source: trunk/Softwares/MiBench/src/c/basicmath-isqrt.c @ 121

Last change on this file since 121 was 117, checked in by rosiere, 15 years ago

1) Platforms : add new organization for test
2) Load_Store_Unit : add array to count nb_check in store_queue
3) Issue_queue and Core_Glue : rewrite the issue network
4) Special_Register_Unit : add reset value to register CID
5) Softwares : add multicontext test
6) Softwares : add SPECINT
7) Softwares : add MiBench?
7) Read_queue : inhib access for r0
8) Change Core_Glue (network) - dont yet support priority and load balancing scheme

  • Property svn:executable set to *
  • Property svn:keywords set to Id
File size: 2.7 KB
Line 
1/* +++Date last modified: 05-Jul-1997 */
2
3#include <string.h>
4#include "basicmath-snipmath.h"
5
6#define BITSPERLONG 32
7
8#define TOP2BITS(x) ((x & (3L << (BITSPERLONG-2))) >> (BITSPERLONG-2))
9
10
11/* usqrt:
12    ENTRY x: unsigned long
13    EXIT  returns floor(sqrt(x) * pow(2, BITSPERLONG/2))
14
15    Since the square root never uses more than half the bits
16    of the input, we use the other half of the bits to contain
17    extra bits of precision after the binary point.
18
19    EXAMPLE
20        suppose BITSPERLONG = 32
21        then    usqrt(144) = 786432 = 12 * 65536
22                usqrt(32) = 370727 = 5.66 * 65536
23
24    NOTES
25        (1) change BITSPERLONG to BITSPERLONG/2 if you do not want
26            the answer scaled.  Indeed, if you want n bits of
27            precision after the binary point, use BITSPERLONG/2+n.
28            The code assumes that BITSPERLONG is even.
29        (2) This is really better off being written in assembly.
30            The line marked below is really a "arithmetic shift left"
31            on the double-long value with r in the upper half
32            and x in the lower half.  This operation is typically
33            expressible in only one or two assembly instructions.
34        (3) Unrolling this loop is probably not a bad idea.
35
36    ALGORITHM
37        The calculations are the base-two analogue of the square
38        root algorithm we all learned in grammar school.  Since we're
39        in base 2, there is only one nontrivial trial multiplier.
40
41        Notice that absolutely no multiplications or divisions are performed.
42        This means it'll be fast on a wide range of processors.
43*/
44
45void usqrt(unsigned long x, struct int_sqrt *q)
46{
47      unsigned long a = 0L;                   /* accumulator      */
48      unsigned long r = 0L;                   /* remainder        */
49      unsigned long e = 0L;                   /* trial product    */
50
51      int i;
52
53      for (i = 0; i < BITSPERLONG; i++)   /* NOTE 1 */
54      {
55            r = (r << 2) + TOP2BITS(x); x <<= 2; /* NOTE 2 */
56            a <<= 1;
57            e = (a << 1) + 1;
58            if (r >= e)
59            {
60                  r -= e;
61                  a++;
62            }
63      }
64      memcpy(q, &a, sizeof(long));
65}
66
67#ifdef TEST
68
69#include <stdio.h>
70#include <stdlib.h>
71
72main(void)
73{
74      int i;
75      unsigned long l = 0x3fed0169L;
76      struct int_sqrt q;
77
78      for (i = 0; i < 101; ++i)
79      {
80            usqrt(i, &q);
81            printf("sqrt(%3d) = %2d, remainder = %2d\n",
82                  i, q.sqrt, q.frac);
83      }
84      usqrt(l, &q);
85      printf("\nsqrt(%lX) = %X, remainder = %X\n", l, q.sqrt, q.frac);
86      return 0;
87}
88
89#endif /* TEST */
Note: See TracBrowser for help on using the repository browser.