ioc_lock variable until the device is |
|---|
| 532 | // available. |
|---|
| 533 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
|---|
| 534 | // set the _ioc_done variable to a non-zero value. Possible address errors |
|---|
| 535 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
|---|
| 536 | // variable. |
|---|
| 537 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
|---|
| 538 | // transfer completion. When the completion is signaled, the _ioc_completed() |
|---|
| 539 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
|---|
| 540 | // variable. |
|---|
| 541 | // |
|---|
| 542 | // In a multi-processing environment, this polling policy should be replaced by |
|---|
| 543 | // a descheduling policy for the requesting process. |
|---|
| 544 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 545 | |
|---|
| 546 | // IOC global variables |
|---|
| 547 | in_unckdata volatile unsigned int _ioc_status= 0; |
|---|
| 548 | in_unckdata volatile unsigned int _ioc_done = 0; |
|---|
| 549 | in_unckdata unsigned int _ioc_lock = 0; |
|---|
| 550 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
|---|
| 551 | in_unckdata unsigned int _ioc_iommu_npages; |
|---|
| 552 | |
|---|
| 553 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 554 | // _ioc_access() |
|---|
| 555 | // This function transfer data between a memory buffer and the block device. |
|---|
| 556 | // The buffer lentgth is (count*block_size) bytes. |
|---|
| 557 | // Arguments are: |
|---|
| 558 | // - to_mem : from external storage to memory when non 0 |
|---|
| 559 | // - lba : first block index on the external storage. |
|---|
| 560 | // - user_vaddr : virtual base address of the memory buffer. |
|---|
| 561 | // - count : number of blocks to be transfered. |
|---|
| 562 | // Returns 0 if success, > 0 if error. |
|---|
| 563 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 564 | unsigned int _ioc_access( |
|---|
| 565 | unsigned int to_mem, |
|---|
| 566 | unsigned int lba, |
|---|
| 567 | unsigned int user_vaddr, |
|---|
| 568 | unsigned int count) { |
|---|
| 569 | unsigned int user_vpn_min; // first virtuel page index in user space |
|---|
| 570 | unsigned int user_vpn_max; // last virtual page index in user space |
|---|
| 571 | unsigned int vpn; // current virtual page index in user space |
|---|
| 572 | unsigned int ppn; // physical page number |
|---|
| 573 | unsigned int flags; // page protection flags |
|---|
| 574 | unsigned int ix2; // page index in IOMMU PT1 page table |
|---|
| 575 | unsigned int addr; // buffer address for IOC peripheral |
|---|
| 576 | unsigned int ppn_first; // first physical page number for user buffer |
|---|
| 577 | |
|---|
| 578 | // check buffer alignment |
|---|
| 579 | if ((unsigned int) user_vaddr & 0x3) { |
|---|
| 580 | return 1; |
|---|
| 581 | } |
|---|
| 582 | |
|---|
| 583 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base ; |
|---|
| 584 | |
|---|
| 585 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
|---|
| 586 | unsigned int length = count * block_size; |
|---|
| 587 | |
|---|
| 588 | // get user space page table virtual address |
|---|
| 589 | unsigned int task_id = _get_proc_task_id(); |
|---|
| 590 | unsigned int user_pt_vbase = _get_context_slot(task_id, CTX_PTAB_ID); |
|---|
| 591 | |
|---|
| 592 | user_vpn_min = user_vaddr >> 12; |
|---|
| 593 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
|---|
| 594 | ix2 = 0; |
|---|
| 595 | |
|---|
| 596 | // loop on all virtual pages covering the user buffer |
|---|
| 597 | for (vpn = user_vpn_min; vpn <= user_vpn_max; vpn++) { |
|---|
| 598 | // get ppn and flags for each vpn |
|---|
| 599 | unsigned int ko = _v2p_translate((page_table_t *) user_pt_vbase, vpn, &ppn, &flags); |
|---|
| 600 | |
|---|
| 601 | // check access rights |
|---|
| 602 | if (ko) { |
|---|
| 603 | return 2; // unmapped |
|---|
| 604 | } |
|---|
| 605 | if ((flags & PTE_U) == 0) { |
|---|
| 606 | return 3; // not in user space |
|---|
| 607 | } |
|---|
| 608 | if (((flags & PTE_W) == 0 ) && to_mem) { |
|---|
| 609 | return 4; // not writable |
|---|
| 610 | } |
|---|
| 611 | |
|---|
| 612 | // save first ppn value |
|---|
| 613 | if (ix2 == 0) { |
|---|
| 614 | ppn_first = ppn; |
|---|
| 615 | } |
|---|
| 616 | |
|---|
| 617 | if (IOMMU_ACTIVE) { |
|---|
| 618 | // the user buffer must be remapped in the I/0 space |
|---|
| 619 | // check buffer length < 2 Mbytes |
|---|
| 620 | if (ix2 > 511) { |
|---|
| 621 | return 2; |
|---|
| 622 | } |
|---|
| 623 | |
|---|
| 624 | // map the physical page in IOMMU page table |
|---|
| 625 | _iommu_add_pte2( |
|---|
| 626 | _ioc_iommu_ix1, // PT1 index |
|---|
| 627 | ix2, // PT2 index |
|---|
| 628 | ppn, // Physical page number |
|---|
| 629 | flags); // Protection flags |
|---|
| 630 | } |
|---|
| 631 | else { |
|---|
| 632 | // no IOMMU : check that physical pages are contiguous |
|---|
| 633 | if ((ppn - ppn_first) != ix2) { |
|---|
| 634 | return 5; // split physical buffer |
|---|
| 635 | } |
|---|
| 636 | } |
|---|
| 637 | |
|---|
| 638 | // increment page index |
|---|
| 639 | ix2++; |
|---|
| 640 | } // end for vpn |
|---|
| 641 | |
|---|
| 642 | // register the number of pages to be unmapped |
|---|
| 643 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
|---|
| 644 | |
|---|
| 645 | // invalidate data cache in case of memory write |
|---|
| 646 | if (to_mem) { |
|---|
| 647 | _dcache_buf_invalidate((void *) user_vaddr, length); |
|---|
| 648 | } |
|---|
| 649 | |
|---|
| 650 | // compute buffer base address for IOC depending on IOMMU activation |
|---|
| 651 | if (IOMMU_ACTIVE) { |
|---|
| 652 | addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
|---|
| 653 | } |
|---|
| 654 | else { |
|---|
| 655 | addr = (ppn_first << 12) | (user_vaddr & 0xFFF); |
|---|
| 656 | } |
|---|
| 657 | |
|---|
| 658 | // get the lock on ioc device |
|---|
| 659 | _get_lock(&_ioc_lock); |
|---|
| 660 | |
|---|
| 661 | // peripheral configuration |
|---|
| 662 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
|---|
| 663 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
|---|
| 664 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
|---|
| 665 | if (to_mem == 0) { |
|---|
| 666 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
|---|
| 667 | } |
|---|
| 668 | else { |
|---|
| 669 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
|---|
| 670 | } |
|---|
| 671 | |
|---|
| 672 | return 0; |
|---|
| 673 | } |
|---|
| 674 | |
|---|
| 675 | |
|---|
| 676 | ///////////////////////////////////////////////////////////////////////////////// |
|---|
| 677 | // _ioc_completed() |
|---|
| 678 | // |
|---|
| 679 | // This function checks completion of an I/O transfer and reports errors. |
|---|
| 680 | // As it is a blocking call, the processor is stalled. |
|---|
| 681 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
|---|
| 682 | // space are unmapped, and the IOB TLB is cleared. |
|---|
| 683 | // Returns 0 if success, > 0 if error. |
|---|
| 684 | ///////////////////////////////////////////////////////////////////////////////// |
|---|
| 685 | unsigned int _ioc_completed() { |
|---|
| 686 | unsigned int ret; |
|---|
| 687 | unsigned int ix2; |
|---|
| 688 | |
|---|
| 689 | // busy waiting |
|---|
| 690 | while (_ioc_done == 0) { |
|---|
| 691 | asm volatile("nop"); |
|---|
| 692 | } |
|---|
| 693 | |
|---|
| 694 | // unmap the buffer from IOMMU page table if IOMMU is activated |
|---|
| 695 | if (IOMMU_ACTIVE) { |
|---|
| 696 | unsigned int * iob_address = (unsigned int *) &seg_iob_base; |
|---|
| 697 | |
|---|
| 698 | for (ix2 = 0; ix2 < _ioc_iommu_npages; ix2++) { |
|---|
| 699 | // unmap the page in IOMMU page table |
|---|
| 700 | _iommu_inval_pte2( |
|---|
| 701 | _ioc_iommu_ix1, // PT1 index |
|---|
| 702 | ix2 ); // PT2 index |
|---|
| 703 | |
|---|
| 704 | // clear IOMMU TLB |
|---|
| 705 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
|---|
| 706 | } |
|---|
| 707 | } |
|---|
| 708 | |
|---|
| 709 | // test IOC status |
|---|
| 710 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
|---|
| 711 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) { |
|---|
| 712 | ret = 1; // error |
|---|
| 713 | } |
|---|
| 714 | else { |
|---|
| 715 | ret = 0; // success |
|---|
| 716 | } |
|---|
| 717 | |
|---|
| 718 | // reset synchronization variables |
|---|
| 719 | _ioc_done = 0; |
|---|
| 720 | asm volatile("sync"); |
|---|
| 721 | _ioc_lock = 0; |
|---|
| 722 | |
|---|
| 723 | return ret; |
|---|
| 724 | } |
|---|
| 725 | |
|---|
| 726 | |
|---|
| 727 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 728 | // _ioc_read() |
|---|
| 729 | // Transfer data from the block device to a memory buffer in user space. |
|---|
| 730 | // - lba : first block index on the block device |
|---|
| 731 | // - buffer : base address of the memory buffer (must be word aligned) |
|---|
| 732 | // - count : number of blocks to be transfered. |
|---|
| 733 | // Returns 0 if success, > 0 if error. |
|---|
| 734 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 735 | unsigned int _ioc_read(unsigned int lba, void * buffer, unsigned int count) { |
|---|
| 736 | return _ioc_access( |
|---|
| 737 | 1, // read access |
|---|
| 738 | lba, |
|---|
| 739 | (unsigned int) buffer, |
|---|
| 740 | count); |
|---|
| 741 | } |
|---|
| 742 | |
|---|
| 743 | |
|---|
| 744 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 745 | // _ioc_write() |
|---|
| 746 | // Transfer data from a memory buffer in user space to the block device. |
|---|
| 747 | // - lba : first block index on the block device |
|---|
| 748 | // - buffer : base address of the memory buffer (must be word aligned) |
|---|
| 749 | // - count : number of blocks to be transfered. |
|---|
| 750 | // Returns 0 if success, > 0 if error. |
|---|
| 751 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 752 | unsigned int _ioc_write(unsigned int lba, const void * buffer, unsigned int count) { |
|---|
| 753 | return _ioc_access( |
|---|
| 754 | 0, // write access |
|---|
| 755 | lba, |
|---|
| 756 | (unsigned int) buffer, |
|---|
| 757 | count); |
|---|
| 758 | } |
|---|
| 759 | |
|---|
| 760 | |
|---|
| 761 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 762 | // _ioc_get_status() |
|---|
| 763 | // This function returns the transfert status, and acknowledge the IRQ. |
|---|
| 764 | // Returns 0 if success, > 0 if error. |
|---|
| 765 | /////////////////////////////////////////////////////////////////////////////// |
|---|
| 766 | unsigned int _ioc_get_status(unsigned int * status) { |
|---|
| 767 | // get IOC base address |
|---|
| 768 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base; |
|---|
| 769 | |
|---|
| 770 | *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ |
|---|
| 771 | return 0; |
|---|
| 772 | } |
|---|
| 773 | |
|---|
| 774 | |
|---|
| 775 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 776 | // VciMultiDma driver |
|---|
| 777 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 778 | // The DMA controllers are physically distributed in the clusters. |
|---|
| 779 | // There is (NB_CLUSTERS * NB_DMAS_MAX) channels, indexed by a global index: |
|---|
| 780 | // dma_id = cluster_id * NB_DMA_MAX + loc_id |
|---|
| 781 | // |
|---|
| 782 | // As a DMA channel can be used by several tasks, each DMA channel is protected |
|---|
| 783 | // by a specific lock: _dma_lock[dma_id] |
|---|
| 784 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
|---|
| 785 | // synchronisation variables (set by the ISR, and reset by the OS). |
|---|
| 786 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
|---|
| 787 | // |
|---|
| 788 | // These DMA channels can be used by the FB driver, or by the NIC driver. |
|---|
| 789 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 790 | |
|---|
| 791 | #if NB_DMAS_MAX > 0 |
|---|
| 792 | in_unckdata unsigned int _dma_lock[NB_DMAS_MAX * NB_CLUSTERS] = { |
|---|
| 793 | [0 ... (NB_DMAS_MAX * NB_CLUSTERS) - 1] = 0 |
|---|
| 794 | }; |
|---|
| 795 | |
|---|
| 796 | in_unckdata volatile unsigned int _dma_done[NB_DMAS_MAX * NB_CLUSTERS] = { |
|---|
| 797 | [0 ... (NB_DMAS_MAX * NB_CLUSTERS) - 1] = 0 |
|---|
| 798 | }; |
|---|
| 799 | |
|---|
| 800 | in_unckdata volatile unsigned int _dma_status[NB_DMAS_MAX * NB_CLUSTERS]; |
|---|
| 801 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
|---|
| 802 | in_unckdata unsigned int _dma_iommu_npages[NB_DMAS_MAX * NB_CLUSTERS]; |
|---|
| 803 | #endif |
|---|
| 804 | |
|---|
| 805 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 806 | // _dma_reset_irq() |
|---|
| 807 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 808 | unsigned int _dma_reset_irq(unsigned int cluster_id, unsigned int channel_id) { |
|---|
| 809 | #if NB_DMAS_MAX > 0 |
|---|
| 810 | // parameters checking |
|---|
| 811 | if (cluster_id >= NB_CLUSTERS) { |
|---|
| 812 | return 1; |
|---|
| 813 | } |
|---|
| 814 | if (channel_id >= NB_DMAS_MAX) { |
|---|
| 815 | return 1; |
|---|
| 816 | } |
|---|
| 817 | |
|---|
| 818 | // compute DMA base address |
|---|
| 819 | unsigned int * dma_address = (unsigned int *) ((char *) &seg_dma_base + |
|---|
| 820 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
|---|
| 821 | |
|---|
| 822 | dma_address[channel_id * DMA_SPAN + DMA_RESET] = 0; |
|---|
| 823 | return 0; |
|---|
| 824 | #else |
|---|
| 825 | return -1; |
|---|
| 826 | #endif |
|---|
| 827 | } |
|---|
| 828 | |
|---|
| 829 | |
|---|
| 830 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 831 | // _dma_get_status() |
|---|
| 832 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 833 | unsigned int _dma_get_status(unsigned int cluster_id, unsigned int channel_id, unsigned int * status) { |
|---|
| 834 | #if NB_DMAS_MAX > 0 |
|---|
| 835 | // parameters checking |
|---|
| 836 | if (cluster_id >= NB_CLUSTERS) { |
|---|
| 837 | return 1; |
|---|
| 838 | } |
|---|
| 839 | if (channel_id >= NB_DMAS_MAX) { |
|---|
| 840 | return 1; |
|---|
| 841 | } |
|---|
| 842 | |
|---|
| 843 | // compute DMA base address |
|---|
| 844 | unsigned int * dma_address = (unsigned int *) ((char *) &seg_dma_base + |
|---|
| 845 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
|---|
| 846 | |
|---|
| 847 | *status = dma_address[channel_id * DMA_SPAN + DMA_LEN]; |
|---|
| 848 | return 0; |
|---|
| 849 | #else |
|---|
| 850 | return -1; |
|---|
| 851 | #endif |
|---|
| 852 | } |
|---|
| 853 | |
|---|
| 854 | |
|---|
| 855 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 856 | // _dma_transfer() |
|---|
| 857 | // Transfer data between a user buffer and a device buffer using DMA. |
|---|
| 858 | // Two devices types are supported: Frame Buffer if dev_type == 0 |
|---|
| 859 | // Multi-Nic if dev_type != 0 |
|---|
| 860 | // Arguments are: |
|---|
| 861 | // - dev_type : device type. |
|---|
| 862 | // - to_user : from device buffer to user buffer when true. |
|---|
| 863 | // - offset : offset (in bytes) in the device buffer. |
|---|
| 864 | // - user_vaddr : virtual base address of the user buffer. |
|---|
| 865 | // - length : number of bytes to be transfered. |
|---|
| 866 | // |
|---|
| 867 | // The DMA channel is obtained from task context (CTX_FBDMA_ID / CTX_NIDMA_ID. |
|---|
| 868 | // The user buffer must be mapped in user address space and word-aligned. |
|---|
| 869 | // The user buffer length must be multiple of 4 bytes. |
|---|
| 870 | // Me must compute the physical base addresses for both the device buffer |
|---|
| 871 | // and the user buffer before programming the DMA transfer. |
|---|
| 872 | // The GIET being fully static, we don't need to split the transfer in 4 Kbytes |
|---|
| 873 | // pages, because the user buffer is contiguous in physical space. |
|---|
| 874 | // Returns 0 if success, > 0 if error. |
|---|
| 875 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 876 | unsigned int _dma_transfer( |
|---|
| 877 | unsigned int dev_type, |
|---|
| 878 | unsigned int to_user, |
|---|
| 879 | unsigned int offset, |
|---|
| 880 | unsigned int user_vaddr, |
|---|
| 881 | unsigned int length) { |
|---|
| 882 | #if NB_DMAS_MAX > 0 |
|---|
| 883 | unsigned int ko; // unsuccessfull V2P translation |
|---|
| 884 | unsigned int flags; // protection flags |
|---|
| 885 | unsigned int ppn; // physical page number |
|---|
| 886 | unsigned int user_pbase; // user buffer pbase address |
|---|
| 887 | unsigned int device_pbase; // frame buffer pbase address |
|---|
| 888 | unsigned int device_vaddr; // device buffer vbase address |
|---|
| 889 | |
|---|
| 890 | // check user buffer address and length alignment |
|---|
| 891 | if ((user_vaddr & 0x3) || (length & 0x3)) { |
|---|
| 892 | _get_lock(&_tty_put_lock); |
|---|
| 893 | _puts("\n[GIET ERROR] in _dma_transfer : user buffer not word aligned\n"); |
|---|
| 894 | _release_lock(&_tty_put_lock); |
|---|
| 895 | return 1; |
|---|
| 896 | } |
|---|
| 897 | |
|---|
| 898 | // get DMA channel and compute DMA vbase address |
|---|
| 899 | unsigned int task_id = _get_proc_task_id(); |
|---|
| 900 | unsigned int dma_id = _get_context_slot(task_id, CTX_DMA_ID); |
|---|
| 901 | unsigned int cluster_id = dma_id / NB_DMAS_MAX; |
|---|
| 902 | unsigned int loc_id = dma_id % NB_DMAS_MAX; |
|---|
| 903 | unsigned int * dma_base = (unsigned int *) ((char *) &seg_dma_base + |
|---|
| 904 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
|---|
| 905 | |
|---|
| 906 | // get page table address |
|---|
| 907 | unsigned int user_ptab = _get_context_slot( task_id, CTX_PTAB_ID); |
|---|
| 908 | |
|---|
| 909 | // get peripheral buffer virtual address |
|---|
| 910 | if ( dev_type) { |
|---|
| 911 | device_vaddr = (unsigned int) &seg_nic_base + offset; |
|---|
| 912 | } |
|---|
| 913 | else { |
|---|
| 914 | device_vaddr = (unsigned int) &seg_fbf_base + offset; |
|---|
| 915 | } |
|---|
| 916 | |
|---|
| 917 | // get device buffer physical address |
|---|
| 918 | ko = _v2p_translate((page_table_t *) user_ptab, (device_vaddr >> 12), &ppn, &flags); |
|---|
| 919 | if (ko) { |
|---|
| 920 | _get_lock(&_tty_put_lock); |
|---|
| 921 | _puts("\n[GIET ERROR] in _dma_transfer : device buffer unmapped\n"); |
|---|
| 922 | _release_lock(&_tty_put_lock); |
|---|
| 923 | return 2; |
|---|
| 924 | } |
|---|
| 925 | device_pbase = (ppn << 12) | (device_vaddr & 0x00000FFF); |
|---|
| 926 | |
|---|
| 927 | // Compute user buffer physical address |
|---|
| 928 | ko = _v2p_translate( (page_table_t*)user_ptab, (user_vaddr >> 12), &ppn, &flags); |
|---|
| 929 | if (ko) { |
|---|
| 930 | _get_lock(&_tty_put_lock); |
|---|
| 931 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer unmapped\n"); |
|---|
| 932 | _release_lock(&_tty_put_lock); |
|---|
| 933 | return 3; |
|---|
| 934 | } |
|---|
| 935 | if ((flags & PTE_U) == 0) { |
|---|
| 936 | _get_lock(&_tty_put_lock); |
|---|
| 937 | _puts("[GIET ERROR] in _dma_transfer() : user buffer not in user space\n"); |
|---|
| 938 | _release_lock(&_tty_put_lock); |
|---|
| 939 | return 4; |
|---|
| 940 | } |
|---|
| 941 | if (((flags & PTE_W) == 0 ) && to_user) { |
|---|
| 942 | _get_lock(&_tty_put_lock); |
|---|
| 943 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer not writable\n"); |
|---|
| 944 | _release_lock(&_tty_put_lock); |
|---|
| 945 | return 5; |
|---|
| 946 | } |
|---|
| 947 | user_pbase = (ppn << 12) | (user_vaddr & 0x00000FFF); |
|---|
| 948 | |
|---|
| 949 | /* This is a draft for IOMMU support |
|---|
| 950 | |
|---|
| 951 | // loop on all virtual pages covering the user buffer |
|---|
| 952 | unsigned int user_vpn_min = user_vaddr >> 12; |
|---|
| 953 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
|---|
| 954 | unsigned int ix2 = 0; |
|---|
| 955 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
|---|
| 956 | |
|---|
| 957 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
|---|
| 958 | { |
|---|
| 959 | // get ppn and flags for each vpn |
|---|
| 960 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
|---|
| 961 | vpn, |
|---|
| 962 | &ppn, |
|---|
| 963 | &flags ); |
|---|
| 964 | |
|---|
| 965 | // check access rights |
|---|
| 966 | if ( ko ) return 3; // unmapped |
|---|
| 967 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
|---|
| 968 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
|---|
| 969 | |
|---|
| 970 | // save first ppn value |
|---|
| 971 | if ( ix2 == 0 ) ppn_first = ppn; |
|---|
| 972 | |
|---|
| 973 | if ( IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
|---|
| 974 | { |
|---|
| 975 | // check buffer length < 2 Mbytes |
|---|
| 976 | if ( ix2 > 511 ) return 2; |
|---|
| 977 | |
|---|
| 978 | // map the physical page in IOMMU page table |
|---|
| 979 | _iommu_add_pte2( ix1, // PT1 index |
|---|
| 980 | ix2, // PT2 index |
|---|
| 981 | ppn, // physical page number |
|---|
| 982 | flags ); // protection flags |
|---|
| 983 | } |
|---|
| 984 | else // no IOMMU : check that physical pages are contiguous |
|---|
| 985 | { |
|---|
| 986 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
|---|
| 987 | } |
|---|
| 988 | |
|---|
| 989 | // increment page index |
|---|
| 990 | ix2++; |
|---|
| 991 | } // end for vpn |
|---|
| 992 | |
|---|
| 993 | // register the number of pages to be unmapped if iommu activated |
|---|
| 994 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
|---|
| 995 | |
|---|
| 996 | */ |
|---|
| 997 | |
|---|
| 998 | // invalidate data cache in case of memory write |
|---|
| 999 | if (to_user) { |
|---|
| 1000 | _dcache_buf_invalidate((void *) user_vaddr, length); |
|---|
| 1001 | } |
|---|
| 1002 | |
|---|
| 1003 | // get the lock |
|---|
| 1004 | _get_lock(&_dma_lock[dma_id]); |
|---|
| 1005 | |
|---|
| 1006 | // DMA configuration |
|---|
| 1007 | if (to_user) { |
|---|
| 1008 | dma_base[loc_id * DMA_SPAN + DMA_SRC] = (unsigned int) device_pbase; |
|---|
| 1009 | dma_base[loc_id * DMA_SPAN + DMA_DST] = (unsigned int) user_pbase; |
|---|
| 1010 | } |
|---|
| 1011 | else { |
|---|
| 1012 | dma_base[loc_id * DMA_SPAN + DMA_SRC] = (unsigned int) user_pbase; |
|---|
| 1013 | dma_base[loc_id * DMA_SPAN + DMA_DST] = (unsigned int) device_pbase; |
|---|
| 1014 | } |
|---|
| 1015 | dma_base[loc_id * DMA_SPAN + DMA_LEN] = (unsigned int) length; |
|---|
| 1016 | |
|---|
| 1017 | return 0; |
|---|
| 1018 | #else //NB_DMAS_MAX == 0 |
|---|
| 1019 | return -1; |
|---|
| 1020 | #endif |
|---|
| 1021 | } // end _dma_transfer() |
|---|
| 1022 | |
|---|
| 1023 | |
|---|
| 1024 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1025 | // _dma_completed() |
|---|
| 1026 | // This function checks completion of a DMA transfer to or from a peripheral |
|---|
| 1027 | // device (Frame Buffer or Multi-Nic). |
|---|
| 1028 | // As it is a blocking call, the processor is busy waiting. |
|---|
| 1029 | // Returns 0 if success, > 0 if error |
|---|
| 1030 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
|---|
| 1031 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1032 | unsigned int _dma_completed() { |
|---|
| 1033 | #if NB_DMAS_MAX > 0 |
|---|
| 1034 | unsigned int task_id = _get_proc_task_id(); |
|---|
| 1035 | unsigned int dma_id = _get_context_slot(task_id, CTX_DMA_ID); |
|---|
| 1036 | unsigned int dma_ret; |
|---|
| 1037 | |
|---|
| 1038 | // busy waiting with a pseudo random delay between bus access |
|---|
| 1039 | while (_dma_done[dma_id] == 0) { |
|---|
| 1040 | unsigned int delay = (( _proctime() ^ _procid() << 4) & 0x3F) + 1; |
|---|
| 1041 | asm volatile( |
|---|
| 1042 | "move $3, %0 \n" |
|---|
| 1043 | "loop_nic_completed: \n" |
|---|
| 1044 | "addi $3, $3, -1 \n" |
|---|
| 1045 | "bnez $3, loop_nic_completed \n" |
|---|
| 1046 | "nop \n" |
|---|
| 1047 | : |
|---|
| 1048 | : "r" (delay) |
|---|
| 1049 | : "$3"); |
|---|
| 1050 | } |
|---|
| 1051 | |
|---|
| 1052 | /* draft support for IOMMU |
|---|
| 1053 | // unmap the buffer from IOMMU page table if IOMMU is activated |
|---|
| 1054 | if ( GIET_IOMMU_ACTIVE ) |
|---|
| 1055 | { |
|---|
| 1056 | unsigned int* iob_address = (unsigned int*)&seg_iob_base; |
|---|
| 1057 | |
|---|
| 1058 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
|---|
| 1059 | unsigned int ix2; |
|---|
| 1060 | |
|---|
| 1061 | for ( ix2 = 0 ; ix2 < _dma_iommu_npages[dma_id] ; ix2++ ) |
|---|
| 1062 | { |
|---|
| 1063 | // unmap the page in IOMMU page table |
|---|
| 1064 | _iommu_inval_pte2( ix1, // PT1 index |
|---|
| 1065 | ix2 ); // PT2 index |
|---|
| 1066 | |
|---|
| 1067 | // clear IOMMU TLB |
|---|
| 1068 | iob_address[IOB_INVAL_PTE] = (ix1 << 21) | (ix2 << 12); |
|---|
| 1069 | } |
|---|
| 1070 | } |
|---|
| 1071 | */ |
|---|
| 1072 | |
|---|
| 1073 | // reset synchronization variables |
|---|
| 1074 | _dma_done[dma_id] = 0; |
|---|
| 1075 | dma_ret = _dma_status[dma_id]; |
|---|
| 1076 | asm volatile("sync\n"); |
|---|
| 1077 | _dma_lock[dma_id] = 0; |
|---|
| 1078 | |
|---|
| 1079 | return dma_ret; |
|---|
| 1080 | |
|---|
| 1081 | #else //NB_DMAS_MAX == 0 |
|---|
| 1082 | return -1; |
|---|
| 1083 | #endif |
|---|
| 1084 | } // end _dma_completed |
|---|
| 1085 | |
|---|
| 1086 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1087 | // VciFrameBuffer driver |
|---|
| 1088 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1089 | // The vci_frame_buffer device can be accessed directly by software with memcpy(), |
|---|
| 1090 | // or it can be accessed through a multi-channels DMA component: |
|---|
| 1091 | // |
|---|
| 1092 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
|---|
| 1093 | // implement the transfer between a data buffer (user space) and the frame |
|---|
| 1094 | // buffer (kernel space). They are blocking until completion of the transfer. |
|---|
| 1095 | // |
|---|
| 1096 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the |
|---|
| 1097 | // VciMultiDma components (distributed in the clusters) to transfer data |
|---|
| 1098 | // between the user buffer and the frame buffer. A FBDMA channel is |
|---|
| 1099 | // allocated to each task requesting it in the mapping_info data structure. |
|---|
| 1100 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1101 | |
|---|
| 1102 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1103 | // _fb_sync_write() |
|---|
| 1104 | // Transfer data from an memory buffer to the frame_buffer device using a memcpy. |
|---|
| 1105 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1106 | // - buffer : base address of the memory buffer. |
|---|
| 1107 | // - length : number of bytes to be transfered. |
|---|
| 1108 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1109 | unsigned int _fb_sync_write(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1110 | unsigned char * fb_address = (unsigned char *) &seg_fbf_base + offset; |
|---|
| 1111 | memcpy((void *) fb_address, (void *) buffer, length); |
|---|
| 1112 | return 0; |
|---|
| 1113 | } |
|---|
| 1114 | |
|---|
| 1115 | |
|---|
| 1116 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1117 | // _fb_sync_read() |
|---|
| 1118 | // Transfer data from the frame_buffer device to a memory buffer using a memcpy. |
|---|
| 1119 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1120 | // - buffer : base address of the memory buffer. |
|---|
| 1121 | // - length : number of bytes to be transfered. |
|---|
| 1122 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1123 | unsigned int _fb_sync_read(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1124 | unsigned char * fb_address = (unsigned char *) &seg_fbf_base + offset; |
|---|
| 1125 | memcpy((void *) buffer, (void *) fb_address, length); |
|---|
| 1126 | return 0; |
|---|
| 1127 | } |
|---|
| 1128 | |
|---|
| 1129 | |
|---|
| 1130 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1131 | // _fb_write() |
|---|
| 1132 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
|---|
| 1133 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1134 | // - buffer : base address of the memory buffer. |
|---|
| 1135 | // - length : number of bytes to be transfered. |
|---|
| 1136 | // Returns 0 if success, > 0 if error. |
|---|
| 1137 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1138 | unsigned int _fb_write(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1139 | return _dma_transfer( |
|---|
| 1140 | 0, // frame buffer |
|---|
| 1141 | 0, // write |
|---|
| 1142 | offset, |
|---|
| 1143 | (unsigned int) buffer, |
|---|
| 1144 | length); |
|---|
| 1145 | } |
|---|
| 1146 | |
|---|
| 1147 | |
|---|
| 1148 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1149 | // _fb_read() |
|---|
| 1150 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
|---|
| 1151 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1152 | // - buffer : base address of the memory buffer. |
|---|
| 1153 | // - length : number of bytes to be transfered. |
|---|
| 1154 | // Returns 0 if success, > 0 if error. |
|---|
| 1155 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1156 | unsigned int _fb_read(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1157 | return _dma_transfer( |
|---|
| 1158 | 0, // frame buffer |
|---|
| 1159 | 1, // read |
|---|
| 1160 | offset, |
|---|
| 1161 | (unsigned int) buffer, |
|---|
| 1162 | length); |
|---|
| 1163 | } |
|---|
| 1164 | |
|---|
| 1165 | |
|---|
| 1166 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1167 | // _fb_completed() |
|---|
| 1168 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
|---|
| 1169 | // As it is a blocking call, the processor is busy waiting. |
|---|
| 1170 | // Returns 0 if success, > 0 if error |
|---|
| 1171 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
|---|
| 1172 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1173 | unsigned int _fb_completed() { |
|---|
| 1174 | return _dma_completed(); |
|---|
| 1175 | } |
|---|
| 1176 | |
|---|
| 1177 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1178 | // VciMultiNic driver |
|---|
| 1179 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1180 | // The VciMultiNic device can be accessed directly by software with memcpy(), |
|---|
| 1181 | // or it can be accessed through a multi-channels DMA component: |
|---|
| 1182 | // |
|---|
| 1183 | // The '_nic_sync_write' and '_nic_sync_read' functions use a memcpy strategy to |
|---|
| 1184 | // implement the transfer between a data buffer (user space) and the NIC |
|---|
| 1185 | // buffer (kernel space). They are blocking until completion of the transfer. |
|---|
| 1186 | // |
|---|
| 1187 | // The '_nic_write()', '_nic_read()' and '_nic_completed()' functions use the |
|---|
| 1188 | // VciMultiDma components (distributed in the clusters) to transfer data |
|---|
| 1189 | // between the user buffer and the NIC. A NIDMA channel is allocated to each |
|---|
| 1190 | // task requesting it in the mapping_info data structure. |
|---|
| 1191 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1192 | |
|---|
| 1193 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1194 | // _nic_sync_write() |
|---|
| 1195 | // Transfer data from an memory buffer to the NIC device using a memcpy. |
|---|
| 1196 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1197 | // - buffer : base address of the memory buffer. |
|---|
| 1198 | // - length : number of bytes to be transfered. |
|---|
| 1199 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1200 | unsigned int _nic_sync_write(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1201 | unsigned char * nic_address = (unsigned char *) &seg_nic_base + offset; |
|---|
| 1202 | memcpy((void *) nic_address, (void *) buffer, length); |
|---|
| 1203 | return 0; |
|---|
| 1204 | } |
|---|
| 1205 | |
|---|
| 1206 | |
|---|
| 1207 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1208 | // _nic_sync_read() |
|---|
| 1209 | // Transfer data from the NIC device to a memory buffer using a memcpy. |
|---|
| 1210 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1211 | // - buffer : base address of the memory buffer. |
|---|
| 1212 | // - length : number of bytes to be transfered. |
|---|
| 1213 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1214 | unsigned int _nic_sync_read(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1215 | unsigned char *nic_address = (unsigned char *) &seg_nic_base + offset; |
|---|
| 1216 | memcpy((void *) buffer, (void *) nic_address, length); |
|---|
| 1217 | return 0; |
|---|
| 1218 | } |
|---|
| 1219 | |
|---|
| 1220 | |
|---|
| 1221 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1222 | // _nic_write() |
|---|
| 1223 | // Transfer data from a memory buffer to the NIC device using DMA. |
|---|
| 1224 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1225 | // - buffer : base address of the memory buffer. |
|---|
| 1226 | // - length : number of bytes to be transfered. |
|---|
| 1227 | // Returns 0 if success, > 0 if error. |
|---|
| 1228 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1229 | unsigned int _nic_write(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1230 | return _dma_transfer( |
|---|
| 1231 | 1, // NIC |
|---|
| 1232 | 0, // write |
|---|
| 1233 | offset, |
|---|
| 1234 | (unsigned int) buffer, |
|---|
| 1235 | length ); |
|---|
| 1236 | } |
|---|
| 1237 | |
|---|
| 1238 | |
|---|
| 1239 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1240 | // _nic_read() |
|---|
| 1241 | // Transfer data from the NIC device to a memory buffer using DMA. |
|---|
| 1242 | // - offset : offset (in bytes) in the frame buffer. |
|---|
| 1243 | // - buffer : base address of the memory buffer. |
|---|
| 1244 | // - length : number of bytes to be transfered. |
|---|
| 1245 | // Returns 0 if success, > 0 if error. |
|---|
| 1246 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1247 | unsigned int _nic_read(unsigned int offset, const void * buffer, unsigned int length) { |
|---|
| 1248 | return _dma_transfer( |
|---|
| 1249 | 1, // NIC |
|---|
| 1250 | 1, // read |
|---|
| 1251 | offset, |
|---|
| 1252 | (unsigned int) buffer, |
|---|
| 1253 | length ); |
|---|
| 1254 | } |
|---|
| 1255 | |
|---|
| 1256 | |
|---|
| 1257 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1258 | // _nic_completed() |
|---|
| 1259 | // This function checks completion of a DMA transfer to or fom a NIC channel. |
|---|
| 1260 | // As it is a blocking call, the processor is busy waiting. |
|---|
| 1261 | // Returns 0 if success, > 0 if error |
|---|
| 1262 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
|---|
| 1263 | ////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1264 | unsigned int _nic_completed() { |
|---|
| 1265 | return _dma_completed(); |
|---|
| 1266 | } |
|---|
| 1267 | |
|---|
| 1268 | /////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1269 | // _heap_info() |
|---|
| 1270 | // This function returns the information associated to a heap (size and vaddr) |
|---|
| 1271 | // It uses the global task id (CTX_GTID_ID, unique for each giet task) and the |
|---|
| 1272 | // vspace id (CTX_VSID_ID) defined in the context |
|---|
| 1273 | /////////////////////////////////////////////////////////////////////////////////// |
|---|
| 1274 | unsigned int _heap_info(unsigned int * vaddr, unsigned int * size) { |
|---|
| 1275 | mapping_header_t * header = (mapping_header_t *) (&seg_mapping_base); |
|---|
| 1276 | mapping_task_t * tasks = _get_task_base(header); |
|---|
| 1277 | mapping_vobj_t * vobjs = _get_vobj_base(header); |
|---|
| 1278 | mapping_vspace_t * vspaces = _get_vspace_base(header); |
|---|
| 1279 | unsigned int taskid = _get_context_slot(_get_proc_task_id(), CTX_GTID_ID); |
|---|
| 1280 | unsigned int vspaceid = _get_context_slot(_get_proc_task_id(), CTX_VSID_ID); |
|---|
| 1281 | int heap_local_vobjid = tasks[taskid].heap_vobjid; |
|---|
| 1282 | if (heap_local_vobjid != -1) { |
|---|
| 1283 | unsigned int vobjheapid = heap_local_vobjid + vspaces[vspaceid].vobj_offset; |
|---|
| 1284 | *vaddr = vobjs[vobjheapid].vaddr; |
|---|
| 1285 | *size = vobjs[vobjheapid].length; |
|---|
| 1286 | return 0; |
|---|
| 1287 | } |
|---|
| 1288 | else { |
|---|
| 1289 | *vaddr = 0; |
|---|
| 1290 | *size = 0; |
|---|
| 1291 | return 0; |
|---|
| 1292 | } |
|---|
| 1293 | } |
|---|
| 1294 | |
|---|
| 1295 | // Local Variables: |
|---|
| 1296 | // tab-width: 4 |
|---|
| 1297 | // c-basic-offset: 4 |
|---|
| 1298 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
|---|
| 1299 | // indent-tabs-mode: nil |
|---|
| 1300 | // End: |
|---|
| 1301 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
|---|
| 1302 | |
|---|