[117] | 1 | /* {{{ Copyright etc. */ |
---|
| 2 | |
---|
| 3 | /**********************************************************************\ |
---|
| 4 | |
---|
| 5 | SUSAN Version 2l by Stephen Smith |
---|
| 6 | Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, |
---|
| 7 | Department of Clinical Neurology, Oxford University, Oxford, UK |
---|
| 8 | (Previously in Computer Vision and Image Processing Group - now |
---|
| 9 | Computer Vision and Electro Optics Group - DERA Chertsey, UK) |
---|
| 10 | Email: steve@fmrib.ox.ac.uk |
---|
| 11 | WWW: http://www.fmrib.ox.ac.uk/~steve |
---|
| 12 | |
---|
| 13 | (C) Crown Copyright (1995-1999), Defence Evaluation and Research Agency, |
---|
| 14 | Farnborough, Hampshire, GU14 6TD, UK |
---|
| 15 | DERA WWW site: |
---|
| 16 | http://www.dera.gov.uk/ |
---|
| 17 | DERA Computer Vision and Electro Optics Group WWW site: |
---|
| 18 | http://www.dera.gov.uk/imageprocessing/dera/group_home.html |
---|
| 19 | DERA Computer Vision and Electro Optics Group point of contact: |
---|
| 20 | Dr. John Savage, jtsavage@dera.gov.uk, +44 1344 633203 |
---|
| 21 | |
---|
| 22 | A UK patent has been granted: "Method for digitally processing |
---|
| 23 | images to determine the position of edges and/or corners therein for |
---|
| 24 | guidance of unmanned vehicle", UK Patent 2272285. Proprietor: |
---|
| 25 | Secretary of State for Defence, UK. 15 January 1997 |
---|
| 26 | |
---|
| 27 | This code is issued for research purposes only and remains the |
---|
| 28 | property of the UK Secretary of State for Defence. This code must |
---|
| 29 | not be passed on without this header information being kept |
---|
| 30 | intact. This code must not be sold. |
---|
| 31 | |
---|
| 32 | \**********************************************************************/ |
---|
| 33 | |
---|
| 34 | /* }}} */ |
---|
| 35 | /* {{{ Readme First */ |
---|
| 36 | |
---|
| 37 | /**********************************************************************\ |
---|
| 38 | |
---|
| 39 | SUSAN Version 2l |
---|
| 40 | SUSAN = Smallest Univalue Segment Assimilating Nucleus |
---|
| 41 | |
---|
| 42 | Email: steve@fmrib.ox.ac.uk |
---|
| 43 | WWW: http://www.fmrib.ox.ac.uk/~steve |
---|
| 44 | |
---|
| 45 | Related paper: |
---|
| 46 | @article{Smith97, |
---|
| 47 | author = "Smith, S.M. and Brady, J.M.", |
---|
| 48 | title = "{SUSAN} - A New Approach to Low Level Image Processing", |
---|
| 49 | journal = "Int. Journal of Computer Vision", |
---|
| 50 | pages = "45--78", |
---|
| 51 | volume = "23", |
---|
| 52 | number = "1", |
---|
| 53 | month = "May", |
---|
| 54 | year = 1997} |
---|
| 55 | |
---|
| 56 | To be registered for automatic (bug) updates of SUSAN, send an email. |
---|
| 57 | |
---|
| 58 | Compile with: |
---|
| 59 | gcc -O4 -o susan susan2l.c -lm |
---|
| 60 | |
---|
| 61 | See following section for different machine information. Please |
---|
| 62 | report any bugs (and fixes). There are a few optional changes that |
---|
| 63 | can be made in the "defines" section which follows shortly. |
---|
| 64 | |
---|
| 65 | Usage: type "susan" to get usage. Only PGM format files can be input |
---|
| 66 | and output. Utilities such as the netpbm package and XV can be used |
---|
| 67 | to convert to and from other formats. Any size of image can be |
---|
| 68 | processed. |
---|
| 69 | |
---|
| 70 | This code is written using an emacs folding mode, making moving |
---|
| 71 | around the different sections very easy. This is why there are |
---|
| 72 | various marks within comments and why comments are indented. |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | SUSAN QUICK: |
---|
| 76 | |
---|
| 77 | This version of the SUSAN corner finder does not do all the |
---|
| 78 | false-corner suppression and thus is faster and produced some false |
---|
| 79 | positives, particularly on strong edges. However, because there are |
---|
| 80 | less stages involving thresholds etc., the corners that are |
---|
| 81 | correctly reported are usually more stable than those reported with |
---|
| 82 | the full algorithm. Thus I recommend at least TRYING this algorithm |
---|
| 83 | for applications where stability is important, e.g., tracking. |
---|
| 84 | |
---|
| 85 | THRESHOLDS: |
---|
| 86 | |
---|
| 87 | There are two thresholds which can be set at run-time. These are the |
---|
| 88 | brightness threshold (t) and the distance threshold (d). |
---|
| 89 | |
---|
| 90 | SPATIAL CONTROL: d |
---|
| 91 | |
---|
| 92 | In SUSAN smoothing d controls the size of the Gaussian mask; its |
---|
| 93 | default is 4.0. Increasing d gives more smoothing. In edge finding, |
---|
| 94 | a fixed flat mask is used, either 37 pixels arranged in a "circle" |
---|
| 95 | (default), or a 3 by 3 mask which gives finer detail. In corner |
---|
| 96 | finding, only the larger 37 pixel mask is used; d is not |
---|
| 97 | variable. In smoothing, the flat 3 by 3 mask can be used instead of |
---|
| 98 | a larger Gaussian mask; this gives low smoothing and fast operation. |
---|
| 99 | |
---|
| 100 | BRIGHTNESS CONTROL: t |
---|
| 101 | |
---|
| 102 | In all three algorithms, t can be varied (default=20); this is the |
---|
| 103 | main threshold to be varied. It determines the maximum difference in |
---|
| 104 | greylevels between two pixels which allows them to be considered |
---|
| 105 | part of the same "region" in the image. Thus it can be reduced to |
---|
| 106 | give more edges or corners, i.e. to be more sensitive, and vice |
---|
| 107 | versa. In smoothing, reducing t gives less smoothing, and vice |
---|
| 108 | versa. Set t=10 for the test image available from the SUSAN web |
---|
| 109 | page. |
---|
| 110 | |
---|
| 111 | ITERATIONS: |
---|
| 112 | |
---|
| 113 | With SUSAN smoothing, more smoothing can also be obtained by |
---|
| 114 | iterating the algorithm several times. This has a different effect |
---|
| 115 | from varying d or t. |
---|
| 116 | |
---|
| 117 | FIXED MASKS: |
---|
| 118 | |
---|
| 119 | 37 pixel mask: ooo 3 by 3 mask: ooo |
---|
| 120 | ooooo ooo |
---|
| 121 | ooooooo ooo |
---|
| 122 | ooooooo |
---|
| 123 | ooooooo |
---|
| 124 | ooooo |
---|
| 125 | ooo |
---|
| 126 | |
---|
| 127 | CORNER ATTRIBUTES dx, dy and I |
---|
| 128 | (Only read this if you are interested in the C implementation or in |
---|
| 129 | using corner attributes, e.g., for corner matching) |
---|
| 130 | |
---|
| 131 | Corners reported in the corner list have attributes associated with |
---|
| 132 | them as well as positions. This is useful, for example, when |
---|
| 133 | attempting to match corners from one image to another, as these |
---|
| 134 | attributes can often be fairly unchanged between images. The |
---|
| 135 | attributes are dx, dy and I. I is the value of image brightness at |
---|
| 136 | the position of the corner. In the case of susan_corners_quick, dx |
---|
| 137 | and dy are the first order derivatives (differentials) of the image |
---|
| 138 | brightness in the x and y directions respectively, at the position |
---|
| 139 | of the corner. In the case of normal susan corner finding, dx and dy |
---|
| 140 | are scaled versions of the position of the centre of gravity of the |
---|
| 141 | USAN with respect to the centre pixel (nucleus). |
---|
| 142 | |
---|
| 143 | BRIGHTNESS FUNCTION LUT IMPLEMENTATION: |
---|
| 144 | (Only read this if you are interested in the C implementation) |
---|
| 145 | |
---|
| 146 | The SUSAN brightness function is implemented as a LUT |
---|
| 147 | (Look-Up-Table) for speed. The resulting pointer-based code is a |
---|
| 148 | little hard to follow, so here is a brief explanation. In |
---|
| 149 | setup_brightness_lut() the LUT is setup. This mallocs enough space |
---|
| 150 | for *bp and then repositions the pointer to the centre of the |
---|
| 151 | malloced space. The SUSAN function e^-(x^6) or e^-(x^2) is |
---|
| 152 | calculated and converted to a uchar in the range 0-100, for all |
---|
| 153 | possible image brightness differences (including negative |
---|
| 154 | ones). Thus bp[23] is the output for a brightness difference of 23 |
---|
| 155 | greylevels. In the SUSAN algorithms this LUT is used as follows: |
---|
| 156 | |
---|
| 157 | p=in + (i-3)*x_size + j - 1; |
---|
| 158 | p points to the first image pixel in the circular mask surrounding |
---|
| 159 | point (x,y). |
---|
| 160 | |
---|
| 161 | cp=bp + in[i*x_size+j]; |
---|
| 162 | cp points to a position in the LUT corresponding to the brightness |
---|
| 163 | of the centre pixel (x,y). |
---|
| 164 | |
---|
| 165 | now for every pixel within the mask surrounding (x,y), |
---|
| 166 | n+=*(cp-*p++); |
---|
| 167 | the brightness difference function is found by moving the cp pointer |
---|
| 168 | down by an amount equal to the value of the pixel pointed to by p, |
---|
| 169 | thus subtracting the two brightness values and performing the |
---|
| 170 | exponential function. This value is added to n, the running USAN |
---|
| 171 | area. |
---|
| 172 | |
---|
| 173 | in SUSAN smoothing, the variable height mask is implemented by |
---|
| 174 | multiplying the above by the moving mask pointer, reset for each new |
---|
| 175 | centre pixel. |
---|
| 176 | tmp = *dpt++ * *(cp-brightness); |
---|
| 177 | |
---|
| 178 | \**********************************************************************/ |
---|
| 179 | |
---|
| 180 | /* }}} */ |
---|
| 181 | /* {{{ Machine Information */ |
---|
| 182 | |
---|
| 183 | /**********************************************************************\ |
---|
| 184 | |
---|
| 185 | Success has been reported with the following: |
---|
| 186 | |
---|
| 187 | MACHINE OS COMPILER |
---|
| 188 | |
---|
| 189 | Sun 4.1.4 bundled C, gcc |
---|
| 190 | |
---|
| 191 | Next |
---|
| 192 | |
---|
| 193 | SGI IRIX SGI cc |
---|
| 194 | |
---|
| 195 | DEC Unix V3.2+ |
---|
| 196 | |
---|
| 197 | IBM RISC AIX gcc |
---|
| 198 | |
---|
| 199 | PC Borland 5.0 |
---|
| 200 | |
---|
| 201 | PC Linux gcc-2.6.3 |
---|
| 202 | |
---|
| 203 | PC Win32 Visual C++ 4.0 (Console Application) |
---|
| 204 | |
---|
| 205 | PC Win95 Visual C++ 5.0 (Console Application) |
---|
| 206 | Thanks to Niu Yongsheng <niuysbit@163.net>: |
---|
| 207 | Use the FOPENB option below |
---|
| 208 | |
---|
| 209 | PC DOS djgpp gnu C |
---|
| 210 | Thanks to Mark Pettovello <mpettove@umdsun2.umd.umich.edu>: |
---|
| 211 | Use the FOPENB option below |
---|
| 212 | |
---|
| 213 | HP HP-UX bundled cc |
---|
| 214 | Thanks to Brian Dixon <briand@hpcvsgen.cv.hp.com>: |
---|
| 215 | in ksh: |
---|
| 216 | export CCOPTS="-Aa -D_HPUX_SOURCE | -lM" |
---|
| 217 | cc -O3 -o susan susan2l.c |
---|
| 218 | |
---|
| 219 | \**********************************************************************/ |
---|
| 220 | |
---|
| 221 | /* }}} */ |
---|
| 222 | /* {{{ History */ |
---|
| 223 | |
---|
| 224 | /**********************************************************************\ |
---|
| 225 | |
---|
| 226 | SUSAN Version 2l, 12/2/99 |
---|
| 227 | Changed GNUDOS option to FOPENB. |
---|
| 228 | (Thanks to Niu Yongsheng <niuysbit@163.net>.) |
---|
| 229 | Took out redundant "sq=sq/2;". |
---|
| 230 | |
---|
| 231 | SUSAN Version 2k, 19/8/98: |
---|
| 232 | In corner finding: |
---|
| 233 | Changed if(yy<sq) {...} else if(xx<sq) {...} to |
---|
| 234 | if(yy<xx) {...} else {...} |
---|
| 235 | (Thanks to adq@cim.mcgill.edu - Alain Domercq.) |
---|
| 236 | |
---|
| 237 | SUSAN Version 2j, 22/10/97: |
---|
| 238 | Fixed (mask_size>x_size) etc. tests in smoothing. |
---|
| 239 | Added a couple of free() calls for cgx and cgy. |
---|
| 240 | (Thanks to geoffb@ucs.ed.ac.uk - Geoff Browitt.) |
---|
| 241 | |
---|
| 242 | SUSAN Version 2i, 21/7/97: |
---|
| 243 | Added information about corner attributes. |
---|
| 244 | |
---|
| 245 | SUSAN Version 2h, 16/12/96: |
---|
| 246 | Added principle (initial enhancement) option. |
---|
| 247 | |
---|
| 248 | SUSAN Version 2g, 2/7/96: |
---|
| 249 | Minor superficial changes to code. |
---|
| 250 | |
---|
| 251 | SUSAN Version 2f, 16/1/96: |
---|
| 252 | Added GNUDOS option (now called FOPENB; see options below). |
---|
| 253 | |
---|
| 254 | SUSAN Version 2e, 9/1/96: |
---|
| 255 | Added -b option. |
---|
| 256 | Fixed 1 pixel horizontal offset error for drawing edges. |
---|
| 257 | |
---|
| 258 | SUSAN Version 2d, 27/11/95: |
---|
| 259 | Fixed loading of certain PGM files in get_image (again!) |
---|
| 260 | |
---|
| 261 | SUSAN Version 2c, 22/11/95: |
---|
| 262 | Fixed loading of certain PGM files in get_image. |
---|
| 263 | (Thanks to qu@San-Jose.ate.slb.com - Gongyuan Qu.) |
---|
| 264 | |
---|
| 265 | SUSAN Version 2b, 9/11/95: |
---|
| 266 | removed "z==" error in edges routines. |
---|
| 267 | |
---|
| 268 | SUSAN Version 2a, 6/11/95: |
---|
| 269 | Removed a few unnecessary variable declarations. |
---|
| 270 | Added different machine information. |
---|
| 271 | Changed "header" in get_image to char. |
---|
| 272 | |
---|
| 273 | SUSAN Version 2, 1/11/95: first combined version able to take any |
---|
| 274 | image sizes. |
---|
| 275 | |
---|
| 276 | SUSAN "Versions 1", circa 1992: the various SUSAN algorithms were |
---|
| 277 | developed during my doctorate within different programs and for |
---|
| 278 | fixed image sizes. The algorithms themselves are virtually unaltered |
---|
| 279 | between "versions 1" and the combined program, version 2. |
---|
| 280 | |
---|
| 281 | \**********************************************************************/ |
---|
| 282 | |
---|
| 283 | /* }}} */ |
---|
| 284 | /* {{{ defines, includes and typedefs */ |
---|
| 285 | |
---|
| 286 | /* ********** Optional settings */ |
---|
| 287 | |
---|
| 288 | #ifndef PPC |
---|
| 289 | typedef int TOTAL_TYPE; /* this is faster for "int" but should be "float" for large d masks */ |
---|
| 290 | #else |
---|
| 291 | typedef float TOTAL_TYPE; /* for my PowerPC accelerator only */ |
---|
| 292 | #endif |
---|
| 293 | |
---|
| 294 | /*#define FOPENB*/ /* uncomment if using djgpp gnu C for DOS or certain Win95 compilers */ |
---|
| 295 | #define SEVEN_SUPP /* size for non-max corner suppression; SEVEN_SUPP or FIVE_SUPP */ |
---|
| 296 | #define MAX_CORNERS 15000 /* max corners per frame */ |
---|
| 297 | |
---|
| 298 | /* ********** Leave the rest - but you may need to remove one or both of sys/file.h and malloc.h lines */ |
---|
| 299 | |
---|
| 300 | #include <stdlib.h> |
---|
| 301 | #include <stdio.h> |
---|
| 302 | #include <string.h> |
---|
| 303 | #include <math.h> |
---|
| 304 | #include <sys/file.h> /* may want to remove this line */ |
---|
| 305 | #include <malloc.h> /* may want to remove this line */ |
---|
| 306 | #define exit_error(IFB,IFC) { fprintf(stderr,IFB,IFC); exit(0); } |
---|
| 307 | #define FTOI(a) ( (a) < 0 ? ((int)(a-0.5)) : ((int)(a+0.5)) ) |
---|
| 308 | typedef unsigned char uchar; |
---|
| 309 | typedef struct {int x,y,info, dx, dy, I;} CORNER_LIST[MAX_CORNERS]; |
---|
| 310 | |
---|
| 311 | /* }}} */ |
---|
| 312 | /* {{{ usage() */ |
---|
| 313 | |
---|
| 314 | void |
---|
| 315 | usage() |
---|
| 316 | { |
---|
| 317 | printf("Usage: susan <in.pgm> <out.pgm> [options]\n\n"); |
---|
| 318 | |
---|
| 319 | printf("-s : Smoothing mode (default)\n"); |
---|
| 320 | printf("-e : Edges mode\n"); |
---|
| 321 | printf("-c : Corners mode\n\n"); |
---|
| 322 | |
---|
| 323 | printf("See source code for more information about setting the thresholds\n"); |
---|
| 324 | printf("-t <thresh> : Brightness threshold, all modes (default=20)\n"); |
---|
| 325 | printf("-d <thresh> : Distance threshold, smoothing mode, (default=4) (use next option instead for flat 3x3 mask)\n"); |
---|
| 326 | printf("-3 : Use flat 3x3 mask, edges or smoothing mode\n"); |
---|
| 327 | printf("-n : No post-processing on the binary edge map (runs much faster); edges mode\n"); |
---|
| 328 | printf("-q : Use faster (and usually stabler) corner mode; edge-like corner suppression not carried out; corners mode\n"); |
---|
| 329 | printf("-b : Mark corners/edges with single black points instead of black with white border; corners or edges mode\n"); |
---|
| 330 | printf("-p : Output initial enhancement image only; corners or edges mode (default is edges mode)\n"); |
---|
| 331 | |
---|
| 332 | printf("\nSUSAN Version 2l (C) 1995-1997 Stephen Smith, DRA UK. steve@fmrib.ox.ac.uk\n"); |
---|
| 333 | |
---|
| 334 | exit(0); |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /* }}} */ |
---|
| 338 | /* {{{ get_image(filename,in,x_size,y_size) */ |
---|
| 339 | |
---|
| 340 | /* {{{ int getint(fp) derived from XV */ |
---|
| 341 | |
---|
| 342 | int getint(fd) |
---|
| 343 | FILE *fd; |
---|
| 344 | { |
---|
| 345 | int c, i; |
---|
| 346 | char dummy[10000]; |
---|
| 347 | |
---|
| 348 | c = getc(fd); |
---|
| 349 | while (1) /* find next integer */ |
---|
| 350 | { |
---|
| 351 | if (c=='#') /* if we're at a comment, read to end of line */ |
---|
| 352 | fgets(dummy,9000,fd); |
---|
| 353 | if (c==EOF) |
---|
| 354 | exit_error("Image %s not binary PGM.\n","is"); |
---|
| 355 | if (c>='0' && c<='9') |
---|
| 356 | break; /* found what we were looking for */ |
---|
| 357 | c = getc(fd); |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | /* we're at the start of a number, continue until we hit a non-number */ |
---|
| 361 | i = 0; |
---|
| 362 | while (1) { |
---|
| 363 | i = (i*10) + (c - '0'); |
---|
| 364 | c = getc(fd); |
---|
| 365 | if (c==EOF) return (i); |
---|
| 366 | if (c<'0' || c>'9') break; |
---|
| 367 | } |
---|
| 368 | |
---|
| 369 | return (i); |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | /* }}} */ |
---|
| 373 | |
---|
| 374 | void get_image(filename,in,x_size,y_size) |
---|
| 375 | char filename[200]; |
---|
| 376 | unsigned char **in; |
---|
| 377 | int *x_size, *y_size; |
---|
| 378 | { |
---|
| 379 | FILE *fd; |
---|
| 380 | char header [100]; |
---|
| 381 | int tmp; |
---|
| 382 | |
---|
| 383 | #ifdef FOPENB |
---|
| 384 | if ((fd=fopen(filename,"rb")) == NULL) |
---|
| 385 | #else |
---|
| 386 | if ((fd=fopen(filename,"r")) == NULL) |
---|
| 387 | #endif |
---|
| 388 | exit_error("Can't input image %s.\n",filename); |
---|
| 389 | |
---|
| 390 | /* {{{ read header */ |
---|
| 391 | |
---|
| 392 | header[0]=fgetc(fd); |
---|
| 393 | header[1]=fgetc(fd); |
---|
| 394 | if(!(header[0]=='P' && header[1]=='5')) |
---|
| 395 | exit_error("Image %s does not have binary PGM header.\n",filename); |
---|
| 396 | |
---|
| 397 | *x_size = getint(fd); |
---|
| 398 | *y_size = getint(fd); |
---|
| 399 | tmp = getint(fd); |
---|
| 400 | |
---|
| 401 | /* }}} */ |
---|
| 402 | |
---|
| 403 | *in = (uchar *) malloc(*x_size * *y_size); |
---|
| 404 | |
---|
| 405 | if (fread(*in,1,*x_size * *y_size,fd) == 0) |
---|
| 406 | exit_error("Image %s is wrong size.\n",filename); |
---|
| 407 | |
---|
| 408 | fclose(fd); |
---|
| 409 | } |
---|
| 410 | |
---|
| 411 | /* }}} */ |
---|
| 412 | /* {{{ put_image(filename,in,x_size,y_size) */ |
---|
| 413 | |
---|
| 414 | void |
---|
| 415 | put_image(filename,in,x_size,y_size) |
---|
| 416 | char filename [100], |
---|
| 417 | *in; |
---|
| 418 | int x_size, |
---|
| 419 | y_size; |
---|
| 420 | { |
---|
| 421 | FILE *fd; |
---|
| 422 | |
---|
| 423 | #ifdef FOPENB |
---|
| 424 | if ((fd=fopen(filename,"wb")) == NULL) |
---|
| 425 | #else |
---|
| 426 | if ((fd=fopen(filename,"w")) == NULL) |
---|
| 427 | #endif |
---|
| 428 | exit_error("Can't output image%s.\n",filename); |
---|
| 429 | |
---|
| 430 | fprintf(fd,"P5\n"); |
---|
| 431 | fprintf(fd,"%d %d\n",x_size,y_size); |
---|
| 432 | fprintf(fd,"255\n"); |
---|
| 433 | |
---|
| 434 | if (fwrite(in,x_size*y_size,1,fd) != 1) |
---|
| 435 | exit_error("Can't write image %s.\n",filename); |
---|
| 436 | |
---|
| 437 | fclose(fd); |
---|
| 438 | } |
---|
| 439 | |
---|
| 440 | /* }}} */ |
---|
| 441 | /* {{{ int_to_uchar(r,in,size) */ |
---|
| 442 | |
---|
| 443 | void |
---|
| 444 | int_to_uchar(r,in,size) |
---|
| 445 | uchar *in; |
---|
| 446 | int *r, size; |
---|
| 447 | { |
---|
| 448 | int i, |
---|
| 449 | max_r=r[0], |
---|
| 450 | min_r=r[0]; |
---|
| 451 | |
---|
| 452 | for (i=0; i<size; i++) |
---|
| 453 | { |
---|
| 454 | if ( r[i] > max_r ) |
---|
| 455 | max_r=r[i]; |
---|
| 456 | if ( r[i] < min_r ) |
---|
| 457 | min_r=r[i]; |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | /*printf("min=%d max=%d\n",min_r,max_r);*/ |
---|
| 461 | |
---|
| 462 | max_r-=min_r; |
---|
| 463 | |
---|
| 464 | for (i=0; i<size; i++) |
---|
| 465 | in[i] = (uchar)((int)((int)(r[i]-min_r)*255)/max_r); |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | /* }}} */ |
---|
| 469 | /* {{{ setup_brightness_lut(bp,thresh,form) */ |
---|
| 470 | |
---|
| 471 | void setup_brightness_lut(bp,thresh,form) |
---|
| 472 | uchar **bp; |
---|
| 473 | int thresh, form; |
---|
| 474 | { |
---|
| 475 | int k; |
---|
| 476 | float temp; |
---|
| 477 | |
---|
| 478 | *bp=(unsigned char *)malloc(516); |
---|
| 479 | *bp=*bp+258; |
---|
| 480 | |
---|
| 481 | for(k=-256;k<257;k++) |
---|
| 482 | { |
---|
| 483 | temp=((float)k)/((float)thresh); |
---|
| 484 | temp=temp*temp; |
---|
| 485 | if (form==6) |
---|
| 486 | temp=temp*temp*temp; |
---|
| 487 | temp=100.0*exp(-temp); |
---|
| 488 | *(*bp+k)= (uchar)temp; |
---|
| 489 | } |
---|
| 490 | } |
---|
| 491 | |
---|
| 492 | /* }}} */ |
---|
| 493 | /* {{{ susan principle */ |
---|
| 494 | |
---|
| 495 | /* {{{ susan_principle(in,r,bp,max_no,x_size,y_size) */ |
---|
| 496 | |
---|
| 497 | void |
---|
| 498 | susan_principle(in,r,bp,max_no,x_size,y_size) |
---|
| 499 | uchar *in, *bp; |
---|
| 500 | int *r, max_no, x_size, y_size; |
---|
| 501 | { |
---|
| 502 | int i, j, n; |
---|
| 503 | uchar *p,*cp; |
---|
| 504 | |
---|
| 505 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
| 506 | |
---|
| 507 | for (i=3;i<y_size-3;i++) |
---|
| 508 | for (j=3;j<x_size-3;j++) |
---|
| 509 | { |
---|
| 510 | n=100; |
---|
| 511 | p=in + (i-3)*x_size + j - 1; |
---|
| 512 | cp=bp + in[i*x_size+j]; |
---|
| 513 | |
---|
| 514 | n+=*(cp-*p++); |
---|
| 515 | n+=*(cp-*p++); |
---|
| 516 | n+=*(cp-*p); |
---|
| 517 | p+=x_size-3; |
---|
| 518 | |
---|
| 519 | n+=*(cp-*p++); |
---|
| 520 | n+=*(cp-*p++); |
---|
| 521 | n+=*(cp-*p++); |
---|
| 522 | n+=*(cp-*p++); |
---|
| 523 | n+=*(cp-*p); |
---|
| 524 | p+=x_size-5; |
---|
| 525 | |
---|
| 526 | n+=*(cp-*p++); |
---|
| 527 | n+=*(cp-*p++); |
---|
| 528 | n+=*(cp-*p++); |
---|
| 529 | n+=*(cp-*p++); |
---|
| 530 | n+=*(cp-*p++); |
---|
| 531 | n+=*(cp-*p++); |
---|
| 532 | n+=*(cp-*p); |
---|
| 533 | p+=x_size-6; |
---|
| 534 | |
---|
| 535 | n+=*(cp-*p++); |
---|
| 536 | n+=*(cp-*p++); |
---|
| 537 | n+=*(cp-*p); |
---|
| 538 | p+=2; |
---|
| 539 | n+=*(cp-*p++); |
---|
| 540 | n+=*(cp-*p++); |
---|
| 541 | n+=*(cp-*p); |
---|
| 542 | p+=x_size-6; |
---|
| 543 | |
---|
| 544 | n+=*(cp-*p++); |
---|
| 545 | n+=*(cp-*p++); |
---|
| 546 | n+=*(cp-*p++); |
---|
| 547 | n+=*(cp-*p++); |
---|
| 548 | n+=*(cp-*p++); |
---|
| 549 | n+=*(cp-*p++); |
---|
| 550 | n+=*(cp-*p); |
---|
| 551 | p+=x_size-5; |
---|
| 552 | |
---|
| 553 | n+=*(cp-*p++); |
---|
| 554 | n+=*(cp-*p++); |
---|
| 555 | n+=*(cp-*p++); |
---|
| 556 | n+=*(cp-*p++); |
---|
| 557 | n+=*(cp-*p); |
---|
| 558 | p+=x_size-3; |
---|
| 559 | |
---|
| 560 | n+=*(cp-*p++); |
---|
| 561 | n+=*(cp-*p++); |
---|
| 562 | n+=*(cp-*p); |
---|
| 563 | |
---|
| 564 | if (n<=max_no) |
---|
| 565 | r[i*x_size+j] = max_no - n; |
---|
| 566 | } |
---|
| 567 | } |
---|
| 568 | |
---|
| 569 | /* }}} */ |
---|
| 570 | /* {{{ susan_principle_small(in,r,bp,max_no,x_size,y_size) */ |
---|
| 571 | |
---|
| 572 | void |
---|
| 573 | susan_principle_small(in,r,bp,max_no,x_size,y_size) |
---|
| 574 | uchar *in, *bp; |
---|
| 575 | int *r, max_no, x_size, y_size; |
---|
| 576 | { |
---|
| 577 | int i, j, n; |
---|
| 578 | uchar *p,*cp; |
---|
| 579 | |
---|
| 580 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
| 581 | |
---|
| 582 | max_no = 730; /* ho hum ;) */ |
---|
| 583 | |
---|
| 584 | for (i=1;i<y_size-1;i++) |
---|
| 585 | for (j=1;j<x_size-1;j++) |
---|
| 586 | { |
---|
| 587 | n=100; |
---|
| 588 | p=in + (i-1)*x_size + j - 1; |
---|
| 589 | cp=bp + in[i*x_size+j]; |
---|
| 590 | |
---|
| 591 | n+=*(cp-*p++); |
---|
| 592 | n+=*(cp-*p++); |
---|
| 593 | n+=*(cp-*p); |
---|
| 594 | p+=x_size-2; |
---|
| 595 | |
---|
| 596 | n+=*(cp-*p); |
---|
| 597 | p+=2; |
---|
| 598 | n+=*(cp-*p); |
---|
| 599 | p+=x_size-2; |
---|
| 600 | |
---|
| 601 | n+=*(cp-*p++); |
---|
| 602 | n+=*(cp-*p++); |
---|
| 603 | n+=*(cp-*p); |
---|
| 604 | |
---|
| 605 | if (n<=max_no) |
---|
| 606 | r[i*x_size+j] = max_no - n; |
---|
| 607 | } |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | /* }}} */ |
---|
| 611 | |
---|
| 612 | /* }}} */ |
---|
| 613 | /* {{{ smoothing */ |
---|
| 614 | |
---|
| 615 | /* {{{ median(in,i,j,x_size) */ |
---|
| 616 | |
---|
| 617 | uchar median(in,i,j,x_size) |
---|
| 618 | uchar *in; |
---|
| 619 | int i, j, x_size; |
---|
| 620 | { |
---|
| 621 | int p[8],k,l,tmp; |
---|
| 622 | |
---|
| 623 | p[0]=in[(i-1)*x_size+j-1]; |
---|
| 624 | p[1]=in[(i-1)*x_size+j ]; |
---|
| 625 | p[2]=in[(i-1)*x_size+j+1]; |
---|
| 626 | p[3]=in[(i )*x_size+j-1]; |
---|
| 627 | p[4]=in[(i )*x_size+j+1]; |
---|
| 628 | p[5]=in[(i+1)*x_size+j-1]; |
---|
| 629 | p[6]=in[(i+1)*x_size+j ]; |
---|
| 630 | p[7]=in[(i+1)*x_size+j+1]; |
---|
| 631 | |
---|
| 632 | for(k=0; k<7; k++) |
---|
| 633 | for(l=0; l<(7-k); l++) |
---|
| 634 | if (p[l]>p[l+1]) |
---|
| 635 | { |
---|
| 636 | tmp=p[l]; p[l]=p[l+1]; p[l+1]=tmp; |
---|
| 637 | } |
---|
| 638 | |
---|
| 639 | return( (p[3]+p[4]) / 2 ); |
---|
| 640 | } |
---|
| 641 | |
---|
| 642 | /* }}} */ |
---|
| 643 | /* {{{ enlarge(in,tmp_image,x_size,y_size,border) */ |
---|
| 644 | |
---|
| 645 | /* this enlarges "in" so that borders can be dealt with easily */ |
---|
| 646 | |
---|
| 647 | void |
---|
| 648 | enlarge(in,tmp_image,x_size,y_size,border) |
---|
| 649 | uchar **in; |
---|
| 650 | uchar *tmp_image; |
---|
| 651 | int *x_size, *y_size, border; |
---|
| 652 | { |
---|
| 653 | int i, j; |
---|
| 654 | |
---|
| 655 | for(i=0; i<*y_size; i++) /* copy *in into tmp_image */ |
---|
| 656 | memcpy(tmp_image+(i+border)*(*x_size+2*border)+border, *in+i* *x_size, *x_size); |
---|
| 657 | |
---|
| 658 | for(i=0; i<border; i++) /* copy top and bottom rows; invert as many as necessary */ |
---|
| 659 | { |
---|
| 660 | memcpy(tmp_image+(border-1-i)*(*x_size+2*border)+border,*in+i* *x_size,*x_size); |
---|
| 661 | memcpy(tmp_image+(*y_size+border+i)*(*x_size+2*border)+border,*in+(*y_size-i-1)* *x_size,*x_size); |
---|
| 662 | } |
---|
| 663 | |
---|
| 664 | for(i=0; i<border; i++) /* copy left and right columns */ |
---|
| 665 | for(j=0; j<*y_size+2*border; j++) |
---|
| 666 | { |
---|
| 667 | tmp_image[j*(*x_size+2*border)+border-1-i]=tmp_image[j*(*x_size+2*border)+border+i]; |
---|
| 668 | tmp_image[j*(*x_size+2*border)+ *x_size+border+i]=tmp_image[j*(*x_size+2*border)+ *x_size+border-1-i]; |
---|
| 669 | } |
---|
| 670 | |
---|
| 671 | *x_size+=2*border; /* alter image size */ |
---|
| 672 | *y_size+=2*border; |
---|
| 673 | *in=tmp_image; /* repoint in */ |
---|
| 674 | } |
---|
| 675 | |
---|
| 676 | /* }}} */ |
---|
| 677 | /* {{{ void susan_smoothing(three_by_three,in,dt,x_size,y_size,bp) */ |
---|
| 678 | |
---|
| 679 | void susan_smoothing(three_by_three,in,dt,x_size,y_size,bp) |
---|
| 680 | int three_by_three, x_size, y_size; |
---|
| 681 | uchar *in, *bp; |
---|
| 682 | float dt; |
---|
| 683 | { |
---|
| 684 | /* {{{ vars */ |
---|
| 685 | |
---|
| 686 | float temp; |
---|
| 687 | int n_max, increment, mask_size, |
---|
| 688 | i,j,x,y,area,brightness,tmp,centre; |
---|
| 689 | uchar *ip, *dp, *dpt, *cp, *out=in, |
---|
| 690 | *tmp_image; |
---|
| 691 | TOTAL_TYPE total; |
---|
| 692 | |
---|
| 693 | /* }}} */ |
---|
| 694 | |
---|
| 695 | /* {{{ setup larger image and border sizes */ |
---|
| 696 | |
---|
| 697 | if (three_by_three==0) |
---|
| 698 | mask_size = ((int)(1.5 * dt)) + 1; |
---|
| 699 | else |
---|
| 700 | mask_size = 1; |
---|
| 701 | |
---|
| 702 | total=0.1; /* test for total's type */ |
---|
| 703 | if ( (dt>15) && (total==0) ) |
---|
| 704 | { |
---|
| 705 | printf("Distance_thresh (%f) too big for integer arithmetic.\n",dt); |
---|
| 706 | printf("Either reduce it to <=15 or recompile with variable \"total\"\n"); |
---|
| 707 | printf("as a float: see top \"defines\" section.\n"); |
---|
| 708 | exit(0); |
---|
| 709 | } |
---|
| 710 | |
---|
| 711 | if ( (2*mask_size+1>x_size) || (2*mask_size+1>y_size) ) |
---|
| 712 | { |
---|
| 713 | printf("Mask size (1.5*distance_thresh+1=%d) too big for image (%dx%d).\n",mask_size,x_size,y_size); |
---|
| 714 | exit(0); |
---|
| 715 | } |
---|
| 716 | |
---|
| 717 | tmp_image = (uchar *) malloc( (x_size+mask_size*2) * (y_size+mask_size*2) ); |
---|
| 718 | enlarge(&in,tmp_image,&x_size,&y_size,mask_size); |
---|
| 719 | |
---|
| 720 | /* }}} */ |
---|
| 721 | |
---|
| 722 | if (three_by_three==0) |
---|
| 723 | { /* large Gaussian masks */ |
---|
| 724 | /* {{{ setup distance lut */ |
---|
| 725 | |
---|
| 726 | n_max = (mask_size*2) + 1; |
---|
| 727 | |
---|
| 728 | increment = x_size - n_max; |
---|
| 729 | |
---|
| 730 | dp = (unsigned char *)malloc(n_max*n_max); |
---|
| 731 | dpt = dp; |
---|
| 732 | temp = -(dt*dt); |
---|
| 733 | |
---|
| 734 | for(i=-mask_size; i<=mask_size; i++) |
---|
| 735 | for(j=-mask_size; j<=mask_size; j++) |
---|
| 736 | { |
---|
| 737 | x = (int) (100.0 * exp( ((float)((i*i)+(j*j))) / temp )); |
---|
| 738 | *dpt++ = (unsigned char)x; |
---|
| 739 | } |
---|
| 740 | |
---|
| 741 | /* }}} */ |
---|
| 742 | /* {{{ main section */ |
---|
| 743 | |
---|
| 744 | for (i=mask_size;i<y_size-mask_size;i++) |
---|
| 745 | { |
---|
| 746 | for (j=mask_size;j<x_size-mask_size;j++) |
---|
| 747 | { |
---|
| 748 | area = 0; |
---|
| 749 | total = 0; |
---|
| 750 | dpt = dp; |
---|
| 751 | ip = in + ((i-mask_size)*x_size) + j - mask_size; |
---|
| 752 | centre = in[i*x_size+j]; |
---|
| 753 | cp = bp + centre; |
---|
| 754 | for(y=-mask_size; y<=mask_size; y++) |
---|
| 755 | { |
---|
| 756 | for(x=-mask_size; x<=mask_size; x++) |
---|
| 757 | { |
---|
| 758 | brightness = *ip++; |
---|
| 759 | tmp = *dpt++ * *(cp-brightness); |
---|
| 760 | area += tmp; |
---|
| 761 | total += tmp * brightness; |
---|
| 762 | } |
---|
| 763 | ip += increment; |
---|
| 764 | } |
---|
| 765 | tmp = area-10000; |
---|
| 766 | if (tmp==0) |
---|
| 767 | *out++=median(in,i,j,x_size); |
---|
| 768 | else |
---|
| 769 | *out++=((total-(centre*10000))/tmp); |
---|
| 770 | } |
---|
| 771 | } |
---|
| 772 | |
---|
| 773 | /* }}} */ |
---|
| 774 | } |
---|
| 775 | else |
---|
| 776 | { /* 3x3 constant mask */ |
---|
| 777 | /* {{{ main section */ |
---|
| 778 | |
---|
| 779 | for (i=1;i<y_size-1;i++) |
---|
| 780 | { |
---|
| 781 | for (j=1;j<x_size-1;j++) |
---|
| 782 | { |
---|
| 783 | area = 0; |
---|
| 784 | total = 0; |
---|
| 785 | ip = in + ((i-1)*x_size) + j - 1; |
---|
| 786 | centre = in[i*x_size+j]; |
---|
| 787 | cp = bp + centre; |
---|
| 788 | |
---|
| 789 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 790 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 791 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 792 | ip += x_size-2; |
---|
| 793 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 794 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 795 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 796 | ip += x_size-2; |
---|
| 797 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 798 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 799 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
| 800 | |
---|
| 801 | tmp = area-100; |
---|
| 802 | if (tmp==0) |
---|
| 803 | *out++=median(in,i,j,x_size); |
---|
| 804 | else |
---|
| 805 | *out++=(total-(centre*100))/tmp; |
---|
| 806 | } |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | /* }}} */ |
---|
| 810 | } |
---|
| 811 | } |
---|
| 812 | |
---|
| 813 | /* }}} */ |
---|
| 814 | |
---|
| 815 | /* }}} */ |
---|
| 816 | /* {{{ edges */ |
---|
| 817 | |
---|
| 818 | /* {{{ edge_draw(in,corner_list,drawing_mode) */ |
---|
| 819 | |
---|
| 820 | void |
---|
| 821 | edge_draw(in,mid,x_size,y_size,drawing_mode) |
---|
| 822 | uchar *in, *mid; |
---|
| 823 | int x_size, y_size, drawing_mode; |
---|
| 824 | { |
---|
| 825 | int i; |
---|
| 826 | uchar *inp, *midp; |
---|
| 827 | |
---|
| 828 | if (drawing_mode==0) |
---|
| 829 | { |
---|
| 830 | /* mark 3x3 white block around each edge point */ |
---|
| 831 | midp=mid; |
---|
| 832 | for (i=0; i<x_size*y_size; i++) |
---|
| 833 | { |
---|
| 834 | if (*midp<8) |
---|
| 835 | { |
---|
| 836 | inp = in + (midp - mid) - x_size - 1; |
---|
| 837 | *inp++=255; *inp++=255; *inp=255; inp+=x_size-2; |
---|
| 838 | *inp++=255; *inp++; *inp=255; inp+=x_size-2; |
---|
| 839 | *inp++=255; *inp++=255; *inp=255; |
---|
| 840 | } |
---|
| 841 | midp++; |
---|
| 842 | } |
---|
| 843 | } |
---|
| 844 | |
---|
| 845 | /* now mark 1 black pixel at each edge point */ |
---|
| 846 | midp=mid; |
---|
| 847 | for (i=0; i<x_size*y_size; i++) |
---|
| 848 | { |
---|
| 849 | if (*midp<8) |
---|
| 850 | *(in + (midp - mid)) = 0; |
---|
| 851 | midp++; |
---|
| 852 | } |
---|
| 853 | } |
---|
| 854 | |
---|
| 855 | /* }}} */ |
---|
| 856 | /* {{{ susan_thin(r,mid,x_size,y_size) */ |
---|
| 857 | |
---|
| 858 | /* only one pass is needed as i,j are decremented if necessary to go |
---|
| 859 | back and do bits again */ |
---|
| 860 | |
---|
| 861 | void |
---|
| 862 | susan_thin(r,mid,x_size,y_size) |
---|
| 863 | uchar *mid; |
---|
| 864 | int *r, x_size, y_size; |
---|
| 865 | { |
---|
| 866 | int l[9], centre, //nlinks, npieces, |
---|
| 867 | b01, b12, b21, b10, |
---|
| 868 | p1, p2, p3, p4, |
---|
| 869 | b00, b02, b20, b22, |
---|
| 870 | m, n, a=0, b=0, x, y, i, j; |
---|
| 871 | uchar *mp; |
---|
| 872 | |
---|
| 873 | for (i=4;i<y_size-4;i++) |
---|
| 874 | for (j=4;j<x_size-4;j++) |
---|
| 875 | if (mid[i*x_size+j]<8) |
---|
| 876 | { |
---|
| 877 | centre = r[i*x_size+j]; |
---|
| 878 | /* {{{ count number of neighbours */ |
---|
| 879 | |
---|
| 880 | mp=mid + (i-1)*x_size + j-1; |
---|
| 881 | |
---|
| 882 | n = (*mp<8) + |
---|
| 883 | (*(mp+1)<8) + |
---|
| 884 | (*(mp+2)<8) + |
---|
| 885 | (*(mp+x_size)<8) + |
---|
| 886 | (*(mp+x_size+2)<8) + |
---|
| 887 | (*(mp+x_size+x_size)<8) + |
---|
| 888 | (*(mp+x_size+x_size+1)<8) + |
---|
| 889 | (*(mp+x_size+x_size+2)<8); |
---|
| 890 | |
---|
| 891 | /* }}} */ |
---|
| 892 | /* {{{ n==0 no neighbours - remove point */ |
---|
| 893 | |
---|
| 894 | if (n==0) |
---|
| 895 | mid[i*x_size+j]=100; |
---|
| 896 | |
---|
| 897 | /* }}} */ |
---|
| 898 | /* {{{ n==1 - extend line if I can */ |
---|
| 899 | |
---|
| 900 | /* extension is only allowed a few times - the value of mid is used to control this */ |
---|
| 901 | |
---|
| 902 | if ( (n==1) && (mid[i*x_size+j]<6) ) |
---|
| 903 | { |
---|
| 904 | /* find maximum neighbour weighted in direction opposite the |
---|
| 905 | neighbour already present. e.g. |
---|
| 906 | have: O O O weight r by 0 2 3 |
---|
| 907 | X X O 0 0 4 |
---|
| 908 | O O O 0 2 3 */ |
---|
| 909 | |
---|
| 910 | l[0]=r[(i-1)*x_size+j-1]; l[1]=r[(i-1)*x_size+j]; l[2]=r[(i-1)*x_size+j+1]; |
---|
| 911 | l[3]=r[(i )*x_size+j-1]; l[4]=0; l[5]=r[(i )*x_size+j+1]; |
---|
| 912 | l[6]=r[(i+1)*x_size+j-1]; l[7]=r[(i+1)*x_size+j]; l[8]=r[(i+1)*x_size+j+1]; |
---|
| 913 | |
---|
| 914 | if (mid[(i-1)*x_size+j-1]<8) { l[0]=0; l[1]=0; l[3]=0; l[2]*=2; |
---|
| 915 | l[6]*=2; l[5]*=3; l[7]*=3; l[8]*=4; } |
---|
| 916 | else { if (mid[(i-1)*x_size+j]<8) { l[1]=0; l[0]=0; l[2]=0; l[3]*=2; |
---|
| 917 | l[5]*=2; l[6]*=3; l[8]*=3; l[7]*=4; } |
---|
| 918 | else { if (mid[(i-1)*x_size+j+1]<8) { l[2]=0; l[1]=0; l[5]=0; l[0]*=2; |
---|
| 919 | l[8]*=2; l[3]*=3; l[7]*=3; l[6]*=4; } |
---|
| 920 | else { if (mid[(i)*x_size+j-1]<8) { l[3]=0; l[0]=0; l[6]=0; l[1]*=2; |
---|
| 921 | l[7]*=2; l[2]*=3; l[8]*=3; l[5]*=4; } |
---|
| 922 | else { if (mid[(i)*x_size+j+1]<8) { l[5]=0; l[2]=0; l[8]=0; l[1]*=2; |
---|
| 923 | l[7]*=2; l[0]*=3; l[6]*=3; l[3]*=4; } |
---|
| 924 | else { if (mid[(i+1)*x_size+j-1]<8) { l[6]=0; l[3]=0; l[7]=0; l[0]*=2; |
---|
| 925 | l[8]*=2; l[1]*=3; l[5]*=3; l[2]*=4; } |
---|
| 926 | else { if (mid[(i+1)*x_size+j]<8) { l[7]=0; l[6]=0; l[8]=0; l[3]*=2; |
---|
| 927 | l[5]*=2; l[0]*=3; l[2]*=3; l[1]*=4; } |
---|
| 928 | else { if (mid[(i+1)*x_size+j+1]<8) { l[8]=0; l[5]=0; l[7]=0; l[6]*=2; |
---|
| 929 | l[2]*=2; l[1]*=3; l[3]*=3; l[0]*=4; } }}}}}}} |
---|
| 930 | |
---|
| 931 | m=0; /* find the highest point */ |
---|
| 932 | for(y=0; y<3; y++) |
---|
| 933 | for(x=0; x<3; x++) |
---|
| 934 | if (l[y+y+y+x]>m) { m=l[y+y+y+x]; a=y; b=x; } |
---|
| 935 | |
---|
| 936 | if (m>0) |
---|
| 937 | { |
---|
| 938 | if (mid[i*x_size+j]<4) |
---|
| 939 | mid[(i+a-1)*x_size+j+b-1] = 4; |
---|
| 940 | else |
---|
| 941 | mid[(i+a-1)*x_size+j+b-1] = mid[i*x_size+j]+1; |
---|
| 942 | if ( (a+a+b) < 3 ) /* need to jump back in image */ |
---|
| 943 | { |
---|
| 944 | i+=a-1; |
---|
| 945 | j+=b-2; |
---|
| 946 | if (i<4) i=4; |
---|
| 947 | if (j<4) j=4; |
---|
| 948 | } |
---|
| 949 | } |
---|
| 950 | } |
---|
| 951 | |
---|
| 952 | /* }}} */ |
---|
| 953 | /* {{{ n==2 */ |
---|
| 954 | |
---|
| 955 | if (n==2) |
---|
| 956 | { |
---|
| 957 | /* put in a bit here to straighten edges */ |
---|
| 958 | b00 = mid[(i-1)*x_size+j-1]<8; /* corners of 3x3 */ |
---|
| 959 | b02 = mid[(i-1)*x_size+j+1]<8; |
---|
| 960 | b20 = mid[(i+1)*x_size+j-1]<8; |
---|
| 961 | b22 = mid[(i+1)*x_size+j+1]<8; |
---|
| 962 | if ( ((b00+b02+b20+b22)==2) && ((b00|b22)&(b02|b20))) |
---|
| 963 | { /* case: move a point back into line. |
---|
| 964 | e.g. X O X CAN become X X X |
---|
| 965 | O X O O O O |
---|
| 966 | O O O O O O */ |
---|
| 967 | if (b00) |
---|
| 968 | { |
---|
| 969 | if (b02) { x=0; y=-1; } |
---|
| 970 | else { x=-1; y=0; } |
---|
| 971 | } |
---|
| 972 | else |
---|
| 973 | { |
---|
| 974 | if (b02) { x=1; y=0; } |
---|
| 975 | else { x=0; y=1; } |
---|
| 976 | } |
---|
| 977 | if (((float)r[(i+y)*x_size+j+x]/(float)centre) > 0.7) |
---|
| 978 | { |
---|
| 979 | if ( ( (x==0) && (mid[(i+(2*y))*x_size+j]>7) && (mid[(i+(2*y))*x_size+j-1]>7) && (mid[(i+(2*y))*x_size+j+1]>7) ) || |
---|
| 980 | ( (y==0) && (mid[(i)*x_size+j+(2*x)]>7) && (mid[(i+1)*x_size+j+(2*x)]>7) && (mid[(i-1)*x_size+j+(2*x)]>7) ) ) |
---|
| 981 | { |
---|
| 982 | mid[(i)*x_size+j]=100; |
---|
| 983 | mid[(i+y)*x_size+j+x]=3; /* no jumping needed */ |
---|
| 984 | } |
---|
| 985 | } |
---|
| 986 | } |
---|
| 987 | else |
---|
| 988 | { |
---|
| 989 | b01 = mid[(i-1)*x_size+j ]<8; |
---|
| 990 | b12 = mid[(i )*x_size+j+1]<8; |
---|
| 991 | b21 = mid[(i+1)*x_size+j ]<8; |
---|
| 992 | b10 = mid[(i )*x_size+j-1]<8; |
---|
| 993 | /* {{{ right angle ends - not currently used */ |
---|
| 994 | |
---|
| 995 | #ifdef IGNORETHIS |
---|
| 996 | if ( (b00&b01)|(b00&b10)|(b02&b01)|(b02&b12)|(b20&b10)|(b20&b21)|(b22&b21)|(b22&b12) ) |
---|
| 997 | { /* case; right angle ends. clean up. |
---|
| 998 | e.g.; X X O CAN become X X O |
---|
| 999 | O X O O O O |
---|
| 1000 | O O O O O O */ |
---|
| 1001 | if ( ((b01)&(mid[(i-2)*x_size+j-1]>7)&(mid[(i-2)*x_size+j]>7)&(mid[(i-2)*x_size+j+1]>7)& |
---|
| 1002 | ((b00&((2*r[(i-1)*x_size+j+1])>centre))|(b02&((2*r[(i-1)*x_size+j-1])>centre)))) | |
---|
| 1003 | ((b10)&(mid[(i-1)*x_size+j-2]>7)&(mid[(i)*x_size+j-2]>7)&(mid[(i+1)*x_size+j-2]>7)& |
---|
| 1004 | ((b00&((2*r[(i+1)*x_size+j-1])>centre))|(b20&((2*r[(i-1)*x_size+j-1])>centre)))) | |
---|
| 1005 | ((b12)&(mid[(i-1)*x_size+j+2]>7)&(mid[(i)*x_size+j+2]>7)&(mid[(i+1)*x_size+j+2]>7)& |
---|
| 1006 | ((b02&((2*r[(i+1)*x_size+j+1])>centre))|(b22&((2*r[(i-1)*x_size+j+1])>centre)))) | |
---|
| 1007 | ((b21)&(mid[(i+2)*x_size+j-1]>7)&(mid[(i+2)*x_size+j]>7)&(mid[(i+2)*x_size+j+1]>7)& |
---|
| 1008 | ((b20&((2*r[(i+1)*x_size+j+1])>centre))|(b22&((2*r[(i+1)*x_size+j-1])>centre)))) ) |
---|
| 1009 | { |
---|
| 1010 | mid[(i)*x_size+j]=100; |
---|
| 1011 | if (b10&b20) j-=2; |
---|
| 1012 | if (b00|b01|b02) { i--; j-=2; } |
---|
| 1013 | } |
---|
| 1014 | } |
---|
| 1015 | #endif |
---|
| 1016 | |
---|
| 1017 | /* }}} */ |
---|
| 1018 | if ( ((b01+b12+b21+b10)==2) && ((b10|b12)&(b01|b21)) && |
---|
| 1019 | ((b01&((mid[(i-2)*x_size+j-1]<8)|(mid[(i-2)*x_size+j+1]<8)))|(b10&((mid[(i-1)*x_size+j-2]<8)|(mid[(i+1)*x_size+j-2]<8)))| |
---|
| 1020 | (b12&((mid[(i-1)*x_size+j+2]<8)|(mid[(i+1)*x_size+j+2]<8)))|(b21&((mid[(i+2)*x_size+j-1]<8)|(mid[(i+2)*x_size+j+1]<8)))) ) |
---|
| 1021 | { /* case; clears odd right angles. |
---|
| 1022 | e.g.; O O O becomes O O O |
---|
| 1023 | X X O X O O |
---|
| 1024 | O X O O X O */ |
---|
| 1025 | mid[(i)*x_size+j]=100; |
---|
| 1026 | i--; /* jump back */ |
---|
| 1027 | j-=2; |
---|
| 1028 | if (i<4) i=4; |
---|
| 1029 | if (j<4) j=4; |
---|
| 1030 | } |
---|
| 1031 | } |
---|
| 1032 | } |
---|
| 1033 | |
---|
| 1034 | /* }}} */ |
---|
| 1035 | /* {{{ n>2 the thinning is done here without breaking connectivity */ |
---|
| 1036 | |
---|
| 1037 | if (n>2) |
---|
| 1038 | { |
---|
| 1039 | b01 = mid[(i-1)*x_size+j ]<8; |
---|
| 1040 | b12 = mid[(i )*x_size+j+1]<8; |
---|
| 1041 | b21 = mid[(i+1)*x_size+j ]<8; |
---|
| 1042 | b10 = mid[(i )*x_size+j-1]<8; |
---|
| 1043 | if((b01+b12+b21+b10)>1) |
---|
| 1044 | { |
---|
| 1045 | b00 = mid[(i-1)*x_size+j-1]<8; |
---|
| 1046 | b02 = mid[(i-1)*x_size+j+1]<8; |
---|
| 1047 | b20 = mid[(i+1)*x_size+j-1]<8; |
---|
| 1048 | b22 = mid[(i+1)*x_size+j+1]<8; |
---|
| 1049 | p1 = b00 | b01; |
---|
| 1050 | p2 = b02 | b12; |
---|
| 1051 | p3 = b22 | b21; |
---|
| 1052 | p4 = b20 | b10; |
---|
| 1053 | |
---|
| 1054 | if( ((p1 + p2 + p3 + p4) - ((b01 & p2)+(b12 & p3)+(b21 & p4)+(b10 & p1))) < 2) |
---|
| 1055 | { |
---|
| 1056 | mid[(i)*x_size+j]=100; |
---|
| 1057 | i--; |
---|
| 1058 | j-=2; |
---|
| 1059 | if (i<4) i=4; |
---|
| 1060 | if (j<4) j=4; |
---|
| 1061 | } |
---|
| 1062 | } |
---|
| 1063 | } |
---|
| 1064 | |
---|
| 1065 | /* }}} */ |
---|
| 1066 | } |
---|
| 1067 | } |
---|
| 1068 | |
---|
| 1069 | /* }}} */ |
---|
| 1070 | /* {{{ susan_edges(in,r,sf,max_no,out) */ |
---|
| 1071 | |
---|
| 1072 | void |
---|
| 1073 | susan_edges(in,r,mid,bp,max_no,x_size,y_size) |
---|
| 1074 | uchar *in, *bp, *mid; |
---|
| 1075 | int *r, max_no, x_size, y_size; |
---|
| 1076 | { |
---|
| 1077 | float z; |
---|
| 1078 | int do_symmetry, i, j, m, n, a, b, x, y, w; |
---|
| 1079 | uchar c,*p,*cp; |
---|
| 1080 | |
---|
| 1081 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
| 1082 | |
---|
| 1083 | for (i=3;i<y_size-3;i++) |
---|
| 1084 | for (j=3;j<x_size-3;j++) |
---|
| 1085 | { |
---|
| 1086 | n=100; |
---|
| 1087 | p=in + (i-3)*x_size + j - 1; |
---|
| 1088 | cp=bp + in[i*x_size+j]; |
---|
| 1089 | |
---|
| 1090 | n+=*(cp-*p++); |
---|
| 1091 | n+=*(cp-*p++); |
---|
| 1092 | n+=*(cp-*p); |
---|
| 1093 | p+=x_size-3; |
---|
| 1094 | |
---|
| 1095 | n+=*(cp-*p++); |
---|
| 1096 | n+=*(cp-*p++); |
---|
| 1097 | n+=*(cp-*p++); |
---|
| 1098 | n+=*(cp-*p++); |
---|
| 1099 | n+=*(cp-*p); |
---|
| 1100 | p+=x_size-5; |
---|
| 1101 | |
---|
| 1102 | n+=*(cp-*p++); |
---|
| 1103 | n+=*(cp-*p++); |
---|
| 1104 | n+=*(cp-*p++); |
---|
| 1105 | n+=*(cp-*p++); |
---|
| 1106 | n+=*(cp-*p++); |
---|
| 1107 | n+=*(cp-*p++); |
---|
| 1108 | n+=*(cp-*p); |
---|
| 1109 | p+=x_size-6; |
---|
| 1110 | |
---|
| 1111 | n+=*(cp-*p++); |
---|
| 1112 | n+=*(cp-*p++); |
---|
| 1113 | n+=*(cp-*p); |
---|
| 1114 | p+=2; |
---|
| 1115 | n+=*(cp-*p++); |
---|
| 1116 | n+=*(cp-*p++); |
---|
| 1117 | n+=*(cp-*p); |
---|
| 1118 | p+=x_size-6; |
---|
| 1119 | |
---|
| 1120 | n+=*(cp-*p++); |
---|
| 1121 | n+=*(cp-*p++); |
---|
| 1122 | n+=*(cp-*p++); |
---|
| 1123 | n+=*(cp-*p++); |
---|
| 1124 | n+=*(cp-*p++); |
---|
| 1125 | n+=*(cp-*p++); |
---|
| 1126 | n+=*(cp-*p); |
---|
| 1127 | p+=x_size-5; |
---|
| 1128 | |
---|
| 1129 | n+=*(cp-*p++); |
---|
| 1130 | n+=*(cp-*p++); |
---|
| 1131 | n+=*(cp-*p++); |
---|
| 1132 | n+=*(cp-*p++); |
---|
| 1133 | n+=*(cp-*p); |
---|
| 1134 | p+=x_size-3; |
---|
| 1135 | |
---|
| 1136 | n+=*(cp-*p++); |
---|
| 1137 | n+=*(cp-*p++); |
---|
| 1138 | n+=*(cp-*p); |
---|
| 1139 | |
---|
| 1140 | if (n<=max_no) |
---|
| 1141 | r[i*x_size+j] = max_no - n; |
---|
| 1142 | } |
---|
| 1143 | |
---|
| 1144 | for (i=4;i<y_size-4;i++) |
---|
| 1145 | for (j=4;j<x_size-4;j++) |
---|
| 1146 | { |
---|
| 1147 | if (r[i*x_size+j]>0) |
---|
| 1148 | { |
---|
| 1149 | m=r[i*x_size+j]; |
---|
| 1150 | n=max_no - m; |
---|
| 1151 | cp=bp + in[i*x_size+j]; |
---|
| 1152 | |
---|
| 1153 | if (n>600) |
---|
| 1154 | { |
---|
| 1155 | p=in + (i-3)*x_size + j - 1; |
---|
| 1156 | x=0;y=0; |
---|
| 1157 | |
---|
| 1158 | c=*(cp-*p++);x-=c;y-=3*c; |
---|
| 1159 | c=*(cp-*p++);y-=3*c; |
---|
| 1160 | c=*(cp-*p);x+=c;y-=3*c; |
---|
| 1161 | p+=x_size-3; |
---|
| 1162 | |
---|
| 1163 | c=*(cp-*p++);x-=2*c;y-=2*c; |
---|
| 1164 | c=*(cp-*p++);x-=c;y-=2*c; |
---|
| 1165 | c=*(cp-*p++);y-=2*c; |
---|
| 1166 | c=*(cp-*p++);x+=c;y-=2*c; |
---|
| 1167 | c=*(cp-*p);x+=2*c;y-=2*c; |
---|
| 1168 | p+=x_size-5; |
---|
| 1169 | |
---|
| 1170 | c=*(cp-*p++);x-=3*c;y-=c; |
---|
| 1171 | c=*(cp-*p++);x-=2*c;y-=c; |
---|
| 1172 | c=*(cp-*p++);x-=c;y-=c; |
---|
| 1173 | c=*(cp-*p++);y-=c; |
---|
| 1174 | c=*(cp-*p++);x+=c;y-=c; |
---|
| 1175 | c=*(cp-*p++);x+=2*c;y-=c; |
---|
| 1176 | c=*(cp-*p);x+=3*c;y-=c; |
---|
| 1177 | p+=x_size-6; |
---|
| 1178 | |
---|
| 1179 | c=*(cp-*p++);x-=3*c; |
---|
| 1180 | c=*(cp-*p++);x-=2*c; |
---|
| 1181 | c=*(cp-*p);x-=c; |
---|
| 1182 | p+=2; |
---|
| 1183 | c=*(cp-*p++);x+=c; |
---|
| 1184 | c=*(cp-*p++);x+=2*c; |
---|
| 1185 | c=*(cp-*p);x+=3*c; |
---|
| 1186 | p+=x_size-6; |
---|
| 1187 | |
---|
| 1188 | c=*(cp-*p++);x-=3*c;y+=c; |
---|
| 1189 | c=*(cp-*p++);x-=2*c;y+=c; |
---|
| 1190 | c=*(cp-*p++);x-=c;y+=c; |
---|
| 1191 | c=*(cp-*p++);y+=c; |
---|
| 1192 | c=*(cp-*p++);x+=c;y+=c; |
---|
| 1193 | c=*(cp-*p++);x+=2*c;y+=c; |
---|
| 1194 | c=*(cp-*p);x+=3*c;y+=c; |
---|
| 1195 | p+=x_size-5; |
---|
| 1196 | |
---|
| 1197 | c=*(cp-*p++);x-=2*c;y+=2*c; |
---|
| 1198 | c=*(cp-*p++);x-=c;y+=2*c; |
---|
| 1199 | c=*(cp-*p++);y+=2*c; |
---|
| 1200 | c=*(cp-*p++);x+=c;y+=2*c; |
---|
| 1201 | c=*(cp-*p);x+=2*c;y+=2*c; |
---|
| 1202 | p+=x_size-3; |
---|
| 1203 | |
---|
| 1204 | c=*(cp-*p++);x-=c;y+=3*c; |
---|
| 1205 | c=*(cp-*p++);y+=3*c; |
---|
| 1206 | c=*(cp-*p);x+=c;y+=3*c; |
---|
| 1207 | |
---|
| 1208 | z = sqrt((float)((x*x) + (y*y))); |
---|
| 1209 | if (z > (0.9*(float)n)) /* 0.5 */ |
---|
| 1210 | { |
---|
| 1211 | do_symmetry=0; |
---|
| 1212 | if (x==0) |
---|
| 1213 | z=1000000.0; |
---|
| 1214 | else |
---|
| 1215 | z=((float)y) / ((float)x); |
---|
| 1216 | if (z < 0) { z=-z; w=-1; } |
---|
| 1217 | else w=1; |
---|
| 1218 | if (z < 0.5) { /* vert_edge */ a=0; b=1; } |
---|
| 1219 | else { if (z > 2.0) { /* hor_edge */ a=1; b=0; } |
---|
| 1220 | else { /* diag_edge */ if (w>0) { a=1; b=1; } |
---|
| 1221 | else { a=-1; b=1; }}} |
---|
| 1222 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) && |
---|
| 1223 | (m > r[(i+(2*a))*x_size+j+(2*b)]) && (m >= r[(i-(2*a))*x_size+j-(2*b)]) ) |
---|
| 1224 | mid[i*x_size+j] = 1; |
---|
| 1225 | } |
---|
| 1226 | else |
---|
| 1227 | do_symmetry=1; |
---|
| 1228 | } |
---|
| 1229 | else |
---|
| 1230 | do_symmetry=1; |
---|
| 1231 | |
---|
| 1232 | if (do_symmetry==1) |
---|
| 1233 | { |
---|
| 1234 | p=in + (i-3)*x_size + j - 1; |
---|
| 1235 | x=0; y=0; w=0; |
---|
| 1236 | |
---|
| 1237 | /* | \ |
---|
| 1238 | y -x- w |
---|
| 1239 | | \ */ |
---|
| 1240 | |
---|
| 1241 | c=*(cp-*p++);x+=c;y+=9*c;w+=3*c; |
---|
| 1242 | c=*(cp-*p++);y+=9*c; |
---|
| 1243 | c=*(cp-*p);x+=c;y+=9*c;w-=3*c; |
---|
| 1244 | p+=x_size-3; |
---|
| 1245 | |
---|
| 1246 | c=*(cp-*p++);x+=4*c;y+=4*c;w+=4*c; |
---|
| 1247 | c=*(cp-*p++);x+=c;y+=4*c;w+=2*c; |
---|
| 1248 | c=*(cp-*p++);y+=4*c; |
---|
| 1249 | c=*(cp-*p++);x+=c;y+=4*c;w-=2*c; |
---|
| 1250 | c=*(cp-*p);x+=4*c;y+=4*c;w-=4*c; |
---|
| 1251 | p+=x_size-5; |
---|
| 1252 | |
---|
| 1253 | c=*(cp-*p++);x+=9*c;y+=c;w+=3*c; |
---|
| 1254 | c=*(cp-*p++);x+=4*c;y+=c;w+=2*c; |
---|
| 1255 | c=*(cp-*p++);x+=c;y+=c;w+=c; |
---|
| 1256 | c=*(cp-*p++);y+=c; |
---|
| 1257 | c=*(cp-*p++);x+=c;y+=c;w-=c; |
---|
| 1258 | c=*(cp-*p++);x+=4*c;y+=c;w-=2*c; |
---|
| 1259 | c=*(cp-*p);x+=9*c;y+=c;w-=3*c; |
---|
| 1260 | p+=x_size-6; |
---|
| 1261 | |
---|
| 1262 | c=*(cp-*p++);x+=9*c; |
---|
| 1263 | c=*(cp-*p++);x+=4*c; |
---|
| 1264 | c=*(cp-*p);x+=c; |
---|
| 1265 | p+=2; |
---|
| 1266 | c=*(cp-*p++);x+=c; |
---|
| 1267 | c=*(cp-*p++);x+=4*c; |
---|
| 1268 | c=*(cp-*p);x+=9*c; |
---|
| 1269 | p+=x_size-6; |
---|
| 1270 | |
---|
| 1271 | c=*(cp-*p++);x+=9*c;y+=c;w-=3*c; |
---|
| 1272 | c=*(cp-*p++);x+=4*c;y+=c;w-=2*c; |
---|
| 1273 | c=*(cp-*p++);x+=c;y+=c;w-=c; |
---|
| 1274 | c=*(cp-*p++);y+=c; |
---|
| 1275 | c=*(cp-*p++);x+=c;y+=c;w+=c; |
---|
| 1276 | c=*(cp-*p++);x+=4*c;y+=c;w+=2*c; |
---|
| 1277 | c=*(cp-*p);x+=9*c;y+=c;w+=3*c; |
---|
| 1278 | p+=x_size-5; |
---|
| 1279 | |
---|
| 1280 | c=*(cp-*p++);x+=4*c;y+=4*c;w-=4*c; |
---|
| 1281 | c=*(cp-*p++);x+=c;y+=4*c;w-=2*c; |
---|
| 1282 | c=*(cp-*p++);y+=4*c; |
---|
| 1283 | c=*(cp-*p++);x+=c;y+=4*c;w+=2*c; |
---|
| 1284 | c=*(cp-*p);x+=4*c;y+=4*c;w+=4*c; |
---|
| 1285 | p+=x_size-3; |
---|
| 1286 | |
---|
| 1287 | c=*(cp-*p++);x+=c;y+=9*c;w-=3*c; |
---|
| 1288 | c=*(cp-*p++);y+=9*c; |
---|
| 1289 | c=*(cp-*p);x+=c;y+=9*c;w+=3*c; |
---|
| 1290 | |
---|
| 1291 | if (y==0) |
---|
| 1292 | z = 1000000.0; |
---|
| 1293 | else |
---|
| 1294 | z = ((float)x) / ((float)y); |
---|
| 1295 | if (z < 0.5) { /* vertical */ a=0; b=1; } |
---|
| 1296 | else { if (z > 2.0) { /* horizontal */ a=1; b=0; } |
---|
| 1297 | else { /* diagonal */ if (w>0) { a=-1; b=1; } |
---|
| 1298 | else { a=1; b=1; }}} |
---|
| 1299 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) && |
---|
| 1300 | (m > r[(i+(2*a))*x_size+j+(2*b)]) && (m >= r[(i-(2*a))*x_size+j-(2*b)]) ) |
---|
| 1301 | mid[i*x_size+j] = 2; |
---|
| 1302 | } |
---|
| 1303 | } |
---|
| 1304 | } |
---|
| 1305 | } |
---|
| 1306 | |
---|
| 1307 | /* }}} */ |
---|
| 1308 | /* {{{ susan_edges_small(in,r,sf,max_no,out) */ |
---|
| 1309 | |
---|
| 1310 | void |
---|
| 1311 | susan_edges_small(in,r,mid,bp,max_no,x_size,y_size) |
---|
| 1312 | uchar *in, *bp, *mid; |
---|
| 1313 | int *r, max_no, x_size, y_size; |
---|
| 1314 | { |
---|
| 1315 | float z; |
---|
| 1316 | int do_symmetry, i, j, m, n, a, b, x, y, w; |
---|
| 1317 | uchar c,*p,*cp; |
---|
| 1318 | |
---|
| 1319 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
| 1320 | |
---|
| 1321 | max_no = 730; /* ho hum ;) */ |
---|
| 1322 | |
---|
| 1323 | for (i=1;i<y_size-1;i++) |
---|
| 1324 | for (j=1;j<x_size-1;j++) |
---|
| 1325 | { |
---|
| 1326 | n=100; |
---|
| 1327 | p=in + (i-1)*x_size + j - 1; |
---|
| 1328 | cp=bp + in[i*x_size+j]; |
---|
| 1329 | |
---|
| 1330 | n+=*(cp-*p++); |
---|
| 1331 | n+=*(cp-*p++); |
---|
| 1332 | n+=*(cp-*p); |
---|
| 1333 | p+=x_size-2; |
---|
| 1334 | |
---|
| 1335 | n+=*(cp-*p); |
---|
| 1336 | p+=2; |
---|
| 1337 | n+=*(cp-*p); |
---|
| 1338 | p+=x_size-2; |
---|
| 1339 | |
---|
| 1340 | n+=*(cp-*p++); |
---|
| 1341 | n+=*(cp-*p++); |
---|
| 1342 | n+=*(cp-*p); |
---|
| 1343 | |
---|
| 1344 | if (n<=max_no) |
---|
| 1345 | r[i*x_size+j] = max_no - n; |
---|
| 1346 | } |
---|
| 1347 | |
---|
| 1348 | for (i=2;i<y_size-2;i++) |
---|
| 1349 | for (j=2;j<x_size-2;j++) |
---|
| 1350 | { |
---|
| 1351 | if (r[i*x_size+j]>0) |
---|
| 1352 | { |
---|
| 1353 | m=r[i*x_size+j]; |
---|
| 1354 | n=max_no - m; |
---|
| 1355 | cp=bp + in[i*x_size+j]; |
---|
| 1356 | |
---|
| 1357 | if (n>250) |
---|
| 1358 | { |
---|
| 1359 | p=in + (i-1)*x_size + j - 1; |
---|
| 1360 | x=0;y=0; |
---|
| 1361 | |
---|
| 1362 | c=*(cp-*p++);x-=c;y-=c; |
---|
| 1363 | c=*(cp-*p++);y-=c; |
---|
| 1364 | c=*(cp-*p);x+=c;y-=c; |
---|
| 1365 | p+=x_size-2; |
---|
| 1366 | |
---|
| 1367 | c=*(cp-*p);x-=c; |
---|
| 1368 | p+=2; |
---|
| 1369 | c=*(cp-*p);x+=c; |
---|
| 1370 | p+=x_size-2; |
---|
| 1371 | |
---|
| 1372 | c=*(cp-*p++);x-=c;y+=c; |
---|
| 1373 | c=*(cp-*p++);y+=c; |
---|
| 1374 | c=*(cp-*p);x+=c;y+=c; |
---|
| 1375 | |
---|
| 1376 | z = sqrt((float)((x*x) + (y*y))); |
---|
| 1377 | if (z > (0.4*(float)n)) /* 0.6 */ |
---|
| 1378 | { |
---|
| 1379 | do_symmetry=0; |
---|
| 1380 | if (x==0) |
---|
| 1381 | z=1000000.0; |
---|
| 1382 | else |
---|
| 1383 | z=((float)y) / ((float)x); |
---|
| 1384 | if (z < 0) { z=-z; w=-1; } |
---|
| 1385 | else w=1; |
---|
| 1386 | if (z < 0.5) { /* vert_edge */ a=0; b=1; } |
---|
| 1387 | else { if (z > 2.0) { /* hor_edge */ a=1; b=0; } |
---|
| 1388 | else { /* diag_edge */ if (w>0) { a=1; b=1; } |
---|
| 1389 | else { a=-1; b=1; }}} |
---|
| 1390 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) ) |
---|
| 1391 | mid[i*x_size+j] = 1; |
---|
| 1392 | } |
---|
| 1393 | else |
---|
| 1394 | do_symmetry=1; |
---|
| 1395 | } |
---|
| 1396 | else |
---|
| 1397 | do_symmetry=1; |
---|
| 1398 | |
---|
| 1399 | if (do_symmetry==1) |
---|
| 1400 | { |
---|
| 1401 | p=in + (i-1)*x_size + j - 1; |
---|
| 1402 | x=0; y=0; w=0; |
---|
| 1403 | |
---|
| 1404 | /* | \ |
---|
| 1405 | y -x- w |
---|
| 1406 | | \ */ |
---|
| 1407 | |
---|
| 1408 | c=*(cp-*p++);x+=c;y+=c;w+=c; |
---|
| 1409 | c=*(cp-*p++);y+=c; |
---|
| 1410 | c=*(cp-*p);x+=c;y+=c;w-=c; |
---|
| 1411 | p+=x_size-2; |
---|
| 1412 | |
---|
| 1413 | c=*(cp-*p);x+=c; |
---|
| 1414 | p+=2; |
---|
| 1415 | c=*(cp-*p);x+=c; |
---|
| 1416 | p+=x_size-2; |
---|
| 1417 | |
---|
| 1418 | c=*(cp-*p++);x+=c;y+=c;w-=c; |
---|
| 1419 | c=*(cp-*p++);y+=c; |
---|
| 1420 | c=*(cp-*p);x+=c;y+=c;w+=c; |
---|
| 1421 | |
---|
| 1422 | if (y==0) |
---|
| 1423 | z = 1000000.0; |
---|
| 1424 | else |
---|
| 1425 | z = ((float)x) / ((float)y); |
---|
| 1426 | if (z < 0.5) { /* vertical */ a=0; b=1; } |
---|
| 1427 | else { if (z > 2.0) { /* horizontal */ a=1; b=0; } |
---|
| 1428 | else { /* diagonal */ if (w>0) { a=-1; b=1; } |
---|
| 1429 | else { a=1; b=1; }}} |
---|
| 1430 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) ) |
---|
| 1431 | mid[i*x_size+j] = 2; |
---|
| 1432 | } |
---|
| 1433 | } |
---|
| 1434 | } |
---|
| 1435 | } |
---|
| 1436 | |
---|
| 1437 | /* }}} */ |
---|
| 1438 | |
---|
| 1439 | /* }}} */ |
---|
| 1440 | /* {{{ corners */ |
---|
| 1441 | |
---|
| 1442 | /* {{{ corner_draw(in,corner_list,drawing_mode) */ |
---|
| 1443 | |
---|
| 1444 | void |
---|
| 1445 | corner_draw(in,corner_list,x_size,drawing_mode) |
---|
| 1446 | uchar *in; |
---|
| 1447 | CORNER_LIST corner_list; |
---|
| 1448 | int x_size, drawing_mode; |
---|
| 1449 | { |
---|
| 1450 | uchar *p; |
---|
| 1451 | int n=0; |
---|
| 1452 | |
---|
| 1453 | while(corner_list[n].info != 7) |
---|
| 1454 | { |
---|
| 1455 | if (drawing_mode==0) |
---|
| 1456 | { |
---|
| 1457 | p = in + (corner_list[n].y-1)*x_size + corner_list[n].x - 1; |
---|
| 1458 | *p++=255; *p++=255; *p=255; p+=x_size-2; |
---|
| 1459 | *p++=255; *p++=0; *p=255; p+=x_size-2; |
---|
| 1460 | *p++=255; *p++=255; *p=255; |
---|
| 1461 | n++; |
---|
| 1462 | } |
---|
| 1463 | else |
---|
| 1464 | { |
---|
| 1465 | p = in + corner_list[n].y*x_size + corner_list[n].x; |
---|
| 1466 | *p=0; |
---|
| 1467 | n++; |
---|
| 1468 | } |
---|
| 1469 | } |
---|
| 1470 | } |
---|
| 1471 | |
---|
| 1472 | /* }}} */ |
---|
| 1473 | /* {{{ susan(in,r,sf,max_no,corner_list) */ |
---|
| 1474 | |
---|
| 1475 | void |
---|
| 1476 | susan_corners(in,r,bp,max_no,corner_list,x_size,y_size) |
---|
| 1477 | uchar *in, *bp; |
---|
| 1478 | int *r, max_no, x_size, y_size; |
---|
| 1479 | CORNER_LIST corner_list; |
---|
| 1480 | { |
---|
| 1481 | int n,x,y,sq,xx,yy, |
---|
| 1482 | i,j,*cgx,*cgy; |
---|
| 1483 | float divide; |
---|
| 1484 | uchar c,*p,*cp; |
---|
| 1485 | |
---|
| 1486 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
| 1487 | |
---|
| 1488 | cgx=(int *)malloc(x_size*y_size*sizeof(int)); |
---|
| 1489 | cgy=(int *)malloc(x_size*y_size*sizeof(int)); |
---|
| 1490 | |
---|
| 1491 | for (i=5;i<y_size-5;i++) |
---|
| 1492 | for (j=5;j<x_size-5;j++) { |
---|
| 1493 | n=100; |
---|
| 1494 | p=in + (i-3)*x_size + j - 1; |
---|
| 1495 | cp=bp + in[i*x_size+j]; |
---|
| 1496 | |
---|
| 1497 | n+=*(cp-*p++); |
---|
| 1498 | n+=*(cp-*p++); |
---|
| 1499 | n+=*(cp-*p); |
---|
| 1500 | p+=x_size-3; |
---|
| 1501 | |
---|
| 1502 | n+=*(cp-*p++); |
---|
| 1503 | n+=*(cp-*p++); |
---|
| 1504 | n+=*(cp-*p++); |
---|
| 1505 | n+=*(cp-*p++); |
---|
| 1506 | n+=*(cp-*p); |
---|
| 1507 | p+=x_size-5; |
---|
| 1508 | |
---|
| 1509 | n+=*(cp-*p++); |
---|
| 1510 | n+=*(cp-*p++); |
---|
| 1511 | n+=*(cp-*p++); |
---|
| 1512 | n+=*(cp-*p++); |
---|
| 1513 | n+=*(cp-*p++); |
---|
| 1514 | n+=*(cp-*p++); |
---|
| 1515 | n+=*(cp-*p); |
---|
| 1516 | p+=x_size-6; |
---|
| 1517 | |
---|
| 1518 | n+=*(cp-*p++); |
---|
| 1519 | n+=*(cp-*p++); |
---|
| 1520 | n+=*(cp-*p); |
---|
| 1521 | if (n<max_no){ /* do this test early and often ONLY to save wasted computation */ |
---|
| 1522 | p+=2; |
---|
| 1523 | n+=*(cp-*p++); |
---|
| 1524 | if (n<max_no){ |
---|
| 1525 | n+=*(cp-*p++); |
---|
| 1526 | if (n<max_no){ |
---|
| 1527 | n+=*(cp-*p); |
---|
| 1528 | if (n<max_no){ |
---|
| 1529 | p+=x_size-6; |
---|
| 1530 | |
---|
| 1531 | n+=*(cp-*p++); |
---|
| 1532 | if (n<max_no){ |
---|
| 1533 | n+=*(cp-*p++); |
---|
| 1534 | if (n<max_no){ |
---|
| 1535 | n+=*(cp-*p++); |
---|
| 1536 | if (n<max_no){ |
---|
| 1537 | n+=*(cp-*p++); |
---|
| 1538 | if (n<max_no){ |
---|
| 1539 | n+=*(cp-*p++); |
---|
| 1540 | if (n<max_no){ |
---|
| 1541 | n+=*(cp-*p++); |
---|
| 1542 | if (n<max_no){ |
---|
| 1543 | n+=*(cp-*p); |
---|
| 1544 | if (n<max_no){ |
---|
| 1545 | p+=x_size-5; |
---|
| 1546 | |
---|
| 1547 | n+=*(cp-*p++); |
---|
| 1548 | if (n<max_no){ |
---|
| 1549 | n+=*(cp-*p++); |
---|
| 1550 | if (n<max_no){ |
---|
| 1551 | n+=*(cp-*p++); |
---|
| 1552 | if (n<max_no){ |
---|
| 1553 | n+=*(cp-*p++); |
---|
| 1554 | if (n<max_no){ |
---|
| 1555 | n+=*(cp-*p); |
---|
| 1556 | if (n<max_no){ |
---|
| 1557 | p+=x_size-3; |
---|
| 1558 | |
---|
| 1559 | n+=*(cp-*p++); |
---|
| 1560 | if (n<max_no){ |
---|
| 1561 | n+=*(cp-*p++); |
---|
| 1562 | if (n<max_no){ |
---|
| 1563 | n+=*(cp-*p); |
---|
| 1564 | |
---|
| 1565 | if (n<max_no) |
---|
| 1566 | { |
---|
| 1567 | x=0;y=0; |
---|
| 1568 | p=in + (i-3)*x_size + j - 1; |
---|
| 1569 | |
---|
| 1570 | c=*(cp-*p++);x-=c;y-=3*c; |
---|
| 1571 | c=*(cp-*p++);y-=3*c; |
---|
| 1572 | c=*(cp-*p);x+=c;y-=3*c; |
---|
| 1573 | p+=x_size-3; |
---|
| 1574 | |
---|
| 1575 | c=*(cp-*p++);x-=2*c;y-=2*c; |
---|
| 1576 | c=*(cp-*p++);x-=c;y-=2*c; |
---|
| 1577 | c=*(cp-*p++);y-=2*c; |
---|
| 1578 | c=*(cp-*p++);x+=c;y-=2*c; |
---|
| 1579 | c=*(cp-*p);x+=2*c;y-=2*c; |
---|
| 1580 | p+=x_size-5; |
---|
| 1581 | |
---|
| 1582 | c=*(cp-*p++);x-=3*c;y-=c; |
---|
| 1583 | c=*(cp-*p++);x-=2*c;y-=c; |
---|
| 1584 | c=*(cp-*p++);x-=c;y-=c; |
---|
| 1585 | c=*(cp-*p++);y-=c; |
---|
| 1586 | c=*(cp-*p++);x+=c;y-=c; |
---|
| 1587 | c=*(cp-*p++);x+=2*c;y-=c; |
---|
| 1588 | c=*(cp-*p);x+=3*c;y-=c; |
---|
| 1589 | p+=x_size-6; |
---|
| 1590 | |
---|
| 1591 | c=*(cp-*p++);x-=3*c; |
---|
| 1592 | c=*(cp-*p++);x-=2*c; |
---|
| 1593 | c=*(cp-*p);x-=c; |
---|
| 1594 | p+=2; |
---|
| 1595 | c=*(cp-*p++);x+=c; |
---|
| 1596 | c=*(cp-*p++);x+=2*c; |
---|
| 1597 | c=*(cp-*p);x+=3*c; |
---|
| 1598 | p+=x_size-6; |
---|
| 1599 | |
---|
| 1600 | c=*(cp-*p++);x-=3*c;y+=c; |
---|
| 1601 | c=*(cp-*p++);x-=2*c;y+=c; |
---|
| 1602 | c=*(cp-*p++);x-=c;y+=c; |
---|
| 1603 | c=*(cp-*p++);y+=c; |
---|
| 1604 | c=*(cp-*p++);x+=c;y+=c; |
---|
| 1605 | c=*(cp-*p++);x+=2*c;y+=c; |
---|
| 1606 | c=*(cp-*p);x+=3*c;y+=c; |
---|
| 1607 | p+=x_size-5; |
---|
| 1608 | |
---|
| 1609 | c=*(cp-*p++);x-=2*c;y+=2*c; |
---|
| 1610 | c=*(cp-*p++);x-=c;y+=2*c; |
---|
| 1611 | c=*(cp-*p++);y+=2*c; |
---|
| 1612 | c=*(cp-*p++);x+=c;y+=2*c; |
---|
| 1613 | c=*(cp-*p);x+=2*c;y+=2*c; |
---|
| 1614 | p+=x_size-3; |
---|
| 1615 | |
---|
| 1616 | c=*(cp-*p++);x-=c;y+=3*c; |
---|
| 1617 | c=*(cp-*p++);y+=3*c; |
---|
| 1618 | c=*(cp-*p);x+=c;y+=3*c; |
---|
| 1619 | |
---|
| 1620 | xx=x*x; |
---|
| 1621 | yy=y*y; |
---|
| 1622 | sq=xx+yy; |
---|
| 1623 | if ( sq > ((n*n)/2) ) |
---|
| 1624 | { |
---|
| 1625 | if(yy<xx) { |
---|
| 1626 | divide=(float)y/(float)abs(x); |
---|
| 1627 | sq=abs(x)/x; |
---|
| 1628 | sq=*(cp-in[(i+FTOI(divide))*x_size+j+sq]) + |
---|
| 1629 | *(cp-in[(i+FTOI(2*divide))*x_size+j+2*sq]) + |
---|
| 1630 | *(cp-in[(i+FTOI(3*divide))*x_size+j+3*sq]);} |
---|
| 1631 | else { |
---|
| 1632 | divide=(float)x/(float)abs(y); |
---|
| 1633 | sq=abs(y)/y; |
---|
| 1634 | sq=*(cp-in[(i+sq)*x_size+j+FTOI(divide)]) + |
---|
| 1635 | *(cp-in[(i+2*sq)*x_size+j+FTOI(2*divide)]) + |
---|
| 1636 | *(cp-in[(i+3*sq)*x_size+j+FTOI(3*divide)]);} |
---|
| 1637 | |
---|
| 1638 | if(sq>290){ |
---|
| 1639 | r[i*x_size+j] = max_no-n; |
---|
| 1640 | cgx[i*x_size+j] = (51*x)/n; |
---|
| 1641 | cgy[i*x_size+j] = (51*y)/n;} |
---|
| 1642 | } |
---|
| 1643 | } |
---|
| 1644 | }}}}}}}}}}}}}}}}}}} |
---|
| 1645 | |
---|
| 1646 | /* to locate the local maxima */ |
---|
| 1647 | n=0; |
---|
| 1648 | for (i=5;i<y_size-5;i++) |
---|
| 1649 | for (j=5;j<x_size-5;j++) { |
---|
| 1650 | x = r[i*x_size+j]; |
---|
| 1651 | if (x>0) { |
---|
| 1652 | /* 5x5 mask */ |
---|
| 1653 | #ifdef FIVE_SUPP |
---|
| 1654 | if ( |
---|
| 1655 | (x>r[(i-1)*x_size+j+2]) && |
---|
| 1656 | (x>r[(i )*x_size+j+1]) && |
---|
| 1657 | (x>r[(i )*x_size+j+2]) && |
---|
| 1658 | (x>r[(i+1)*x_size+j-1]) && |
---|
| 1659 | (x>r[(i+1)*x_size+j ]) && |
---|
| 1660 | (x>r[(i+1)*x_size+j+1]) && |
---|
| 1661 | (x>r[(i+1)*x_size+j+2]) && |
---|
| 1662 | (x>r[(i+2)*x_size+j-2]) && |
---|
| 1663 | (x>r[(i+2)*x_size+j-1]) && |
---|
| 1664 | (x>r[(i+2)*x_size+j ]) && |
---|
| 1665 | (x>r[(i+2)*x_size+j+1]) && |
---|
| 1666 | (x>r[(i+2)*x_size+j+2]) && |
---|
| 1667 | (x>=r[(i-2)*x_size+j-2]) && |
---|
| 1668 | (x>=r[(i-2)*x_size+j-1]) && |
---|
| 1669 | (x>=r[(i-2)*x_size+j ]) && |
---|
| 1670 | (x>=r[(i-2)*x_size+j+1]) && |
---|
| 1671 | (x>=r[(i-2)*x_size+j+2]) && |
---|
| 1672 | (x>=r[(i-1)*x_size+j-2]) && |
---|
| 1673 | (x>=r[(i-1)*x_size+j-1]) && |
---|
| 1674 | (x>=r[(i-1)*x_size+j ]) && |
---|
| 1675 | (x>=r[(i-1)*x_size+j+1]) && |
---|
| 1676 | (x>=r[(i )*x_size+j-2]) && |
---|
| 1677 | (x>=r[(i )*x_size+j-1]) && |
---|
| 1678 | (x>=r[(i+1)*x_size+j-2]) ) |
---|
| 1679 | #endif |
---|
| 1680 | #ifdef SEVEN_SUPP |
---|
| 1681 | if ( |
---|
| 1682 | (x>r[(i-3)*x_size+j-3]) && |
---|
| 1683 | (x>r[(i-3)*x_size+j-2]) && |
---|
| 1684 | (x>r[(i-3)*x_size+j-1]) && |
---|
| 1685 | (x>r[(i-3)*x_size+j ]) && |
---|
| 1686 | (x>r[(i-3)*x_size+j+1]) && |
---|
| 1687 | (x>r[(i-3)*x_size+j+2]) && |
---|
| 1688 | (x>r[(i-3)*x_size+j+3]) && |
---|
| 1689 | |
---|
| 1690 | (x>r[(i-2)*x_size+j-3]) && |
---|
| 1691 | (x>r[(i-2)*x_size+j-2]) && |
---|
| 1692 | (x>r[(i-2)*x_size+j-1]) && |
---|
| 1693 | (x>r[(i-2)*x_size+j ]) && |
---|
| 1694 | (x>r[(i-2)*x_size+j+1]) && |
---|
| 1695 | (x>r[(i-2)*x_size+j+2]) && |
---|
| 1696 | (x>r[(i-2)*x_size+j+3]) && |
---|
| 1697 | |
---|
| 1698 | (x>r[(i-1)*x_size+j-3]) && |
---|
| 1699 | (x>r[(i-1)*x_size+j-2]) && |
---|
| 1700 | (x>r[(i-1)*x_size+j-1]) && |
---|
| 1701 | (x>r[(i-1)*x_size+j ]) && |
---|
| 1702 | (x>r[(i-1)*x_size+j+1]) && |
---|
| 1703 | (x>r[(i-1)*x_size+j+2]) && |
---|
| 1704 | (x>r[(i-1)*x_size+j+3]) && |
---|
| 1705 | |
---|
| 1706 | (x>r[(i)*x_size+j-3]) && |
---|
| 1707 | (x>r[(i)*x_size+j-2]) && |
---|
| 1708 | (x>r[(i)*x_size+j-1]) && |
---|
| 1709 | (x>=r[(i)*x_size+j+1]) && |
---|
| 1710 | (x>=r[(i)*x_size+j+2]) && |
---|
| 1711 | (x>=r[(i)*x_size+j+3]) && |
---|
| 1712 | |
---|
| 1713 | (x>=r[(i+1)*x_size+j-3]) && |
---|
| 1714 | (x>=r[(i+1)*x_size+j-2]) && |
---|
| 1715 | (x>=r[(i+1)*x_size+j-1]) && |
---|
| 1716 | (x>=r[(i+1)*x_size+j ]) && |
---|
| 1717 | (x>=r[(i+1)*x_size+j+1]) && |
---|
| 1718 | (x>=r[(i+1)*x_size+j+2]) && |
---|
| 1719 | (x>=r[(i+1)*x_size+j+3]) && |
---|
| 1720 | |
---|
| 1721 | (x>=r[(i+2)*x_size+j-3]) && |
---|
| 1722 | (x>=r[(i+2)*x_size+j-2]) && |
---|
| 1723 | (x>=r[(i+2)*x_size+j-1]) && |
---|
| 1724 | (x>=r[(i+2)*x_size+j ]) && |
---|
| 1725 | (x>=r[(i+2)*x_size+j+1]) && |
---|
| 1726 | (x>=r[(i+2)*x_size+j+2]) && |
---|
| 1727 | (x>=r[(i+2)*x_size+j+3]) && |
---|
| 1728 | |
---|
| 1729 | (x>=r[(i+3)*x_size+j-3]) && |
---|
| 1730 | (x>=r[(i+3)*x_size+j-2]) && |
---|
| 1731 | (x>=r[(i+3)*x_size+j-1]) && |
---|
| 1732 | (x>=r[(i+3)*x_size+j ]) && |
---|
| 1733 | (x>=r[(i+3)*x_size+j+1]) && |
---|
| 1734 | (x>=r[(i+3)*x_size+j+2]) && |
---|
| 1735 | (x>=r[(i+3)*x_size+j+3]) ) |
---|
| 1736 | #endif |
---|
| 1737 | { |
---|
| 1738 | corner_list[n].info=0; |
---|
| 1739 | corner_list[n].x=j; |
---|
| 1740 | corner_list[n].y=i; |
---|
| 1741 | corner_list[n].dx=cgx[i*x_size+j]; |
---|
| 1742 | corner_list[n].dy=cgy[i*x_size+j]; |
---|
| 1743 | corner_list[n].I=in[i*x_size+j]; |
---|
| 1744 | n++; |
---|
| 1745 | if(n==MAX_CORNERS){ |
---|
| 1746 | fprintf(stderr,"Too many corners.\n"); |
---|
| 1747 | exit(1); |
---|
| 1748 | }}}} |
---|
| 1749 | corner_list[n].info=7; |
---|
| 1750 | |
---|
| 1751 | free(cgx); |
---|
| 1752 | free(cgy); |
---|
| 1753 | |
---|
| 1754 | } |
---|
| 1755 | |
---|
| 1756 | /* }}} */ |
---|
| 1757 | /* {{{ susan_quick(in,r,sf,max_no,corner_list) */ |
---|
| 1758 | |
---|
| 1759 | void |
---|
| 1760 | susan_corners_quick(in,r,bp,max_no,corner_list,x_size,y_size) |
---|
| 1761 | uchar *in, *bp; |
---|
| 1762 | int *r, max_no, x_size, y_size; |
---|
| 1763 | CORNER_LIST corner_list; |
---|
| 1764 | { |
---|
| 1765 | int n,x,y,i,j; |
---|
| 1766 | uchar *p,*cp; |
---|
| 1767 | |
---|
| 1768 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
| 1769 | |
---|
| 1770 | for (i=7;i<y_size-7;i++) |
---|
| 1771 | for (j=7;j<x_size-7;j++) { |
---|
| 1772 | n=100; |
---|
| 1773 | p=in + (i-3)*x_size + j - 1; |
---|
| 1774 | cp=bp + in[i*x_size+j]; |
---|
| 1775 | |
---|
| 1776 | n+=*(cp-*p++); |
---|
| 1777 | n+=*(cp-*p++); |
---|
| 1778 | n+=*(cp-*p); |
---|
| 1779 | p+=x_size-3; |
---|
| 1780 | |
---|
| 1781 | n+=*(cp-*p++); |
---|
| 1782 | n+=*(cp-*p++); |
---|
| 1783 | n+=*(cp-*p++); |
---|
| 1784 | n+=*(cp-*p++); |
---|
| 1785 | n+=*(cp-*p); |
---|
| 1786 | p+=x_size-5; |
---|
| 1787 | |
---|
| 1788 | n+=*(cp-*p++); |
---|
| 1789 | n+=*(cp-*p++); |
---|
| 1790 | n+=*(cp-*p++); |
---|
| 1791 | n+=*(cp-*p++); |
---|
| 1792 | n+=*(cp-*p++); |
---|
| 1793 | n+=*(cp-*p++); |
---|
| 1794 | n+=*(cp-*p); |
---|
| 1795 | p+=x_size-6; |
---|
| 1796 | |
---|
| 1797 | n+=*(cp-*p++); |
---|
| 1798 | n+=*(cp-*p++); |
---|
| 1799 | n+=*(cp-*p); |
---|
| 1800 | if (n<max_no){ |
---|
| 1801 | p+=2; |
---|
| 1802 | n+=*(cp-*p++); |
---|
| 1803 | if (n<max_no){ |
---|
| 1804 | n+=*(cp-*p++); |
---|
| 1805 | if (n<max_no){ |
---|
| 1806 | n+=*(cp-*p); |
---|
| 1807 | if (n<max_no){ |
---|
| 1808 | p+=x_size-6; |
---|
| 1809 | |
---|
| 1810 | n+=*(cp-*p++); |
---|
| 1811 | if (n<max_no){ |
---|
| 1812 | n+=*(cp-*p++); |
---|
| 1813 | if (n<max_no){ |
---|
| 1814 | n+=*(cp-*p++); |
---|
| 1815 | if (n<max_no){ |
---|
| 1816 | n+=*(cp-*p++); |
---|
| 1817 | if (n<max_no){ |
---|
| 1818 | n+=*(cp-*p++); |
---|
| 1819 | if (n<max_no){ |
---|
| 1820 | n+=*(cp-*p++); |
---|
| 1821 | if (n<max_no){ |
---|
| 1822 | n+=*(cp-*p); |
---|
| 1823 | if (n<max_no){ |
---|
| 1824 | p+=x_size-5; |
---|
| 1825 | |
---|
| 1826 | n+=*(cp-*p++); |
---|
| 1827 | if (n<max_no){ |
---|
| 1828 | n+=*(cp-*p++); |
---|
| 1829 | if (n<max_no){ |
---|
| 1830 | n+=*(cp-*p++); |
---|
| 1831 | if (n<max_no){ |
---|
| 1832 | n+=*(cp-*p++); |
---|
| 1833 | if (n<max_no){ |
---|
| 1834 | n+=*(cp-*p); |
---|
| 1835 | if (n<max_no){ |
---|
| 1836 | p+=x_size-3; |
---|
| 1837 | |
---|
| 1838 | n+=*(cp-*p++); |
---|
| 1839 | if (n<max_no){ |
---|
| 1840 | n+=*(cp-*p++); |
---|
| 1841 | if (n<max_no){ |
---|
| 1842 | n+=*(cp-*p); |
---|
| 1843 | |
---|
| 1844 | if (n<max_no) |
---|
| 1845 | r[i*x_size+j] = max_no-n; |
---|
| 1846 | }}}}}}}}}}}}}}}}}}} |
---|
| 1847 | |
---|
| 1848 | /* to locate the local maxima */ |
---|
| 1849 | n=0; |
---|
| 1850 | for (i=7;i<y_size-7;i++) |
---|
| 1851 | for (j=7;j<x_size-7;j++) { |
---|
| 1852 | x = r[i*x_size+j]; |
---|
| 1853 | if (x>0) { |
---|
| 1854 | /* 5x5 mask */ |
---|
| 1855 | #ifdef FIVE_SUPP |
---|
| 1856 | if ( |
---|
| 1857 | (x>r[(i-1)*x_size+j+2]) && |
---|
| 1858 | (x>r[(i )*x_size+j+1]) && |
---|
| 1859 | (x>r[(i )*x_size+j+2]) && |
---|
| 1860 | (x>r[(i+1)*x_size+j-1]) && |
---|
| 1861 | (x>r[(i+1)*x_size+j ]) && |
---|
| 1862 | (x>r[(i+1)*x_size+j+1]) && |
---|
| 1863 | (x>r[(i+1)*x_size+j+2]) && |
---|
| 1864 | (x>r[(i+2)*x_size+j-2]) && |
---|
| 1865 | (x>r[(i+2)*x_size+j-1]) && |
---|
| 1866 | (x>r[(i+2)*x_size+j ]) && |
---|
| 1867 | (x>r[(i+2)*x_size+j+1]) && |
---|
| 1868 | (x>r[(i+2)*x_size+j+2]) && |
---|
| 1869 | (x>=r[(i-2)*x_size+j-2]) && |
---|
| 1870 | (x>=r[(i-2)*x_size+j-1]) && |
---|
| 1871 | (x>=r[(i-2)*x_size+j ]) && |
---|
| 1872 | (x>=r[(i-2)*x_size+j+1]) && |
---|
| 1873 | (x>=r[(i-2)*x_size+j+2]) && |
---|
| 1874 | (x>=r[(i-1)*x_size+j-2]) && |
---|
| 1875 | (x>=r[(i-1)*x_size+j-1]) && |
---|
| 1876 | (x>=r[(i-1)*x_size+j ]) && |
---|
| 1877 | (x>=r[(i-1)*x_size+j+1]) && |
---|
| 1878 | (x>=r[(i )*x_size+j-2]) && |
---|
| 1879 | (x>=r[(i )*x_size+j-1]) && |
---|
| 1880 | (x>=r[(i+1)*x_size+j-2]) ) |
---|
| 1881 | #endif |
---|
| 1882 | #ifdef SEVEN_SUPP |
---|
| 1883 | if ( |
---|
| 1884 | (x>r[(i-3)*x_size+j-3]) && |
---|
| 1885 | (x>r[(i-3)*x_size+j-2]) && |
---|
| 1886 | (x>r[(i-3)*x_size+j-1]) && |
---|
| 1887 | (x>r[(i-3)*x_size+j ]) && |
---|
| 1888 | (x>r[(i-3)*x_size+j+1]) && |
---|
| 1889 | (x>r[(i-3)*x_size+j+2]) && |
---|
| 1890 | (x>r[(i-3)*x_size+j+3]) && |
---|
| 1891 | |
---|
| 1892 | (x>r[(i-2)*x_size+j-3]) && |
---|
| 1893 | (x>r[(i-2)*x_size+j-2]) && |
---|
| 1894 | (x>r[(i-2)*x_size+j-1]) && |
---|
| 1895 | (x>r[(i-2)*x_size+j ]) && |
---|
| 1896 | (x>r[(i-2)*x_size+j+1]) && |
---|
| 1897 | (x>r[(i-2)*x_size+j+2]) && |
---|
| 1898 | (x>r[(i-2)*x_size+j+3]) && |
---|
| 1899 | |
---|
| 1900 | (x>r[(i-1)*x_size+j-3]) && |
---|
| 1901 | (x>r[(i-1)*x_size+j-2]) && |
---|
| 1902 | (x>r[(i-1)*x_size+j-1]) && |
---|
| 1903 | (x>r[(i-1)*x_size+j ]) && |
---|
| 1904 | (x>r[(i-1)*x_size+j+1]) && |
---|
| 1905 | (x>r[(i-1)*x_size+j+2]) && |
---|
| 1906 | (x>r[(i-1)*x_size+j+3]) && |
---|
| 1907 | |
---|
| 1908 | (x>r[(i)*x_size+j-3]) && |
---|
| 1909 | (x>r[(i)*x_size+j-2]) && |
---|
| 1910 | (x>r[(i)*x_size+j-1]) && |
---|
| 1911 | (x>=r[(i)*x_size+j+1]) && |
---|
| 1912 | (x>=r[(i)*x_size+j+2]) && |
---|
| 1913 | (x>=r[(i)*x_size+j+3]) && |
---|
| 1914 | |
---|
| 1915 | (x>=r[(i+1)*x_size+j-3]) && |
---|
| 1916 | (x>=r[(i+1)*x_size+j-2]) && |
---|
| 1917 | (x>=r[(i+1)*x_size+j-1]) && |
---|
| 1918 | (x>=r[(i+1)*x_size+j ]) && |
---|
| 1919 | (x>=r[(i+1)*x_size+j+1]) && |
---|
| 1920 | (x>=r[(i+1)*x_size+j+2]) && |
---|
| 1921 | (x>=r[(i+1)*x_size+j+3]) && |
---|
| 1922 | |
---|
| 1923 | (x>=r[(i+2)*x_size+j-3]) && |
---|
| 1924 | (x>=r[(i+2)*x_size+j-2]) && |
---|
| 1925 | (x>=r[(i+2)*x_size+j-1]) && |
---|
| 1926 | (x>=r[(i+2)*x_size+j ]) && |
---|
| 1927 | (x>=r[(i+2)*x_size+j+1]) && |
---|
| 1928 | (x>=r[(i+2)*x_size+j+2]) && |
---|
| 1929 | (x>=r[(i+2)*x_size+j+3]) && |
---|
| 1930 | |
---|
| 1931 | (x>=r[(i+3)*x_size+j-3]) && |
---|
| 1932 | (x>=r[(i+3)*x_size+j-2]) && |
---|
| 1933 | (x>=r[(i+3)*x_size+j-1]) && |
---|
| 1934 | (x>=r[(i+3)*x_size+j ]) && |
---|
| 1935 | (x>=r[(i+3)*x_size+j+1]) && |
---|
| 1936 | (x>=r[(i+3)*x_size+j+2]) && |
---|
| 1937 | (x>=r[(i+3)*x_size+j+3]) ) |
---|
| 1938 | #endif |
---|
| 1939 | { |
---|
| 1940 | corner_list[n].info=0; |
---|
| 1941 | corner_list[n].x=j; |
---|
| 1942 | corner_list[n].y=i; |
---|
| 1943 | x = in[(i-2)*x_size+j-2] + in[(i-2)*x_size+j-1] + in[(i-2)*x_size+j] + in[(i-2)*x_size+j+1] + in[(i-2)*x_size+j+2] + |
---|
| 1944 | in[(i-1)*x_size+j-2] + in[(i-1)*x_size+j-1] + in[(i-1)*x_size+j] + in[(i-1)*x_size+j+1] + in[(i-1)*x_size+j+2] + |
---|
| 1945 | in[(i )*x_size+j-2] + in[(i )*x_size+j-1] + in[(i )*x_size+j] + in[(i )*x_size+j+1] + in[(i )*x_size+j+2] + |
---|
| 1946 | in[(i+1)*x_size+j-2] + in[(i+1)*x_size+j-1] + in[(i+1)*x_size+j] + in[(i+1)*x_size+j+1] + in[(i+1)*x_size+j+2] + |
---|
| 1947 | in[(i+2)*x_size+j-2] + in[(i+2)*x_size+j-1] + in[(i+2)*x_size+j] + in[(i+2)*x_size+j+1] + in[(i+2)*x_size+j+2]; |
---|
| 1948 | |
---|
| 1949 | corner_list[n].I=x/25; |
---|
| 1950 | /*corner_list[n].I=in[i*x_size+j];*/ |
---|
| 1951 | x = in[(i-2)*x_size+j+2] + in[(i-1)*x_size+j+2] + in[(i)*x_size+j+2] + in[(i+1)*x_size+j+2] + in[(i+2)*x_size+j+2] - |
---|
| 1952 | (in[(i-2)*x_size+j-2] + in[(i-1)*x_size+j-2] + in[(i)*x_size+j-2] + in[(i+1)*x_size+j-2] + in[(i+2)*x_size+j-2]); |
---|
| 1953 | x += x + in[(i-2)*x_size+j+1] + in[(i-1)*x_size+j+1] + in[(i)*x_size+j+1] + in[(i+1)*x_size+j+1] + in[(i+2)*x_size+j+1] - |
---|
| 1954 | (in[(i-2)*x_size+j-1] + in[(i-1)*x_size+j-1] + in[(i)*x_size+j-1] + in[(i+1)*x_size+j-1] + in[(i+2)*x_size+j-1]); |
---|
| 1955 | |
---|
| 1956 | y = in[(i+2)*x_size+j-2] + in[(i+2)*x_size+j-1] + in[(i+2)*x_size+j] + in[(i+2)*x_size+j+1] + in[(i+2)*x_size+j+2] - |
---|
| 1957 | (in[(i-2)*x_size+j-2] + in[(i-2)*x_size+j-1] + in[(i-2)*x_size+j] + in[(i-2)*x_size+j+1] + in[(i-2)*x_size+j+2]); |
---|
| 1958 | y += y + in[(i+1)*x_size+j-2] + in[(i+1)*x_size+j-1] + in[(i+1)*x_size+j] + in[(i+1)*x_size+j+1] + in[(i+1)*x_size+j+2] - |
---|
| 1959 | (in[(i-1)*x_size+j-2] + in[(i-1)*x_size+j-1] + in[(i-1)*x_size+j] + in[(i-1)*x_size+j+1] + in[(i-1)*x_size+j+2]); |
---|
| 1960 | corner_list[n].dx=x/15; |
---|
| 1961 | corner_list[n].dy=y/15; |
---|
| 1962 | n++; |
---|
| 1963 | if(n==MAX_CORNERS){ |
---|
| 1964 | fprintf(stderr,"Too many corners.\n"); |
---|
| 1965 | exit(1); |
---|
| 1966 | }}}} |
---|
| 1967 | corner_list[n].info=7; |
---|
| 1968 | } |
---|
| 1969 | |
---|
| 1970 | /* }}} */ |
---|
| 1971 | |
---|
| 1972 | /* }}} */ |
---|
| 1973 | /* {{{ main(argc, argv) */ |
---|
| 1974 | |
---|
| 1975 | void |
---|
| 1976 | main_susan (argc, argv) |
---|
| 1977 | int argc; |
---|
| 1978 | char *argv []; |
---|
| 1979 | { |
---|
| 1980 | /* {{{ vars */ |
---|
| 1981 | |
---|
| 1982 | //FILE *ofp; |
---|
| 1983 | char //filename [80], |
---|
| 1984 | *tcp; |
---|
| 1985 | uchar *in, *bp, *mid; |
---|
| 1986 | float dt=4.0; |
---|
| 1987 | int *r, |
---|
| 1988 | argindex=3, |
---|
| 1989 | bt=20, |
---|
| 1990 | principle=0, |
---|
| 1991 | thin_post_proc=1, |
---|
| 1992 | three_by_three=0, |
---|
| 1993 | drawing_mode=0, |
---|
| 1994 | susan_quick=0, |
---|
| 1995 | max_no_corners=1850, |
---|
| 1996 | max_no_edges=2650, |
---|
| 1997 | mode = 0, //i, |
---|
| 1998 | x_size, y_size; |
---|
| 1999 | CORNER_LIST corner_list; |
---|
| 2000 | |
---|
| 2001 | /* }}} */ |
---|
| 2002 | |
---|
| 2003 | if (argc<3) |
---|
| 2004 | usage(); |
---|
| 2005 | |
---|
| 2006 | get_image(argv[1],&in,&x_size,&y_size); |
---|
| 2007 | |
---|
| 2008 | /* {{{ look at options */ |
---|
| 2009 | |
---|
| 2010 | while (argindex < argc) |
---|
| 2011 | { |
---|
| 2012 | tcp = argv[argindex]; |
---|
| 2013 | if (*tcp == '-') |
---|
| 2014 | switch (*++tcp) |
---|
| 2015 | { |
---|
| 2016 | case 's': /* smoothing */ |
---|
| 2017 | mode=0; |
---|
| 2018 | break; |
---|
| 2019 | case 'e': /* edges */ |
---|
| 2020 | mode=1; |
---|
| 2021 | break; |
---|
| 2022 | case 'c': /* corners */ |
---|
| 2023 | mode=2; |
---|
| 2024 | break; |
---|
| 2025 | case 'p': /* principle */ |
---|
| 2026 | principle=1; |
---|
| 2027 | break; |
---|
| 2028 | case 'n': /* thinning post processing */ |
---|
| 2029 | thin_post_proc=0; |
---|
| 2030 | break; |
---|
| 2031 | case 'b': /* simple drawing mode */ |
---|
| 2032 | drawing_mode=1; |
---|
| 2033 | break; |
---|
| 2034 | case '3': /* 3x3 flat mask */ |
---|
| 2035 | three_by_three=1; |
---|
| 2036 | break; |
---|
| 2037 | case 'q': /* quick susan mask */ |
---|
| 2038 | susan_quick=1; |
---|
| 2039 | break; |
---|
| 2040 | case 'd': /* distance threshold */ |
---|
| 2041 | if (++argindex >= argc){ |
---|
| 2042 | printf ("No argument following -d\n"); |
---|
| 2043 | exit(0);} |
---|
| 2044 | dt=atof(argv[argindex]); |
---|
| 2045 | if (dt<0) three_by_three=1; |
---|
| 2046 | break; |
---|
| 2047 | case 't': /* brightness threshold */ |
---|
| 2048 | if (++argindex >= argc){ |
---|
| 2049 | printf ("No argument following -t\n"); |
---|
| 2050 | exit(0);} |
---|
| 2051 | bt=atoi(argv[argindex]); |
---|
| 2052 | break; |
---|
| 2053 | } |
---|
| 2054 | else |
---|
| 2055 | usage(); |
---|
| 2056 | argindex++; |
---|
| 2057 | } |
---|
| 2058 | |
---|
| 2059 | if ( (principle==1) && (mode==0) ) |
---|
| 2060 | mode=1; |
---|
| 2061 | |
---|
| 2062 | /* }}} */ |
---|
| 2063 | /* {{{ main processing */ |
---|
| 2064 | |
---|
| 2065 | switch (mode) |
---|
| 2066 | { |
---|
| 2067 | case 0: |
---|
| 2068 | /* {{{ smoothing */ |
---|
| 2069 | |
---|
| 2070 | setup_brightness_lut(&bp,bt,2); |
---|
| 2071 | susan_smoothing(three_by_three,in,dt,x_size,y_size,bp); |
---|
| 2072 | break; |
---|
| 2073 | |
---|
| 2074 | /* }}} */ |
---|
| 2075 | case 1: |
---|
| 2076 | /* {{{ edges */ |
---|
| 2077 | |
---|
| 2078 | r = (int *) malloc(x_size * y_size * sizeof(int)); |
---|
| 2079 | setup_brightness_lut(&bp,bt,6); |
---|
| 2080 | |
---|
| 2081 | if (principle) |
---|
| 2082 | { |
---|
| 2083 | if (three_by_three) |
---|
| 2084 | susan_principle_small(in,r,bp,max_no_edges,x_size,y_size); |
---|
| 2085 | else |
---|
| 2086 | susan_principle(in,r,bp,max_no_edges,x_size,y_size); |
---|
| 2087 | int_to_uchar(r,in,x_size*y_size); |
---|
| 2088 | } |
---|
| 2089 | else |
---|
| 2090 | { |
---|
| 2091 | mid = (uchar *)malloc(x_size*y_size); |
---|
| 2092 | memset (mid,100,x_size * y_size); /* note not set to zero */ |
---|
| 2093 | |
---|
| 2094 | if (three_by_three) |
---|
| 2095 | susan_edges_small(in,r,mid,bp,max_no_edges,x_size,y_size); |
---|
| 2096 | else |
---|
| 2097 | susan_edges(in,r,mid,bp,max_no_edges,x_size,y_size); |
---|
| 2098 | if(thin_post_proc) |
---|
| 2099 | susan_thin(r,mid,x_size,y_size); |
---|
| 2100 | edge_draw(in,mid,x_size,y_size,drawing_mode); |
---|
| 2101 | } |
---|
| 2102 | |
---|
| 2103 | break; |
---|
| 2104 | |
---|
| 2105 | /* }}} */ |
---|
| 2106 | case 2: |
---|
| 2107 | /* {{{ corners */ |
---|
| 2108 | |
---|
| 2109 | r = (int *) malloc(x_size * y_size * sizeof(int)); |
---|
| 2110 | setup_brightness_lut(&bp,bt,6); |
---|
| 2111 | |
---|
| 2112 | if (principle) |
---|
| 2113 | { |
---|
| 2114 | susan_principle(in,r,bp,max_no_corners,x_size,y_size); |
---|
| 2115 | int_to_uchar(r,in,x_size*y_size); |
---|
| 2116 | } |
---|
| 2117 | else |
---|
| 2118 | { |
---|
| 2119 | if(susan_quick) |
---|
| 2120 | susan_corners_quick(in,r,bp,max_no_corners,corner_list,x_size,y_size); |
---|
| 2121 | else |
---|
| 2122 | susan_corners(in,r,bp,max_no_corners,corner_list,x_size,y_size); |
---|
| 2123 | corner_draw(in,corner_list,x_size,drawing_mode); |
---|
| 2124 | } |
---|
| 2125 | |
---|
| 2126 | break; |
---|
| 2127 | |
---|
| 2128 | /* }}} */ |
---|
| 2129 | } |
---|
| 2130 | |
---|
| 2131 | /* }}} */ |
---|
| 2132 | |
---|
| 2133 | put_image(argv[2],in,x_size,y_size); |
---|
| 2134 | } |
---|
| 2135 | |
---|
| 2136 | /* }}} */ |
---|