1 | /* {{{ Copyright etc. */ |
---|
2 | |
---|
3 | /**********************************************************************\ |
---|
4 | |
---|
5 | SUSAN Version 2l by Stephen Smith |
---|
6 | Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, |
---|
7 | Department of Clinical Neurology, Oxford University, Oxford, UK |
---|
8 | (Previously in Computer Vision and Image Processing Group - now |
---|
9 | Computer Vision and Electro Optics Group - DERA Chertsey, UK) |
---|
10 | Email: steve@fmrib.ox.ac.uk |
---|
11 | WWW: http://www.fmrib.ox.ac.uk/~steve |
---|
12 | |
---|
13 | (C) Crown Copyright (1995-1999), Defence Evaluation and Research Agency, |
---|
14 | Farnborough, Hampshire, GU14 6TD, UK |
---|
15 | DERA WWW site: |
---|
16 | http://www.dera.gov.uk/ |
---|
17 | DERA Computer Vision and Electro Optics Group WWW site: |
---|
18 | http://www.dera.gov.uk/imageprocessing/dera/group_home.html |
---|
19 | DERA Computer Vision and Electro Optics Group point of contact: |
---|
20 | Dr. John Savage, jtsavage@dera.gov.uk, +44 1344 633203 |
---|
21 | |
---|
22 | A UK patent has been granted: "Method for digitally processing |
---|
23 | images to determine the position of edges and/or corners therein for |
---|
24 | guidance of unmanned vehicle", UK Patent 2272285. Proprietor: |
---|
25 | Secretary of State for Defence, UK. 15 January 1997 |
---|
26 | |
---|
27 | This code is issued for research purposes only and remains the |
---|
28 | property of the UK Secretary of State for Defence. This code must |
---|
29 | not be passed on without this header information being kept |
---|
30 | intact. This code must not be sold. |
---|
31 | |
---|
32 | \**********************************************************************/ |
---|
33 | |
---|
34 | /* }}} */ |
---|
35 | /* {{{ Readme First */ |
---|
36 | |
---|
37 | /**********************************************************************\ |
---|
38 | |
---|
39 | SUSAN Version 2l |
---|
40 | SUSAN = Smallest Univalue Segment Assimilating Nucleus |
---|
41 | |
---|
42 | Email: steve@fmrib.ox.ac.uk |
---|
43 | WWW: http://www.fmrib.ox.ac.uk/~steve |
---|
44 | |
---|
45 | Related paper: |
---|
46 | @article{Smith97, |
---|
47 | author = "Smith, S.M. and Brady, J.M.", |
---|
48 | title = "{SUSAN} - A New Approach to Low Level Image Processing", |
---|
49 | journal = "Int. Journal of Computer Vision", |
---|
50 | pages = "45--78", |
---|
51 | volume = "23", |
---|
52 | number = "1", |
---|
53 | month = "May", |
---|
54 | year = 1997} |
---|
55 | |
---|
56 | To be registered for automatic (bug) updates of SUSAN, send an email. |
---|
57 | |
---|
58 | Compile with: |
---|
59 | gcc -O4 -o susan susan2l.c -lm |
---|
60 | |
---|
61 | See following section for different machine information. Please |
---|
62 | report any bugs (and fixes). There are a few optional changes that |
---|
63 | can be made in the "defines" section which follows shortly. |
---|
64 | |
---|
65 | Usage: type "susan" to get usage. Only PGM format files can be input |
---|
66 | and output. Utilities such as the netpbm package and XV can be used |
---|
67 | to convert to and from other formats. Any size of image can be |
---|
68 | processed. |
---|
69 | |
---|
70 | This code is written using an emacs folding mode, making moving |
---|
71 | around the different sections very easy. This is why there are |
---|
72 | various marks within comments and why comments are indented. |
---|
73 | |
---|
74 | |
---|
75 | SUSAN QUICK: |
---|
76 | |
---|
77 | This version of the SUSAN corner finder does not do all the |
---|
78 | false-corner suppression and thus is faster and produced some false |
---|
79 | positives, particularly on strong edges. However, because there are |
---|
80 | less stages involving thresholds etc., the corners that are |
---|
81 | correctly reported are usually more stable than those reported with |
---|
82 | the full algorithm. Thus I recommend at least TRYING this algorithm |
---|
83 | for applications where stability is important, e.g., tracking. |
---|
84 | |
---|
85 | THRESHOLDS: |
---|
86 | |
---|
87 | There are two thresholds which can be set at run-time. These are the |
---|
88 | brightness threshold (t) and the distance threshold (d). |
---|
89 | |
---|
90 | SPATIAL CONTROL: d |
---|
91 | |
---|
92 | In SUSAN smoothing d controls the size of the Gaussian mask; its |
---|
93 | default is 4.0. Increasing d gives more smoothing. In edge finding, |
---|
94 | a fixed flat mask is used, either 37 pixels arranged in a "circle" |
---|
95 | (default), or a 3 by 3 mask which gives finer detail. In corner |
---|
96 | finding, only the larger 37 pixel mask is used; d is not |
---|
97 | variable. In smoothing, the flat 3 by 3 mask can be used instead of |
---|
98 | a larger Gaussian mask; this gives low smoothing and fast operation. |
---|
99 | |
---|
100 | BRIGHTNESS CONTROL: t |
---|
101 | |
---|
102 | In all three algorithms, t can be varied (default=20); this is the |
---|
103 | main threshold to be varied. It determines the maximum difference in |
---|
104 | greylevels between two pixels which allows them to be considered |
---|
105 | part of the same "region" in the image. Thus it can be reduced to |
---|
106 | give more edges or corners, i.e. to be more sensitive, and vice |
---|
107 | versa. In smoothing, reducing t gives less smoothing, and vice |
---|
108 | versa. Set t=10 for the test image available from the SUSAN web |
---|
109 | page. |
---|
110 | |
---|
111 | ITERATIONS: |
---|
112 | |
---|
113 | With SUSAN smoothing, more smoothing can also be obtained by |
---|
114 | iterating the algorithm several times. This has a different effect |
---|
115 | from varying d or t. |
---|
116 | |
---|
117 | FIXED MASKS: |
---|
118 | |
---|
119 | 37 pixel mask: ooo 3 by 3 mask: ooo |
---|
120 | ooooo ooo |
---|
121 | ooooooo ooo |
---|
122 | ooooooo |
---|
123 | ooooooo |
---|
124 | ooooo |
---|
125 | ooo |
---|
126 | |
---|
127 | CORNER ATTRIBUTES dx, dy and I |
---|
128 | (Only read this if you are interested in the C implementation or in |
---|
129 | using corner attributes, e.g., for corner matching) |
---|
130 | |
---|
131 | Corners reported in the corner list have attributes associated with |
---|
132 | them as well as positions. This is useful, for example, when |
---|
133 | attempting to match corners from one image to another, as these |
---|
134 | attributes can often be fairly unchanged between images. The |
---|
135 | attributes are dx, dy and I. I is the value of image brightness at |
---|
136 | the position of the corner. In the case of susan_corners_quick, dx |
---|
137 | and dy are the first order derivatives (differentials) of the image |
---|
138 | brightness in the x and y directions respectively, at the position |
---|
139 | of the corner. In the case of normal susan corner finding, dx and dy |
---|
140 | are scaled versions of the position of the centre of gravity of the |
---|
141 | USAN with respect to the centre pixel (nucleus). |
---|
142 | |
---|
143 | BRIGHTNESS FUNCTION LUT IMPLEMENTATION: |
---|
144 | (Only read this if you are interested in the C implementation) |
---|
145 | |
---|
146 | The SUSAN brightness function is implemented as a LUT |
---|
147 | (Look-Up-Table) for speed. The resulting pointer-based code is a |
---|
148 | little hard to follow, so here is a brief explanation. In |
---|
149 | setup_brightness_lut() the LUT is setup. This mallocs enough space |
---|
150 | for *bp and then repositions the pointer to the centre of the |
---|
151 | malloced space. The SUSAN function e^-(x^6) or e^-(x^2) is |
---|
152 | calculated and converted to a uchar in the range 0-100, for all |
---|
153 | possible image brightness differences (including negative |
---|
154 | ones). Thus bp[23] is the output for a brightness difference of 23 |
---|
155 | greylevels. In the SUSAN algorithms this LUT is used as follows: |
---|
156 | |
---|
157 | p=in + (i-3)*x_size + j - 1; |
---|
158 | p points to the first image pixel in the circular mask surrounding |
---|
159 | point (x,y). |
---|
160 | |
---|
161 | cp=bp + in[i*x_size+j]; |
---|
162 | cp points to a position in the LUT corresponding to the brightness |
---|
163 | of the centre pixel (x,y). |
---|
164 | |
---|
165 | now for every pixel within the mask surrounding (x,y), |
---|
166 | n+=*(cp-*p++); |
---|
167 | the brightness difference function is found by moving the cp pointer |
---|
168 | down by an amount equal to the value of the pixel pointed to by p, |
---|
169 | thus subtracting the two brightness values and performing the |
---|
170 | exponential function. This value is added to n, the running USAN |
---|
171 | area. |
---|
172 | |
---|
173 | in SUSAN smoothing, the variable height mask is implemented by |
---|
174 | multiplying the above by the moving mask pointer, reset for each new |
---|
175 | centre pixel. |
---|
176 | tmp = *dpt++ * *(cp-brightness); |
---|
177 | |
---|
178 | \**********************************************************************/ |
---|
179 | |
---|
180 | /* }}} */ |
---|
181 | /* {{{ Machine Information */ |
---|
182 | |
---|
183 | /**********************************************************************\ |
---|
184 | |
---|
185 | Success has been reported with the following: |
---|
186 | |
---|
187 | MACHINE OS COMPILER |
---|
188 | |
---|
189 | Sun 4.1.4 bundled C, gcc |
---|
190 | |
---|
191 | Next |
---|
192 | |
---|
193 | SGI IRIX SGI cc |
---|
194 | |
---|
195 | DEC Unix V3.2+ |
---|
196 | |
---|
197 | IBM RISC AIX gcc |
---|
198 | |
---|
199 | PC Borland 5.0 |
---|
200 | |
---|
201 | PC Linux gcc-2.6.3 |
---|
202 | |
---|
203 | PC Win32 Visual C++ 4.0 (Console Application) |
---|
204 | |
---|
205 | PC Win95 Visual C++ 5.0 (Console Application) |
---|
206 | Thanks to Niu Yongsheng <niuysbit@163.net>: |
---|
207 | Use the FOPENB option below |
---|
208 | |
---|
209 | PC DOS djgpp gnu C |
---|
210 | Thanks to Mark Pettovello <mpettove@umdsun2.umd.umich.edu>: |
---|
211 | Use the FOPENB option below |
---|
212 | |
---|
213 | HP HP-UX bundled cc |
---|
214 | Thanks to Brian Dixon <briand@hpcvsgen.cv.hp.com>: |
---|
215 | in ksh: |
---|
216 | export CCOPTS="-Aa -D_HPUX_SOURCE | -lM" |
---|
217 | cc -O3 -o susan susan2l.c |
---|
218 | |
---|
219 | \**********************************************************************/ |
---|
220 | |
---|
221 | /* }}} */ |
---|
222 | /* {{{ History */ |
---|
223 | |
---|
224 | /**********************************************************************\ |
---|
225 | |
---|
226 | SUSAN Version 2l, 12/2/99 |
---|
227 | Changed GNUDOS option to FOPENB. |
---|
228 | (Thanks to Niu Yongsheng <niuysbit@163.net>.) |
---|
229 | Took out redundant "sq=sq/2;". |
---|
230 | |
---|
231 | SUSAN Version 2k, 19/8/98: |
---|
232 | In corner finding: |
---|
233 | Changed if(yy<sq) {...} else if(xx<sq) {...} to |
---|
234 | if(yy<xx) {...} else {...} |
---|
235 | (Thanks to adq@cim.mcgill.edu - Alain Domercq.) |
---|
236 | |
---|
237 | SUSAN Version 2j, 22/10/97: |
---|
238 | Fixed (mask_size>x_size) etc. tests in smoothing. |
---|
239 | Added a couple of free() calls for cgx and cgy. |
---|
240 | (Thanks to geoffb@ucs.ed.ac.uk - Geoff Browitt.) |
---|
241 | |
---|
242 | SUSAN Version 2i, 21/7/97: |
---|
243 | Added information about corner attributes. |
---|
244 | |
---|
245 | SUSAN Version 2h, 16/12/96: |
---|
246 | Added principle (initial enhancement) option. |
---|
247 | |
---|
248 | SUSAN Version 2g, 2/7/96: |
---|
249 | Minor superficial changes to code. |
---|
250 | |
---|
251 | SUSAN Version 2f, 16/1/96: |
---|
252 | Added GNUDOS option (now called FOPENB; see options below). |
---|
253 | |
---|
254 | SUSAN Version 2e, 9/1/96: |
---|
255 | Added -b option. |
---|
256 | Fixed 1 pixel horizontal offset error for drawing edges. |
---|
257 | |
---|
258 | SUSAN Version 2d, 27/11/95: |
---|
259 | Fixed loading of certain PGM files in get_image (again!) |
---|
260 | |
---|
261 | SUSAN Version 2c, 22/11/95: |
---|
262 | Fixed loading of certain PGM files in get_image. |
---|
263 | (Thanks to qu@San-Jose.ate.slb.com - Gongyuan Qu.) |
---|
264 | |
---|
265 | SUSAN Version 2b, 9/11/95: |
---|
266 | removed "z==" error in edges routines. |
---|
267 | |
---|
268 | SUSAN Version 2a, 6/11/95: |
---|
269 | Removed a few unnecessary variable declarations. |
---|
270 | Added different machine information. |
---|
271 | Changed "header" in get_image to char. |
---|
272 | |
---|
273 | SUSAN Version 2, 1/11/95: first combined version able to take any |
---|
274 | image sizes. |
---|
275 | |
---|
276 | SUSAN "Versions 1", circa 1992: the various SUSAN algorithms were |
---|
277 | developed during my doctorate within different programs and for |
---|
278 | fixed image sizes. The algorithms themselves are virtually unaltered |
---|
279 | between "versions 1" and the combined program, version 2. |
---|
280 | |
---|
281 | \**********************************************************************/ |
---|
282 | |
---|
283 | /* }}} */ |
---|
284 | /* {{{ defines, includes and typedefs */ |
---|
285 | |
---|
286 | /* ********** Optional settings */ |
---|
287 | |
---|
288 | #ifndef PPC |
---|
289 | typedef int TOTAL_TYPE; /* this is faster for "int" but should be "float" for large d masks */ |
---|
290 | #else |
---|
291 | typedef float TOTAL_TYPE; /* for my PowerPC accelerator only */ |
---|
292 | #endif |
---|
293 | |
---|
294 | /*#define FOPENB*/ /* uncomment if using djgpp gnu C for DOS or certain Win95 compilers */ |
---|
295 | #define SEVEN_SUPP /* size for non-max corner suppression; SEVEN_SUPP or FIVE_SUPP */ |
---|
296 | #define MAX_CORNERS 15000 /* max corners per frame */ |
---|
297 | |
---|
298 | /* ********** Leave the rest - but you may need to remove one or both of sys/file.h and malloc.h lines */ |
---|
299 | |
---|
300 | #include <stdlib.h> |
---|
301 | #include <stdio.h> |
---|
302 | #include <string.h> |
---|
303 | #include <math.h> |
---|
304 | #include <sys/file.h> /* may want to remove this line */ |
---|
305 | #include <malloc.h> /* may want to remove this line */ |
---|
306 | #define exit_error(IFB,IFC) { fprintf(stderr,IFB,IFC); exit(0); } |
---|
307 | #define FTOI(a) ( (a) < 0 ? ((int)(a-0.5)) : ((int)(a+0.5)) ) |
---|
308 | typedef unsigned char uchar; |
---|
309 | typedef struct {int x,y,info, dx, dy, I;} CORNER_LIST[MAX_CORNERS]; |
---|
310 | |
---|
311 | /* }}} */ |
---|
312 | /* {{{ usage() */ |
---|
313 | |
---|
314 | void |
---|
315 | usage() |
---|
316 | { |
---|
317 | printf("Usage: susan <in.pgm> <out.pgm> [options]\n\n"); |
---|
318 | |
---|
319 | printf("-s : Smoothing mode (default)\n"); |
---|
320 | printf("-e : Edges mode\n"); |
---|
321 | printf("-c : Corners mode\n\n"); |
---|
322 | |
---|
323 | printf("See source code for more information about setting the thresholds\n"); |
---|
324 | printf("-t <thresh> : Brightness threshold, all modes (default=20)\n"); |
---|
325 | printf("-d <thresh> : Distance threshold, smoothing mode, (default=4) (use next option instead for flat 3x3 mask)\n"); |
---|
326 | printf("-3 : Use flat 3x3 mask, edges or smoothing mode\n"); |
---|
327 | printf("-n : No post-processing on the binary edge map (runs much faster); edges mode\n"); |
---|
328 | printf("-q : Use faster (and usually stabler) corner mode; edge-like corner suppression not carried out; corners mode\n"); |
---|
329 | printf("-b : Mark corners/edges with single black points instead of black with white border; corners or edges mode\n"); |
---|
330 | printf("-p : Output initial enhancement image only; corners or edges mode (default is edges mode)\n"); |
---|
331 | |
---|
332 | printf("\nSUSAN Version 2l (C) 1995-1997 Stephen Smith, DRA UK. steve@fmrib.ox.ac.uk\n"); |
---|
333 | |
---|
334 | exit(0); |
---|
335 | } |
---|
336 | |
---|
337 | /* }}} */ |
---|
338 | /* {{{ get_image(filename,in,x_size,y_size) */ |
---|
339 | |
---|
340 | /* {{{ int getint(fp) derived from XV */ |
---|
341 | |
---|
342 | int getint(fd) |
---|
343 | FILE *fd; |
---|
344 | { |
---|
345 | int c, i; |
---|
346 | char dummy[10000]; |
---|
347 | |
---|
348 | c = getc(fd); |
---|
349 | while (1) /* find next integer */ |
---|
350 | { |
---|
351 | if (c=='#') /* if we're at a comment, read to end of line */ |
---|
352 | fgets(dummy,9000,fd); |
---|
353 | if (c==EOF) |
---|
354 | exit_error("Image %s not binary PGM.\n","is"); |
---|
355 | if (c>='0' && c<='9') |
---|
356 | break; /* found what we were looking for */ |
---|
357 | c = getc(fd); |
---|
358 | } |
---|
359 | |
---|
360 | /* we're at the start of a number, continue until we hit a non-number */ |
---|
361 | i = 0; |
---|
362 | while (1) { |
---|
363 | i = (i*10) + (c - '0'); |
---|
364 | c = getc(fd); |
---|
365 | if (c==EOF) return (i); |
---|
366 | if (c<'0' || c>'9') break; |
---|
367 | } |
---|
368 | |
---|
369 | return (i); |
---|
370 | } |
---|
371 | |
---|
372 | /* }}} */ |
---|
373 | |
---|
374 | void get_image(filename,in,x_size,y_size) |
---|
375 | char filename[200]; |
---|
376 | unsigned char **in; |
---|
377 | int *x_size, *y_size; |
---|
378 | { |
---|
379 | FILE *fd; |
---|
380 | char header [100]; |
---|
381 | int tmp; |
---|
382 | |
---|
383 | #ifdef FOPENB |
---|
384 | if ((fd=fopen(filename,"rb")) == NULL) |
---|
385 | #else |
---|
386 | if ((fd=fopen(filename,"r")) == NULL) |
---|
387 | #endif |
---|
388 | exit_error("Can't input image %s.\n",filename); |
---|
389 | |
---|
390 | /* {{{ read header */ |
---|
391 | |
---|
392 | header[0]=fgetc(fd); |
---|
393 | header[1]=fgetc(fd); |
---|
394 | if(!(header[0]=='P' && header[1]=='5')) |
---|
395 | exit_error("Image %s does not have binary PGM header.\n",filename); |
---|
396 | |
---|
397 | *x_size = getint(fd); |
---|
398 | *y_size = getint(fd); |
---|
399 | tmp = getint(fd); |
---|
400 | |
---|
401 | /* }}} */ |
---|
402 | |
---|
403 | *in = (uchar *) malloc(*x_size * *y_size); |
---|
404 | |
---|
405 | if (fread(*in,1,*x_size * *y_size,fd) == 0) |
---|
406 | exit_error("Image %s is wrong size.\n",filename); |
---|
407 | |
---|
408 | fclose(fd); |
---|
409 | } |
---|
410 | |
---|
411 | /* }}} */ |
---|
412 | /* {{{ put_image(filename,in,x_size,y_size) */ |
---|
413 | |
---|
414 | void |
---|
415 | put_image(filename,in,x_size,y_size) |
---|
416 | char filename [100], |
---|
417 | *in; |
---|
418 | int x_size, |
---|
419 | y_size; |
---|
420 | { |
---|
421 | FILE *fd; |
---|
422 | |
---|
423 | #ifdef FOPENB |
---|
424 | if ((fd=fopen(filename,"wb")) == NULL) |
---|
425 | #else |
---|
426 | if ((fd=fopen(filename,"w")) == NULL) |
---|
427 | #endif |
---|
428 | exit_error("Can't output image%s.\n",filename); |
---|
429 | |
---|
430 | fprintf(fd,"P5\n"); |
---|
431 | fprintf(fd,"%d %d\n",x_size,y_size); |
---|
432 | fprintf(fd,"255\n"); |
---|
433 | |
---|
434 | if (fwrite(in,x_size*y_size,1,fd) != 1) |
---|
435 | exit_error("Can't write image %s.\n",filename); |
---|
436 | |
---|
437 | fclose(fd); |
---|
438 | } |
---|
439 | |
---|
440 | /* }}} */ |
---|
441 | /* {{{ int_to_uchar(r,in,size) */ |
---|
442 | |
---|
443 | void |
---|
444 | int_to_uchar(r,in,size) |
---|
445 | uchar *in; |
---|
446 | int *r, size; |
---|
447 | { |
---|
448 | int i, |
---|
449 | max_r=r[0], |
---|
450 | min_r=r[0]; |
---|
451 | |
---|
452 | for (i=0; i<size; i++) |
---|
453 | { |
---|
454 | if ( r[i] > max_r ) |
---|
455 | max_r=r[i]; |
---|
456 | if ( r[i] < min_r ) |
---|
457 | min_r=r[i]; |
---|
458 | } |
---|
459 | |
---|
460 | /*printf("min=%d max=%d\n",min_r,max_r);*/ |
---|
461 | |
---|
462 | max_r-=min_r; |
---|
463 | |
---|
464 | for (i=0; i<size; i++) |
---|
465 | in[i] = (uchar)((int)((int)(r[i]-min_r)*255)/max_r); |
---|
466 | } |
---|
467 | |
---|
468 | /* }}} */ |
---|
469 | /* {{{ setup_brightness_lut(bp,thresh,form) */ |
---|
470 | |
---|
471 | void setup_brightness_lut(bp,thresh,form) |
---|
472 | uchar **bp; |
---|
473 | int thresh, form; |
---|
474 | { |
---|
475 | int k; |
---|
476 | float temp; |
---|
477 | |
---|
478 | *bp=(unsigned char *)malloc(516); |
---|
479 | *bp=*bp+258; |
---|
480 | |
---|
481 | for(k=-256;k<257;k++) |
---|
482 | { |
---|
483 | temp=((float)k)/((float)thresh); |
---|
484 | temp=temp*temp; |
---|
485 | if (form==6) |
---|
486 | temp=temp*temp*temp; |
---|
487 | temp=100.0*exp(-temp); |
---|
488 | *(*bp+k)= (uchar)temp; |
---|
489 | } |
---|
490 | } |
---|
491 | |
---|
492 | /* }}} */ |
---|
493 | /* {{{ susan principle */ |
---|
494 | |
---|
495 | /* {{{ susan_principle(in,r,bp,max_no,x_size,y_size) */ |
---|
496 | |
---|
497 | void |
---|
498 | susan_principle(in,r,bp,max_no,x_size,y_size) |
---|
499 | uchar *in, *bp; |
---|
500 | int *r, max_no, x_size, y_size; |
---|
501 | { |
---|
502 | int i, j, n; |
---|
503 | uchar *p,*cp; |
---|
504 | |
---|
505 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
506 | |
---|
507 | for (i=3;i<y_size-3;i++) |
---|
508 | for (j=3;j<x_size-3;j++) |
---|
509 | { |
---|
510 | n=100; |
---|
511 | p=in + (i-3)*x_size + j - 1; |
---|
512 | cp=bp + in[i*x_size+j]; |
---|
513 | |
---|
514 | n+=*(cp-*p++); |
---|
515 | n+=*(cp-*p++); |
---|
516 | n+=*(cp-*p); |
---|
517 | p+=x_size-3; |
---|
518 | |
---|
519 | n+=*(cp-*p++); |
---|
520 | n+=*(cp-*p++); |
---|
521 | n+=*(cp-*p++); |
---|
522 | n+=*(cp-*p++); |
---|
523 | n+=*(cp-*p); |
---|
524 | p+=x_size-5; |
---|
525 | |
---|
526 | n+=*(cp-*p++); |
---|
527 | n+=*(cp-*p++); |
---|
528 | n+=*(cp-*p++); |
---|
529 | n+=*(cp-*p++); |
---|
530 | n+=*(cp-*p++); |
---|
531 | n+=*(cp-*p++); |
---|
532 | n+=*(cp-*p); |
---|
533 | p+=x_size-6; |
---|
534 | |
---|
535 | n+=*(cp-*p++); |
---|
536 | n+=*(cp-*p++); |
---|
537 | n+=*(cp-*p); |
---|
538 | p+=2; |
---|
539 | n+=*(cp-*p++); |
---|
540 | n+=*(cp-*p++); |
---|
541 | n+=*(cp-*p); |
---|
542 | p+=x_size-6; |
---|
543 | |
---|
544 | n+=*(cp-*p++); |
---|
545 | n+=*(cp-*p++); |
---|
546 | n+=*(cp-*p++); |
---|
547 | n+=*(cp-*p++); |
---|
548 | n+=*(cp-*p++); |
---|
549 | n+=*(cp-*p++); |
---|
550 | n+=*(cp-*p); |
---|
551 | p+=x_size-5; |
---|
552 | |
---|
553 | n+=*(cp-*p++); |
---|
554 | n+=*(cp-*p++); |
---|
555 | n+=*(cp-*p++); |
---|
556 | n+=*(cp-*p++); |
---|
557 | n+=*(cp-*p); |
---|
558 | p+=x_size-3; |
---|
559 | |
---|
560 | n+=*(cp-*p++); |
---|
561 | n+=*(cp-*p++); |
---|
562 | n+=*(cp-*p); |
---|
563 | |
---|
564 | if (n<=max_no) |
---|
565 | r[i*x_size+j] = max_no - n; |
---|
566 | } |
---|
567 | } |
---|
568 | |
---|
569 | /* }}} */ |
---|
570 | /* {{{ susan_principle_small(in,r,bp,max_no,x_size,y_size) */ |
---|
571 | |
---|
572 | void |
---|
573 | susan_principle_small(in,r,bp,max_no,x_size,y_size) |
---|
574 | uchar *in, *bp; |
---|
575 | int *r, max_no, x_size, y_size; |
---|
576 | { |
---|
577 | int i, j, n; |
---|
578 | uchar *p,*cp; |
---|
579 | |
---|
580 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
581 | |
---|
582 | max_no = 730; /* ho hum ;) */ |
---|
583 | |
---|
584 | for (i=1;i<y_size-1;i++) |
---|
585 | for (j=1;j<x_size-1;j++) |
---|
586 | { |
---|
587 | n=100; |
---|
588 | p=in + (i-1)*x_size + j - 1; |
---|
589 | cp=bp + in[i*x_size+j]; |
---|
590 | |
---|
591 | n+=*(cp-*p++); |
---|
592 | n+=*(cp-*p++); |
---|
593 | n+=*(cp-*p); |
---|
594 | p+=x_size-2; |
---|
595 | |
---|
596 | n+=*(cp-*p); |
---|
597 | p+=2; |
---|
598 | n+=*(cp-*p); |
---|
599 | p+=x_size-2; |
---|
600 | |
---|
601 | n+=*(cp-*p++); |
---|
602 | n+=*(cp-*p++); |
---|
603 | n+=*(cp-*p); |
---|
604 | |
---|
605 | if (n<=max_no) |
---|
606 | r[i*x_size+j] = max_no - n; |
---|
607 | } |
---|
608 | } |
---|
609 | |
---|
610 | /* }}} */ |
---|
611 | |
---|
612 | /* }}} */ |
---|
613 | /* {{{ smoothing */ |
---|
614 | |
---|
615 | /* {{{ median(in,i,j,x_size) */ |
---|
616 | |
---|
617 | uchar median(in,i,j,x_size) |
---|
618 | uchar *in; |
---|
619 | int i, j, x_size; |
---|
620 | { |
---|
621 | int p[8],k,l,tmp; |
---|
622 | |
---|
623 | p[0]=in[(i-1)*x_size+j-1]; |
---|
624 | p[1]=in[(i-1)*x_size+j ]; |
---|
625 | p[2]=in[(i-1)*x_size+j+1]; |
---|
626 | p[3]=in[(i )*x_size+j-1]; |
---|
627 | p[4]=in[(i )*x_size+j+1]; |
---|
628 | p[5]=in[(i+1)*x_size+j-1]; |
---|
629 | p[6]=in[(i+1)*x_size+j ]; |
---|
630 | p[7]=in[(i+1)*x_size+j+1]; |
---|
631 | |
---|
632 | for(k=0; k<7; k++) |
---|
633 | for(l=0; l<(7-k); l++) |
---|
634 | if (p[l]>p[l+1]) |
---|
635 | { |
---|
636 | tmp=p[l]; p[l]=p[l+1]; p[l+1]=tmp; |
---|
637 | } |
---|
638 | |
---|
639 | return( (p[3]+p[4]) / 2 ); |
---|
640 | } |
---|
641 | |
---|
642 | /* }}} */ |
---|
643 | /* {{{ enlarge(in,tmp_image,x_size,y_size,border) */ |
---|
644 | |
---|
645 | /* this enlarges "in" so that borders can be dealt with easily */ |
---|
646 | |
---|
647 | void |
---|
648 | enlarge(in,tmp_image,x_size,y_size,border) |
---|
649 | uchar **in; |
---|
650 | uchar *tmp_image; |
---|
651 | int *x_size, *y_size, border; |
---|
652 | { |
---|
653 | int i, j; |
---|
654 | |
---|
655 | for(i=0; i<*y_size; i++) /* copy *in into tmp_image */ |
---|
656 | memcpy(tmp_image+(i+border)*(*x_size+2*border)+border, *in+i* *x_size, *x_size); |
---|
657 | |
---|
658 | for(i=0; i<border; i++) /* copy top and bottom rows; invert as many as necessary */ |
---|
659 | { |
---|
660 | memcpy(tmp_image+(border-1-i)*(*x_size+2*border)+border,*in+i* *x_size,*x_size); |
---|
661 | memcpy(tmp_image+(*y_size+border+i)*(*x_size+2*border)+border,*in+(*y_size-i-1)* *x_size,*x_size); |
---|
662 | } |
---|
663 | |
---|
664 | for(i=0; i<border; i++) /* copy left and right columns */ |
---|
665 | for(j=0; j<*y_size+2*border; j++) |
---|
666 | { |
---|
667 | tmp_image[j*(*x_size+2*border)+border-1-i]=tmp_image[j*(*x_size+2*border)+border+i]; |
---|
668 | tmp_image[j*(*x_size+2*border)+ *x_size+border+i]=tmp_image[j*(*x_size+2*border)+ *x_size+border-1-i]; |
---|
669 | } |
---|
670 | |
---|
671 | *x_size+=2*border; /* alter image size */ |
---|
672 | *y_size+=2*border; |
---|
673 | *in=tmp_image; /* repoint in */ |
---|
674 | } |
---|
675 | |
---|
676 | /* }}} */ |
---|
677 | /* {{{ void susan_smoothing(three_by_three,in,dt,x_size,y_size,bp) */ |
---|
678 | |
---|
679 | void susan_smoothing(three_by_three,in,dt,x_size,y_size,bp) |
---|
680 | int three_by_three, x_size, y_size; |
---|
681 | uchar *in, *bp; |
---|
682 | float dt; |
---|
683 | { |
---|
684 | /* {{{ vars */ |
---|
685 | |
---|
686 | float temp; |
---|
687 | int n_max, increment, mask_size, |
---|
688 | i,j,x,y,area,brightness,tmp,centre; |
---|
689 | uchar *ip, *dp, *dpt, *cp, *out=in, |
---|
690 | *tmp_image; |
---|
691 | TOTAL_TYPE total; |
---|
692 | |
---|
693 | /* }}} */ |
---|
694 | |
---|
695 | /* {{{ setup larger image and border sizes */ |
---|
696 | |
---|
697 | if (three_by_three==0) |
---|
698 | mask_size = ((int)(1.5 * dt)) + 1; |
---|
699 | else |
---|
700 | mask_size = 1; |
---|
701 | |
---|
702 | total=0.1; /* test for total's type */ |
---|
703 | if ( (dt>15) && (total==0) ) |
---|
704 | { |
---|
705 | printf("Distance_thresh (%f) too big for integer arithmetic.\n",dt); |
---|
706 | printf("Either reduce it to <=15 or recompile with variable \"total\"\n"); |
---|
707 | printf("as a float: see top \"defines\" section.\n"); |
---|
708 | exit(0); |
---|
709 | } |
---|
710 | |
---|
711 | if ( (2*mask_size+1>x_size) || (2*mask_size+1>y_size) ) |
---|
712 | { |
---|
713 | printf("Mask size (1.5*distance_thresh+1=%d) too big for image (%dx%d).\n",mask_size,x_size,y_size); |
---|
714 | exit(0); |
---|
715 | } |
---|
716 | |
---|
717 | tmp_image = (uchar *) malloc( (x_size+mask_size*2) * (y_size+mask_size*2) ); |
---|
718 | enlarge(&in,tmp_image,&x_size,&y_size,mask_size); |
---|
719 | |
---|
720 | /* }}} */ |
---|
721 | |
---|
722 | if (three_by_three==0) |
---|
723 | { /* large Gaussian masks */ |
---|
724 | /* {{{ setup distance lut */ |
---|
725 | |
---|
726 | n_max = (mask_size*2) + 1; |
---|
727 | |
---|
728 | increment = x_size - n_max; |
---|
729 | |
---|
730 | dp = (unsigned char *)malloc(n_max*n_max); |
---|
731 | dpt = dp; |
---|
732 | temp = -(dt*dt); |
---|
733 | |
---|
734 | for(i=-mask_size; i<=mask_size; i++) |
---|
735 | for(j=-mask_size; j<=mask_size; j++) |
---|
736 | { |
---|
737 | x = (int) (100.0 * exp( ((float)((i*i)+(j*j))) / temp )); |
---|
738 | *dpt++ = (unsigned char)x; |
---|
739 | } |
---|
740 | |
---|
741 | /* }}} */ |
---|
742 | /* {{{ main section */ |
---|
743 | |
---|
744 | for (i=mask_size;i<y_size-mask_size;i++) |
---|
745 | { |
---|
746 | for (j=mask_size;j<x_size-mask_size;j++) |
---|
747 | { |
---|
748 | area = 0; |
---|
749 | total = 0; |
---|
750 | dpt = dp; |
---|
751 | ip = in + ((i-mask_size)*x_size) + j - mask_size; |
---|
752 | centre = in[i*x_size+j]; |
---|
753 | cp = bp + centre; |
---|
754 | for(y=-mask_size; y<=mask_size; y++) |
---|
755 | { |
---|
756 | for(x=-mask_size; x<=mask_size; x++) |
---|
757 | { |
---|
758 | brightness = *ip++; |
---|
759 | tmp = *dpt++ * *(cp-brightness); |
---|
760 | area += tmp; |
---|
761 | total += tmp * brightness; |
---|
762 | } |
---|
763 | ip += increment; |
---|
764 | } |
---|
765 | tmp = area-10000; |
---|
766 | if (tmp==0) |
---|
767 | *out++=median(in,i,j,x_size); |
---|
768 | else |
---|
769 | *out++=((total-(centre*10000))/tmp); |
---|
770 | } |
---|
771 | } |
---|
772 | |
---|
773 | /* }}} */ |
---|
774 | } |
---|
775 | else |
---|
776 | { /* 3x3 constant mask */ |
---|
777 | /* {{{ main section */ |
---|
778 | |
---|
779 | for (i=1;i<y_size-1;i++) |
---|
780 | { |
---|
781 | for (j=1;j<x_size-1;j++) |
---|
782 | { |
---|
783 | area = 0; |
---|
784 | total = 0; |
---|
785 | ip = in + ((i-1)*x_size) + j - 1; |
---|
786 | centre = in[i*x_size+j]; |
---|
787 | cp = bp + centre; |
---|
788 | |
---|
789 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
790 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
791 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
792 | ip += x_size-2; |
---|
793 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
794 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
795 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
796 | ip += x_size-2; |
---|
797 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
798 | brightness=*ip++; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
799 | brightness=*ip; tmp=*(cp-brightness); area += tmp; total += tmp * brightness; |
---|
800 | |
---|
801 | tmp = area-100; |
---|
802 | if (tmp==0) |
---|
803 | *out++=median(in,i,j,x_size); |
---|
804 | else |
---|
805 | *out++=(total-(centre*100))/tmp; |
---|
806 | } |
---|
807 | } |
---|
808 | |
---|
809 | /* }}} */ |
---|
810 | } |
---|
811 | } |
---|
812 | |
---|
813 | /* }}} */ |
---|
814 | |
---|
815 | /* }}} */ |
---|
816 | /* {{{ edges */ |
---|
817 | |
---|
818 | /* {{{ edge_draw(in,corner_list,drawing_mode) */ |
---|
819 | |
---|
820 | void |
---|
821 | edge_draw(in,mid,x_size,y_size,drawing_mode) |
---|
822 | uchar *in, *mid; |
---|
823 | int x_size, y_size, drawing_mode; |
---|
824 | { |
---|
825 | int i; |
---|
826 | uchar *inp, *midp; |
---|
827 | |
---|
828 | if (drawing_mode==0) |
---|
829 | { |
---|
830 | /* mark 3x3 white block around each edge point */ |
---|
831 | midp=mid; |
---|
832 | for (i=0; i<x_size*y_size; i++) |
---|
833 | { |
---|
834 | if (*midp<8) |
---|
835 | { |
---|
836 | inp = in + (midp - mid) - x_size - 1; |
---|
837 | *inp++=255; *inp++=255; *inp=255; inp+=x_size-2; |
---|
838 | *inp++=255; *inp++; *inp=255; inp+=x_size-2; |
---|
839 | *inp++=255; *inp++=255; *inp=255; |
---|
840 | } |
---|
841 | midp++; |
---|
842 | } |
---|
843 | } |
---|
844 | |
---|
845 | /* now mark 1 black pixel at each edge point */ |
---|
846 | midp=mid; |
---|
847 | for (i=0; i<x_size*y_size; i++) |
---|
848 | { |
---|
849 | if (*midp<8) |
---|
850 | *(in + (midp - mid)) = 0; |
---|
851 | midp++; |
---|
852 | } |
---|
853 | } |
---|
854 | |
---|
855 | /* }}} */ |
---|
856 | /* {{{ susan_thin(r,mid,x_size,y_size) */ |
---|
857 | |
---|
858 | /* only one pass is needed as i,j are decremented if necessary to go |
---|
859 | back and do bits again */ |
---|
860 | |
---|
861 | void |
---|
862 | susan_thin(r,mid,x_size,y_size) |
---|
863 | uchar *mid; |
---|
864 | int *r, x_size, y_size; |
---|
865 | { |
---|
866 | int l[9], centre, //nlinks, npieces, |
---|
867 | b01, b12, b21, b10, |
---|
868 | p1, p2, p3, p4, |
---|
869 | b00, b02, b20, b22, |
---|
870 | m, n, a=0, b=0, x, y, i, j; |
---|
871 | uchar *mp; |
---|
872 | |
---|
873 | for (i=4;i<y_size-4;i++) |
---|
874 | for (j=4;j<x_size-4;j++) |
---|
875 | if (mid[i*x_size+j]<8) |
---|
876 | { |
---|
877 | centre = r[i*x_size+j]; |
---|
878 | /* {{{ count number of neighbours */ |
---|
879 | |
---|
880 | mp=mid + (i-1)*x_size + j-1; |
---|
881 | |
---|
882 | n = (*mp<8) + |
---|
883 | (*(mp+1)<8) + |
---|
884 | (*(mp+2)<8) + |
---|
885 | (*(mp+x_size)<8) + |
---|
886 | (*(mp+x_size+2)<8) + |
---|
887 | (*(mp+x_size+x_size)<8) + |
---|
888 | (*(mp+x_size+x_size+1)<8) + |
---|
889 | (*(mp+x_size+x_size+2)<8); |
---|
890 | |
---|
891 | /* }}} */ |
---|
892 | /* {{{ n==0 no neighbours - remove point */ |
---|
893 | |
---|
894 | if (n==0) |
---|
895 | mid[i*x_size+j]=100; |
---|
896 | |
---|
897 | /* }}} */ |
---|
898 | /* {{{ n==1 - extend line if I can */ |
---|
899 | |
---|
900 | /* extension is only allowed a few times - the value of mid is used to control this */ |
---|
901 | |
---|
902 | if ( (n==1) && (mid[i*x_size+j]<6) ) |
---|
903 | { |
---|
904 | /* find maximum neighbour weighted in direction opposite the |
---|
905 | neighbour already present. e.g. |
---|
906 | have: O O O weight r by 0 2 3 |
---|
907 | X X O 0 0 4 |
---|
908 | O O O 0 2 3 */ |
---|
909 | |
---|
910 | l[0]=r[(i-1)*x_size+j-1]; l[1]=r[(i-1)*x_size+j]; l[2]=r[(i-1)*x_size+j+1]; |
---|
911 | l[3]=r[(i )*x_size+j-1]; l[4]=0; l[5]=r[(i )*x_size+j+1]; |
---|
912 | l[6]=r[(i+1)*x_size+j-1]; l[7]=r[(i+1)*x_size+j]; l[8]=r[(i+1)*x_size+j+1]; |
---|
913 | |
---|
914 | if (mid[(i-1)*x_size+j-1]<8) { l[0]=0; l[1]=0; l[3]=0; l[2]*=2; |
---|
915 | l[6]*=2; l[5]*=3; l[7]*=3; l[8]*=4; } |
---|
916 | else { if (mid[(i-1)*x_size+j]<8) { l[1]=0; l[0]=0; l[2]=0; l[3]*=2; |
---|
917 | l[5]*=2; l[6]*=3; l[8]*=3; l[7]*=4; } |
---|
918 | else { if (mid[(i-1)*x_size+j+1]<8) { l[2]=0; l[1]=0; l[5]=0; l[0]*=2; |
---|
919 | l[8]*=2; l[3]*=3; l[7]*=3; l[6]*=4; } |
---|
920 | else { if (mid[(i)*x_size+j-1]<8) { l[3]=0; l[0]=0; l[6]=0; l[1]*=2; |
---|
921 | l[7]*=2; l[2]*=3; l[8]*=3; l[5]*=4; } |
---|
922 | else { if (mid[(i)*x_size+j+1]<8) { l[5]=0; l[2]=0; l[8]=0; l[1]*=2; |
---|
923 | l[7]*=2; l[0]*=3; l[6]*=3; l[3]*=4; } |
---|
924 | else { if (mid[(i+1)*x_size+j-1]<8) { l[6]=0; l[3]=0; l[7]=0; l[0]*=2; |
---|
925 | l[8]*=2; l[1]*=3; l[5]*=3; l[2]*=4; } |
---|
926 | else { if (mid[(i+1)*x_size+j]<8) { l[7]=0; l[6]=0; l[8]=0; l[3]*=2; |
---|
927 | l[5]*=2; l[0]*=3; l[2]*=3; l[1]*=4; } |
---|
928 | else { if (mid[(i+1)*x_size+j+1]<8) { l[8]=0; l[5]=0; l[7]=0; l[6]*=2; |
---|
929 | l[2]*=2; l[1]*=3; l[3]*=3; l[0]*=4; } }}}}}}} |
---|
930 | |
---|
931 | m=0; /* find the highest point */ |
---|
932 | for(y=0; y<3; y++) |
---|
933 | for(x=0; x<3; x++) |
---|
934 | if (l[y+y+y+x]>m) { m=l[y+y+y+x]; a=y; b=x; } |
---|
935 | |
---|
936 | if (m>0) |
---|
937 | { |
---|
938 | if (mid[i*x_size+j]<4) |
---|
939 | mid[(i+a-1)*x_size+j+b-1] = 4; |
---|
940 | else |
---|
941 | mid[(i+a-1)*x_size+j+b-1] = mid[i*x_size+j]+1; |
---|
942 | if ( (a+a+b) < 3 ) /* need to jump back in image */ |
---|
943 | { |
---|
944 | i+=a-1; |
---|
945 | j+=b-2; |
---|
946 | if (i<4) i=4; |
---|
947 | if (j<4) j=4; |
---|
948 | } |
---|
949 | } |
---|
950 | } |
---|
951 | |
---|
952 | /* }}} */ |
---|
953 | /* {{{ n==2 */ |
---|
954 | |
---|
955 | if (n==2) |
---|
956 | { |
---|
957 | /* put in a bit here to straighten edges */ |
---|
958 | b00 = mid[(i-1)*x_size+j-1]<8; /* corners of 3x3 */ |
---|
959 | b02 = mid[(i-1)*x_size+j+1]<8; |
---|
960 | b20 = mid[(i+1)*x_size+j-1]<8; |
---|
961 | b22 = mid[(i+1)*x_size+j+1]<8; |
---|
962 | if ( ((b00+b02+b20+b22)==2) && ((b00|b22)&(b02|b20))) |
---|
963 | { /* case: move a point back into line. |
---|
964 | e.g. X O X CAN become X X X |
---|
965 | O X O O O O |
---|
966 | O O O O O O */ |
---|
967 | if (b00) |
---|
968 | { |
---|
969 | if (b02) { x=0; y=-1; } |
---|
970 | else { x=-1; y=0; } |
---|
971 | } |
---|
972 | else |
---|
973 | { |
---|
974 | if (b02) { x=1; y=0; } |
---|
975 | else { x=0; y=1; } |
---|
976 | } |
---|
977 | if (((float)r[(i+y)*x_size+j+x]/(float)centre) > 0.7) |
---|
978 | { |
---|
979 | if ( ( (x==0) && (mid[(i+(2*y))*x_size+j]>7) && (mid[(i+(2*y))*x_size+j-1]>7) && (mid[(i+(2*y))*x_size+j+1]>7) ) || |
---|
980 | ( (y==0) && (mid[(i)*x_size+j+(2*x)]>7) && (mid[(i+1)*x_size+j+(2*x)]>7) && (mid[(i-1)*x_size+j+(2*x)]>7) ) ) |
---|
981 | { |
---|
982 | mid[(i)*x_size+j]=100; |
---|
983 | mid[(i+y)*x_size+j+x]=3; /* no jumping needed */ |
---|
984 | } |
---|
985 | } |
---|
986 | } |
---|
987 | else |
---|
988 | { |
---|
989 | b01 = mid[(i-1)*x_size+j ]<8; |
---|
990 | b12 = mid[(i )*x_size+j+1]<8; |
---|
991 | b21 = mid[(i+1)*x_size+j ]<8; |
---|
992 | b10 = mid[(i )*x_size+j-1]<8; |
---|
993 | /* {{{ right angle ends - not currently used */ |
---|
994 | |
---|
995 | #ifdef IGNORETHIS |
---|
996 | if ( (b00&b01)|(b00&b10)|(b02&b01)|(b02&b12)|(b20&b10)|(b20&b21)|(b22&b21)|(b22&b12) ) |
---|
997 | { /* case; right angle ends. clean up. |
---|
998 | e.g.; X X O CAN become X X O |
---|
999 | O X O O O O |
---|
1000 | O O O O O O */ |
---|
1001 | if ( ((b01)&(mid[(i-2)*x_size+j-1]>7)&(mid[(i-2)*x_size+j]>7)&(mid[(i-2)*x_size+j+1]>7)& |
---|
1002 | ((b00&((2*r[(i-1)*x_size+j+1])>centre))|(b02&((2*r[(i-1)*x_size+j-1])>centre)))) | |
---|
1003 | ((b10)&(mid[(i-1)*x_size+j-2]>7)&(mid[(i)*x_size+j-2]>7)&(mid[(i+1)*x_size+j-2]>7)& |
---|
1004 | ((b00&((2*r[(i+1)*x_size+j-1])>centre))|(b20&((2*r[(i-1)*x_size+j-1])>centre)))) | |
---|
1005 | ((b12)&(mid[(i-1)*x_size+j+2]>7)&(mid[(i)*x_size+j+2]>7)&(mid[(i+1)*x_size+j+2]>7)& |
---|
1006 | ((b02&((2*r[(i+1)*x_size+j+1])>centre))|(b22&((2*r[(i-1)*x_size+j+1])>centre)))) | |
---|
1007 | ((b21)&(mid[(i+2)*x_size+j-1]>7)&(mid[(i+2)*x_size+j]>7)&(mid[(i+2)*x_size+j+1]>7)& |
---|
1008 | ((b20&((2*r[(i+1)*x_size+j+1])>centre))|(b22&((2*r[(i+1)*x_size+j-1])>centre)))) ) |
---|
1009 | { |
---|
1010 | mid[(i)*x_size+j]=100; |
---|
1011 | if (b10&b20) j-=2; |
---|
1012 | if (b00|b01|b02) { i--; j-=2; } |
---|
1013 | } |
---|
1014 | } |
---|
1015 | #endif |
---|
1016 | |
---|
1017 | /* }}} */ |
---|
1018 | if ( ((b01+b12+b21+b10)==2) && ((b10|b12)&(b01|b21)) && |
---|
1019 | ((b01&((mid[(i-2)*x_size+j-1]<8)|(mid[(i-2)*x_size+j+1]<8)))|(b10&((mid[(i-1)*x_size+j-2]<8)|(mid[(i+1)*x_size+j-2]<8)))| |
---|
1020 | (b12&((mid[(i-1)*x_size+j+2]<8)|(mid[(i+1)*x_size+j+2]<8)))|(b21&((mid[(i+2)*x_size+j-1]<8)|(mid[(i+2)*x_size+j+1]<8)))) ) |
---|
1021 | { /* case; clears odd right angles. |
---|
1022 | e.g.; O O O becomes O O O |
---|
1023 | X X O X O O |
---|
1024 | O X O O X O */ |
---|
1025 | mid[(i)*x_size+j]=100; |
---|
1026 | i--; /* jump back */ |
---|
1027 | j-=2; |
---|
1028 | if (i<4) i=4; |
---|
1029 | if (j<4) j=4; |
---|
1030 | } |
---|
1031 | } |
---|
1032 | } |
---|
1033 | |
---|
1034 | /* }}} */ |
---|
1035 | /* {{{ n>2 the thinning is done here without breaking connectivity */ |
---|
1036 | |
---|
1037 | if (n>2) |
---|
1038 | { |
---|
1039 | b01 = mid[(i-1)*x_size+j ]<8; |
---|
1040 | b12 = mid[(i )*x_size+j+1]<8; |
---|
1041 | b21 = mid[(i+1)*x_size+j ]<8; |
---|
1042 | b10 = mid[(i )*x_size+j-1]<8; |
---|
1043 | if((b01+b12+b21+b10)>1) |
---|
1044 | { |
---|
1045 | b00 = mid[(i-1)*x_size+j-1]<8; |
---|
1046 | b02 = mid[(i-1)*x_size+j+1]<8; |
---|
1047 | b20 = mid[(i+1)*x_size+j-1]<8; |
---|
1048 | b22 = mid[(i+1)*x_size+j+1]<8; |
---|
1049 | p1 = b00 | b01; |
---|
1050 | p2 = b02 | b12; |
---|
1051 | p3 = b22 | b21; |
---|
1052 | p4 = b20 | b10; |
---|
1053 | |
---|
1054 | if( ((p1 + p2 + p3 + p4) - ((b01 & p2)+(b12 & p3)+(b21 & p4)+(b10 & p1))) < 2) |
---|
1055 | { |
---|
1056 | mid[(i)*x_size+j]=100; |
---|
1057 | i--; |
---|
1058 | j-=2; |
---|
1059 | if (i<4) i=4; |
---|
1060 | if (j<4) j=4; |
---|
1061 | } |
---|
1062 | } |
---|
1063 | } |
---|
1064 | |
---|
1065 | /* }}} */ |
---|
1066 | } |
---|
1067 | } |
---|
1068 | |
---|
1069 | /* }}} */ |
---|
1070 | /* {{{ susan_edges(in,r,sf,max_no,out) */ |
---|
1071 | |
---|
1072 | void |
---|
1073 | susan_edges(in,r,mid,bp,max_no,x_size,y_size) |
---|
1074 | uchar *in, *bp, *mid; |
---|
1075 | int *r, max_no, x_size, y_size; |
---|
1076 | { |
---|
1077 | float z; |
---|
1078 | int do_symmetry, i, j, m, n, a, b, x, y, w; |
---|
1079 | uchar c,*p,*cp; |
---|
1080 | |
---|
1081 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
1082 | |
---|
1083 | for (i=3;i<y_size-3;i++) |
---|
1084 | for (j=3;j<x_size-3;j++) |
---|
1085 | { |
---|
1086 | n=100; |
---|
1087 | p=in + (i-3)*x_size + j - 1; |
---|
1088 | cp=bp + in[i*x_size+j]; |
---|
1089 | |
---|
1090 | n+=*(cp-*p++); |
---|
1091 | n+=*(cp-*p++); |
---|
1092 | n+=*(cp-*p); |
---|
1093 | p+=x_size-3; |
---|
1094 | |
---|
1095 | n+=*(cp-*p++); |
---|
1096 | n+=*(cp-*p++); |
---|
1097 | n+=*(cp-*p++); |
---|
1098 | n+=*(cp-*p++); |
---|
1099 | n+=*(cp-*p); |
---|
1100 | p+=x_size-5; |
---|
1101 | |
---|
1102 | n+=*(cp-*p++); |
---|
1103 | n+=*(cp-*p++); |
---|
1104 | n+=*(cp-*p++); |
---|
1105 | n+=*(cp-*p++); |
---|
1106 | n+=*(cp-*p++); |
---|
1107 | n+=*(cp-*p++); |
---|
1108 | n+=*(cp-*p); |
---|
1109 | p+=x_size-6; |
---|
1110 | |
---|
1111 | n+=*(cp-*p++); |
---|
1112 | n+=*(cp-*p++); |
---|
1113 | n+=*(cp-*p); |
---|
1114 | p+=2; |
---|
1115 | n+=*(cp-*p++); |
---|
1116 | n+=*(cp-*p++); |
---|
1117 | n+=*(cp-*p); |
---|
1118 | p+=x_size-6; |
---|
1119 | |
---|
1120 | n+=*(cp-*p++); |
---|
1121 | n+=*(cp-*p++); |
---|
1122 | n+=*(cp-*p++); |
---|
1123 | n+=*(cp-*p++); |
---|
1124 | n+=*(cp-*p++); |
---|
1125 | n+=*(cp-*p++); |
---|
1126 | n+=*(cp-*p); |
---|
1127 | p+=x_size-5; |
---|
1128 | |
---|
1129 | n+=*(cp-*p++); |
---|
1130 | n+=*(cp-*p++); |
---|
1131 | n+=*(cp-*p++); |
---|
1132 | n+=*(cp-*p++); |
---|
1133 | n+=*(cp-*p); |
---|
1134 | p+=x_size-3; |
---|
1135 | |
---|
1136 | n+=*(cp-*p++); |
---|
1137 | n+=*(cp-*p++); |
---|
1138 | n+=*(cp-*p); |
---|
1139 | |
---|
1140 | if (n<=max_no) |
---|
1141 | r[i*x_size+j] = max_no - n; |
---|
1142 | } |
---|
1143 | |
---|
1144 | for (i=4;i<y_size-4;i++) |
---|
1145 | for (j=4;j<x_size-4;j++) |
---|
1146 | { |
---|
1147 | if (r[i*x_size+j]>0) |
---|
1148 | { |
---|
1149 | m=r[i*x_size+j]; |
---|
1150 | n=max_no - m; |
---|
1151 | cp=bp + in[i*x_size+j]; |
---|
1152 | |
---|
1153 | if (n>600) |
---|
1154 | { |
---|
1155 | p=in + (i-3)*x_size + j - 1; |
---|
1156 | x=0;y=0; |
---|
1157 | |
---|
1158 | c=*(cp-*p++);x-=c;y-=3*c; |
---|
1159 | c=*(cp-*p++);y-=3*c; |
---|
1160 | c=*(cp-*p);x+=c;y-=3*c; |
---|
1161 | p+=x_size-3; |
---|
1162 | |
---|
1163 | c=*(cp-*p++);x-=2*c;y-=2*c; |
---|
1164 | c=*(cp-*p++);x-=c;y-=2*c; |
---|
1165 | c=*(cp-*p++);y-=2*c; |
---|
1166 | c=*(cp-*p++);x+=c;y-=2*c; |
---|
1167 | c=*(cp-*p);x+=2*c;y-=2*c; |
---|
1168 | p+=x_size-5; |
---|
1169 | |
---|
1170 | c=*(cp-*p++);x-=3*c;y-=c; |
---|
1171 | c=*(cp-*p++);x-=2*c;y-=c; |
---|
1172 | c=*(cp-*p++);x-=c;y-=c; |
---|
1173 | c=*(cp-*p++);y-=c; |
---|
1174 | c=*(cp-*p++);x+=c;y-=c; |
---|
1175 | c=*(cp-*p++);x+=2*c;y-=c; |
---|
1176 | c=*(cp-*p);x+=3*c;y-=c; |
---|
1177 | p+=x_size-6; |
---|
1178 | |
---|
1179 | c=*(cp-*p++);x-=3*c; |
---|
1180 | c=*(cp-*p++);x-=2*c; |
---|
1181 | c=*(cp-*p);x-=c; |
---|
1182 | p+=2; |
---|
1183 | c=*(cp-*p++);x+=c; |
---|
1184 | c=*(cp-*p++);x+=2*c; |
---|
1185 | c=*(cp-*p);x+=3*c; |
---|
1186 | p+=x_size-6; |
---|
1187 | |
---|
1188 | c=*(cp-*p++);x-=3*c;y+=c; |
---|
1189 | c=*(cp-*p++);x-=2*c;y+=c; |
---|
1190 | c=*(cp-*p++);x-=c;y+=c; |
---|
1191 | c=*(cp-*p++);y+=c; |
---|
1192 | c=*(cp-*p++);x+=c;y+=c; |
---|
1193 | c=*(cp-*p++);x+=2*c;y+=c; |
---|
1194 | c=*(cp-*p);x+=3*c;y+=c; |
---|
1195 | p+=x_size-5; |
---|
1196 | |
---|
1197 | c=*(cp-*p++);x-=2*c;y+=2*c; |
---|
1198 | c=*(cp-*p++);x-=c;y+=2*c; |
---|
1199 | c=*(cp-*p++);y+=2*c; |
---|
1200 | c=*(cp-*p++);x+=c;y+=2*c; |
---|
1201 | c=*(cp-*p);x+=2*c;y+=2*c; |
---|
1202 | p+=x_size-3; |
---|
1203 | |
---|
1204 | c=*(cp-*p++);x-=c;y+=3*c; |
---|
1205 | c=*(cp-*p++);y+=3*c; |
---|
1206 | c=*(cp-*p);x+=c;y+=3*c; |
---|
1207 | |
---|
1208 | z = sqrt((float)((x*x) + (y*y))); |
---|
1209 | if (z > (0.9*(float)n)) /* 0.5 */ |
---|
1210 | { |
---|
1211 | do_symmetry=0; |
---|
1212 | if (x==0) |
---|
1213 | z=1000000.0; |
---|
1214 | else |
---|
1215 | z=((float)y) / ((float)x); |
---|
1216 | if (z < 0) { z=-z; w=-1; } |
---|
1217 | else w=1; |
---|
1218 | if (z < 0.5) { /* vert_edge */ a=0; b=1; } |
---|
1219 | else { if (z > 2.0) { /* hor_edge */ a=1; b=0; } |
---|
1220 | else { /* diag_edge */ if (w>0) { a=1; b=1; } |
---|
1221 | else { a=-1; b=1; }}} |
---|
1222 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) && |
---|
1223 | (m > r[(i+(2*a))*x_size+j+(2*b)]) && (m >= r[(i-(2*a))*x_size+j-(2*b)]) ) |
---|
1224 | mid[i*x_size+j] = 1; |
---|
1225 | } |
---|
1226 | else |
---|
1227 | do_symmetry=1; |
---|
1228 | } |
---|
1229 | else |
---|
1230 | do_symmetry=1; |
---|
1231 | |
---|
1232 | if (do_symmetry==1) |
---|
1233 | { |
---|
1234 | p=in + (i-3)*x_size + j - 1; |
---|
1235 | x=0; y=0; w=0; |
---|
1236 | |
---|
1237 | /* | \ |
---|
1238 | y -x- w |
---|
1239 | | \ */ |
---|
1240 | |
---|
1241 | c=*(cp-*p++);x+=c;y+=9*c;w+=3*c; |
---|
1242 | c=*(cp-*p++);y+=9*c; |
---|
1243 | c=*(cp-*p);x+=c;y+=9*c;w-=3*c; |
---|
1244 | p+=x_size-3; |
---|
1245 | |
---|
1246 | c=*(cp-*p++);x+=4*c;y+=4*c;w+=4*c; |
---|
1247 | c=*(cp-*p++);x+=c;y+=4*c;w+=2*c; |
---|
1248 | c=*(cp-*p++);y+=4*c; |
---|
1249 | c=*(cp-*p++);x+=c;y+=4*c;w-=2*c; |
---|
1250 | c=*(cp-*p);x+=4*c;y+=4*c;w-=4*c; |
---|
1251 | p+=x_size-5; |
---|
1252 | |
---|
1253 | c=*(cp-*p++);x+=9*c;y+=c;w+=3*c; |
---|
1254 | c=*(cp-*p++);x+=4*c;y+=c;w+=2*c; |
---|
1255 | c=*(cp-*p++);x+=c;y+=c;w+=c; |
---|
1256 | c=*(cp-*p++);y+=c; |
---|
1257 | c=*(cp-*p++);x+=c;y+=c;w-=c; |
---|
1258 | c=*(cp-*p++);x+=4*c;y+=c;w-=2*c; |
---|
1259 | c=*(cp-*p);x+=9*c;y+=c;w-=3*c; |
---|
1260 | p+=x_size-6; |
---|
1261 | |
---|
1262 | c=*(cp-*p++);x+=9*c; |
---|
1263 | c=*(cp-*p++);x+=4*c; |
---|
1264 | c=*(cp-*p);x+=c; |
---|
1265 | p+=2; |
---|
1266 | c=*(cp-*p++);x+=c; |
---|
1267 | c=*(cp-*p++);x+=4*c; |
---|
1268 | c=*(cp-*p);x+=9*c; |
---|
1269 | p+=x_size-6; |
---|
1270 | |
---|
1271 | c=*(cp-*p++);x+=9*c;y+=c;w-=3*c; |
---|
1272 | c=*(cp-*p++);x+=4*c;y+=c;w-=2*c; |
---|
1273 | c=*(cp-*p++);x+=c;y+=c;w-=c; |
---|
1274 | c=*(cp-*p++);y+=c; |
---|
1275 | c=*(cp-*p++);x+=c;y+=c;w+=c; |
---|
1276 | c=*(cp-*p++);x+=4*c;y+=c;w+=2*c; |
---|
1277 | c=*(cp-*p);x+=9*c;y+=c;w+=3*c; |
---|
1278 | p+=x_size-5; |
---|
1279 | |
---|
1280 | c=*(cp-*p++);x+=4*c;y+=4*c;w-=4*c; |
---|
1281 | c=*(cp-*p++);x+=c;y+=4*c;w-=2*c; |
---|
1282 | c=*(cp-*p++);y+=4*c; |
---|
1283 | c=*(cp-*p++);x+=c;y+=4*c;w+=2*c; |
---|
1284 | c=*(cp-*p);x+=4*c;y+=4*c;w+=4*c; |
---|
1285 | p+=x_size-3; |
---|
1286 | |
---|
1287 | c=*(cp-*p++);x+=c;y+=9*c;w-=3*c; |
---|
1288 | c=*(cp-*p++);y+=9*c; |
---|
1289 | c=*(cp-*p);x+=c;y+=9*c;w+=3*c; |
---|
1290 | |
---|
1291 | if (y==0) |
---|
1292 | z = 1000000.0; |
---|
1293 | else |
---|
1294 | z = ((float)x) / ((float)y); |
---|
1295 | if (z < 0.5) { /* vertical */ a=0; b=1; } |
---|
1296 | else { if (z > 2.0) { /* horizontal */ a=1; b=0; } |
---|
1297 | else { /* diagonal */ if (w>0) { a=-1; b=1; } |
---|
1298 | else { a=1; b=1; }}} |
---|
1299 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) && |
---|
1300 | (m > r[(i+(2*a))*x_size+j+(2*b)]) && (m >= r[(i-(2*a))*x_size+j-(2*b)]) ) |
---|
1301 | mid[i*x_size+j] = 2; |
---|
1302 | } |
---|
1303 | } |
---|
1304 | } |
---|
1305 | } |
---|
1306 | |
---|
1307 | /* }}} */ |
---|
1308 | /* {{{ susan_edges_small(in,r,sf,max_no,out) */ |
---|
1309 | |
---|
1310 | void |
---|
1311 | susan_edges_small(in,r,mid,bp,max_no,x_size,y_size) |
---|
1312 | uchar *in, *bp, *mid; |
---|
1313 | int *r, max_no, x_size, y_size; |
---|
1314 | { |
---|
1315 | float z; |
---|
1316 | int do_symmetry, i, j, m, n, a, b, x, y, w; |
---|
1317 | uchar c,*p,*cp; |
---|
1318 | |
---|
1319 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
1320 | |
---|
1321 | max_no = 730; /* ho hum ;) */ |
---|
1322 | |
---|
1323 | for (i=1;i<y_size-1;i++) |
---|
1324 | for (j=1;j<x_size-1;j++) |
---|
1325 | { |
---|
1326 | n=100; |
---|
1327 | p=in + (i-1)*x_size + j - 1; |
---|
1328 | cp=bp + in[i*x_size+j]; |
---|
1329 | |
---|
1330 | n+=*(cp-*p++); |
---|
1331 | n+=*(cp-*p++); |
---|
1332 | n+=*(cp-*p); |
---|
1333 | p+=x_size-2; |
---|
1334 | |
---|
1335 | n+=*(cp-*p); |
---|
1336 | p+=2; |
---|
1337 | n+=*(cp-*p); |
---|
1338 | p+=x_size-2; |
---|
1339 | |
---|
1340 | n+=*(cp-*p++); |
---|
1341 | n+=*(cp-*p++); |
---|
1342 | n+=*(cp-*p); |
---|
1343 | |
---|
1344 | if (n<=max_no) |
---|
1345 | r[i*x_size+j] = max_no - n; |
---|
1346 | } |
---|
1347 | |
---|
1348 | for (i=2;i<y_size-2;i++) |
---|
1349 | for (j=2;j<x_size-2;j++) |
---|
1350 | { |
---|
1351 | if (r[i*x_size+j]>0) |
---|
1352 | { |
---|
1353 | m=r[i*x_size+j]; |
---|
1354 | n=max_no - m; |
---|
1355 | cp=bp + in[i*x_size+j]; |
---|
1356 | |
---|
1357 | if (n>250) |
---|
1358 | { |
---|
1359 | p=in + (i-1)*x_size + j - 1; |
---|
1360 | x=0;y=0; |
---|
1361 | |
---|
1362 | c=*(cp-*p++);x-=c;y-=c; |
---|
1363 | c=*(cp-*p++);y-=c; |
---|
1364 | c=*(cp-*p);x+=c;y-=c; |
---|
1365 | p+=x_size-2; |
---|
1366 | |
---|
1367 | c=*(cp-*p);x-=c; |
---|
1368 | p+=2; |
---|
1369 | c=*(cp-*p);x+=c; |
---|
1370 | p+=x_size-2; |
---|
1371 | |
---|
1372 | c=*(cp-*p++);x-=c;y+=c; |
---|
1373 | c=*(cp-*p++);y+=c; |
---|
1374 | c=*(cp-*p);x+=c;y+=c; |
---|
1375 | |
---|
1376 | z = sqrt((float)((x*x) + (y*y))); |
---|
1377 | if (z > (0.4*(float)n)) /* 0.6 */ |
---|
1378 | { |
---|
1379 | do_symmetry=0; |
---|
1380 | if (x==0) |
---|
1381 | z=1000000.0; |
---|
1382 | else |
---|
1383 | z=((float)y) / ((float)x); |
---|
1384 | if (z < 0) { z=-z; w=-1; } |
---|
1385 | else w=1; |
---|
1386 | if (z < 0.5) { /* vert_edge */ a=0; b=1; } |
---|
1387 | else { if (z > 2.0) { /* hor_edge */ a=1; b=0; } |
---|
1388 | else { /* diag_edge */ if (w>0) { a=1; b=1; } |
---|
1389 | else { a=-1; b=1; }}} |
---|
1390 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) ) |
---|
1391 | mid[i*x_size+j] = 1; |
---|
1392 | } |
---|
1393 | else |
---|
1394 | do_symmetry=1; |
---|
1395 | } |
---|
1396 | else |
---|
1397 | do_symmetry=1; |
---|
1398 | |
---|
1399 | if (do_symmetry==1) |
---|
1400 | { |
---|
1401 | p=in + (i-1)*x_size + j - 1; |
---|
1402 | x=0; y=0; w=0; |
---|
1403 | |
---|
1404 | /* | \ |
---|
1405 | y -x- w |
---|
1406 | | \ */ |
---|
1407 | |
---|
1408 | c=*(cp-*p++);x+=c;y+=c;w+=c; |
---|
1409 | c=*(cp-*p++);y+=c; |
---|
1410 | c=*(cp-*p);x+=c;y+=c;w-=c; |
---|
1411 | p+=x_size-2; |
---|
1412 | |
---|
1413 | c=*(cp-*p);x+=c; |
---|
1414 | p+=2; |
---|
1415 | c=*(cp-*p);x+=c; |
---|
1416 | p+=x_size-2; |
---|
1417 | |
---|
1418 | c=*(cp-*p++);x+=c;y+=c;w-=c; |
---|
1419 | c=*(cp-*p++);y+=c; |
---|
1420 | c=*(cp-*p);x+=c;y+=c;w+=c; |
---|
1421 | |
---|
1422 | if (y==0) |
---|
1423 | z = 1000000.0; |
---|
1424 | else |
---|
1425 | z = ((float)x) / ((float)y); |
---|
1426 | if (z < 0.5) { /* vertical */ a=0; b=1; } |
---|
1427 | else { if (z > 2.0) { /* horizontal */ a=1; b=0; } |
---|
1428 | else { /* diagonal */ if (w>0) { a=-1; b=1; } |
---|
1429 | else { a=1; b=1; }}} |
---|
1430 | if ( (m > r[(i+a)*x_size+j+b]) && (m >= r[(i-a)*x_size+j-b]) ) |
---|
1431 | mid[i*x_size+j] = 2; |
---|
1432 | } |
---|
1433 | } |
---|
1434 | } |
---|
1435 | } |
---|
1436 | |
---|
1437 | /* }}} */ |
---|
1438 | |
---|
1439 | /* }}} */ |
---|
1440 | /* {{{ corners */ |
---|
1441 | |
---|
1442 | /* {{{ corner_draw(in,corner_list,drawing_mode) */ |
---|
1443 | |
---|
1444 | void |
---|
1445 | corner_draw(in,corner_list,x_size,drawing_mode) |
---|
1446 | uchar *in; |
---|
1447 | CORNER_LIST corner_list; |
---|
1448 | int x_size, drawing_mode; |
---|
1449 | { |
---|
1450 | uchar *p; |
---|
1451 | int n=0; |
---|
1452 | |
---|
1453 | while(corner_list[n].info != 7) |
---|
1454 | { |
---|
1455 | if (drawing_mode==0) |
---|
1456 | { |
---|
1457 | p = in + (corner_list[n].y-1)*x_size + corner_list[n].x - 1; |
---|
1458 | *p++=255; *p++=255; *p=255; p+=x_size-2; |
---|
1459 | *p++=255; *p++=0; *p=255; p+=x_size-2; |
---|
1460 | *p++=255; *p++=255; *p=255; |
---|
1461 | n++; |
---|
1462 | } |
---|
1463 | else |
---|
1464 | { |
---|
1465 | p = in + corner_list[n].y*x_size + corner_list[n].x; |
---|
1466 | *p=0; |
---|
1467 | n++; |
---|
1468 | } |
---|
1469 | } |
---|
1470 | } |
---|
1471 | |
---|
1472 | /* }}} */ |
---|
1473 | /* {{{ susan(in,r,sf,max_no,corner_list) */ |
---|
1474 | |
---|
1475 | void |
---|
1476 | susan_corners(in,r,bp,max_no,corner_list,x_size,y_size) |
---|
1477 | uchar *in, *bp; |
---|
1478 | int *r, max_no, x_size, y_size; |
---|
1479 | CORNER_LIST corner_list; |
---|
1480 | { |
---|
1481 | int n,x,y,sq,xx,yy, |
---|
1482 | i,j,*cgx,*cgy; |
---|
1483 | float divide; |
---|
1484 | uchar c,*p,*cp; |
---|
1485 | |
---|
1486 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
1487 | |
---|
1488 | cgx=(int *)malloc(x_size*y_size*sizeof(int)); |
---|
1489 | cgy=(int *)malloc(x_size*y_size*sizeof(int)); |
---|
1490 | |
---|
1491 | for (i=5;i<y_size-5;i++) |
---|
1492 | for (j=5;j<x_size-5;j++) { |
---|
1493 | n=100; |
---|
1494 | p=in + (i-3)*x_size + j - 1; |
---|
1495 | cp=bp + in[i*x_size+j]; |
---|
1496 | |
---|
1497 | n+=*(cp-*p++); |
---|
1498 | n+=*(cp-*p++); |
---|
1499 | n+=*(cp-*p); |
---|
1500 | p+=x_size-3; |
---|
1501 | |
---|
1502 | n+=*(cp-*p++); |
---|
1503 | n+=*(cp-*p++); |
---|
1504 | n+=*(cp-*p++); |
---|
1505 | n+=*(cp-*p++); |
---|
1506 | n+=*(cp-*p); |
---|
1507 | p+=x_size-5; |
---|
1508 | |
---|
1509 | n+=*(cp-*p++); |
---|
1510 | n+=*(cp-*p++); |
---|
1511 | n+=*(cp-*p++); |
---|
1512 | n+=*(cp-*p++); |
---|
1513 | n+=*(cp-*p++); |
---|
1514 | n+=*(cp-*p++); |
---|
1515 | n+=*(cp-*p); |
---|
1516 | p+=x_size-6; |
---|
1517 | |
---|
1518 | n+=*(cp-*p++); |
---|
1519 | n+=*(cp-*p++); |
---|
1520 | n+=*(cp-*p); |
---|
1521 | if (n<max_no){ /* do this test early and often ONLY to save wasted computation */ |
---|
1522 | p+=2; |
---|
1523 | n+=*(cp-*p++); |
---|
1524 | if (n<max_no){ |
---|
1525 | n+=*(cp-*p++); |
---|
1526 | if (n<max_no){ |
---|
1527 | n+=*(cp-*p); |
---|
1528 | if (n<max_no){ |
---|
1529 | p+=x_size-6; |
---|
1530 | |
---|
1531 | n+=*(cp-*p++); |
---|
1532 | if (n<max_no){ |
---|
1533 | n+=*(cp-*p++); |
---|
1534 | if (n<max_no){ |
---|
1535 | n+=*(cp-*p++); |
---|
1536 | if (n<max_no){ |
---|
1537 | n+=*(cp-*p++); |
---|
1538 | if (n<max_no){ |
---|
1539 | n+=*(cp-*p++); |
---|
1540 | if (n<max_no){ |
---|
1541 | n+=*(cp-*p++); |
---|
1542 | if (n<max_no){ |
---|
1543 | n+=*(cp-*p); |
---|
1544 | if (n<max_no){ |
---|
1545 | p+=x_size-5; |
---|
1546 | |
---|
1547 | n+=*(cp-*p++); |
---|
1548 | if (n<max_no){ |
---|
1549 | n+=*(cp-*p++); |
---|
1550 | if (n<max_no){ |
---|
1551 | n+=*(cp-*p++); |
---|
1552 | if (n<max_no){ |
---|
1553 | n+=*(cp-*p++); |
---|
1554 | if (n<max_no){ |
---|
1555 | n+=*(cp-*p); |
---|
1556 | if (n<max_no){ |
---|
1557 | p+=x_size-3; |
---|
1558 | |
---|
1559 | n+=*(cp-*p++); |
---|
1560 | if (n<max_no){ |
---|
1561 | n+=*(cp-*p++); |
---|
1562 | if (n<max_no){ |
---|
1563 | n+=*(cp-*p); |
---|
1564 | |
---|
1565 | if (n<max_no) |
---|
1566 | { |
---|
1567 | x=0;y=0; |
---|
1568 | p=in + (i-3)*x_size + j - 1; |
---|
1569 | |
---|
1570 | c=*(cp-*p++);x-=c;y-=3*c; |
---|
1571 | c=*(cp-*p++);y-=3*c; |
---|
1572 | c=*(cp-*p);x+=c;y-=3*c; |
---|
1573 | p+=x_size-3; |
---|
1574 | |
---|
1575 | c=*(cp-*p++);x-=2*c;y-=2*c; |
---|
1576 | c=*(cp-*p++);x-=c;y-=2*c; |
---|
1577 | c=*(cp-*p++);y-=2*c; |
---|
1578 | c=*(cp-*p++);x+=c;y-=2*c; |
---|
1579 | c=*(cp-*p);x+=2*c;y-=2*c; |
---|
1580 | p+=x_size-5; |
---|
1581 | |
---|
1582 | c=*(cp-*p++);x-=3*c;y-=c; |
---|
1583 | c=*(cp-*p++);x-=2*c;y-=c; |
---|
1584 | c=*(cp-*p++);x-=c;y-=c; |
---|
1585 | c=*(cp-*p++);y-=c; |
---|
1586 | c=*(cp-*p++);x+=c;y-=c; |
---|
1587 | c=*(cp-*p++);x+=2*c;y-=c; |
---|
1588 | c=*(cp-*p);x+=3*c;y-=c; |
---|
1589 | p+=x_size-6; |
---|
1590 | |
---|
1591 | c=*(cp-*p++);x-=3*c; |
---|
1592 | c=*(cp-*p++);x-=2*c; |
---|
1593 | c=*(cp-*p);x-=c; |
---|
1594 | p+=2; |
---|
1595 | c=*(cp-*p++);x+=c; |
---|
1596 | c=*(cp-*p++);x+=2*c; |
---|
1597 | c=*(cp-*p);x+=3*c; |
---|
1598 | p+=x_size-6; |
---|
1599 | |
---|
1600 | c=*(cp-*p++);x-=3*c;y+=c; |
---|
1601 | c=*(cp-*p++);x-=2*c;y+=c; |
---|
1602 | c=*(cp-*p++);x-=c;y+=c; |
---|
1603 | c=*(cp-*p++);y+=c; |
---|
1604 | c=*(cp-*p++);x+=c;y+=c; |
---|
1605 | c=*(cp-*p++);x+=2*c;y+=c; |
---|
1606 | c=*(cp-*p);x+=3*c;y+=c; |
---|
1607 | p+=x_size-5; |
---|
1608 | |
---|
1609 | c=*(cp-*p++);x-=2*c;y+=2*c; |
---|
1610 | c=*(cp-*p++);x-=c;y+=2*c; |
---|
1611 | c=*(cp-*p++);y+=2*c; |
---|
1612 | c=*(cp-*p++);x+=c;y+=2*c; |
---|
1613 | c=*(cp-*p);x+=2*c;y+=2*c; |
---|
1614 | p+=x_size-3; |
---|
1615 | |
---|
1616 | c=*(cp-*p++);x-=c;y+=3*c; |
---|
1617 | c=*(cp-*p++);y+=3*c; |
---|
1618 | c=*(cp-*p);x+=c;y+=3*c; |
---|
1619 | |
---|
1620 | xx=x*x; |
---|
1621 | yy=y*y; |
---|
1622 | sq=xx+yy; |
---|
1623 | if ( sq > ((n*n)/2) ) |
---|
1624 | { |
---|
1625 | if(yy<xx) { |
---|
1626 | divide=(float)y/(float)abs(x); |
---|
1627 | sq=abs(x)/x; |
---|
1628 | sq=*(cp-in[(i+FTOI(divide))*x_size+j+sq]) + |
---|
1629 | *(cp-in[(i+FTOI(2*divide))*x_size+j+2*sq]) + |
---|
1630 | *(cp-in[(i+FTOI(3*divide))*x_size+j+3*sq]);} |
---|
1631 | else { |
---|
1632 | divide=(float)x/(float)abs(y); |
---|
1633 | sq=abs(y)/y; |
---|
1634 | sq=*(cp-in[(i+sq)*x_size+j+FTOI(divide)]) + |
---|
1635 | *(cp-in[(i+2*sq)*x_size+j+FTOI(2*divide)]) + |
---|
1636 | *(cp-in[(i+3*sq)*x_size+j+FTOI(3*divide)]);} |
---|
1637 | |
---|
1638 | if(sq>290){ |
---|
1639 | r[i*x_size+j] = max_no-n; |
---|
1640 | cgx[i*x_size+j] = (51*x)/n; |
---|
1641 | cgy[i*x_size+j] = (51*y)/n;} |
---|
1642 | } |
---|
1643 | } |
---|
1644 | }}}}}}}}}}}}}}}}}}} |
---|
1645 | |
---|
1646 | /* to locate the local maxima */ |
---|
1647 | n=0; |
---|
1648 | for (i=5;i<y_size-5;i++) |
---|
1649 | for (j=5;j<x_size-5;j++) { |
---|
1650 | x = r[i*x_size+j]; |
---|
1651 | if (x>0) { |
---|
1652 | /* 5x5 mask */ |
---|
1653 | #ifdef FIVE_SUPP |
---|
1654 | if ( |
---|
1655 | (x>r[(i-1)*x_size+j+2]) && |
---|
1656 | (x>r[(i )*x_size+j+1]) && |
---|
1657 | (x>r[(i )*x_size+j+2]) && |
---|
1658 | (x>r[(i+1)*x_size+j-1]) && |
---|
1659 | (x>r[(i+1)*x_size+j ]) && |
---|
1660 | (x>r[(i+1)*x_size+j+1]) && |
---|
1661 | (x>r[(i+1)*x_size+j+2]) && |
---|
1662 | (x>r[(i+2)*x_size+j-2]) && |
---|
1663 | (x>r[(i+2)*x_size+j-1]) && |
---|
1664 | (x>r[(i+2)*x_size+j ]) && |
---|
1665 | (x>r[(i+2)*x_size+j+1]) && |
---|
1666 | (x>r[(i+2)*x_size+j+2]) && |
---|
1667 | (x>=r[(i-2)*x_size+j-2]) && |
---|
1668 | (x>=r[(i-2)*x_size+j-1]) && |
---|
1669 | (x>=r[(i-2)*x_size+j ]) && |
---|
1670 | (x>=r[(i-2)*x_size+j+1]) && |
---|
1671 | (x>=r[(i-2)*x_size+j+2]) && |
---|
1672 | (x>=r[(i-1)*x_size+j-2]) && |
---|
1673 | (x>=r[(i-1)*x_size+j-1]) && |
---|
1674 | (x>=r[(i-1)*x_size+j ]) && |
---|
1675 | (x>=r[(i-1)*x_size+j+1]) && |
---|
1676 | (x>=r[(i )*x_size+j-2]) && |
---|
1677 | (x>=r[(i )*x_size+j-1]) && |
---|
1678 | (x>=r[(i+1)*x_size+j-2]) ) |
---|
1679 | #endif |
---|
1680 | #ifdef SEVEN_SUPP |
---|
1681 | if ( |
---|
1682 | (x>r[(i-3)*x_size+j-3]) && |
---|
1683 | (x>r[(i-3)*x_size+j-2]) && |
---|
1684 | (x>r[(i-3)*x_size+j-1]) && |
---|
1685 | (x>r[(i-3)*x_size+j ]) && |
---|
1686 | (x>r[(i-3)*x_size+j+1]) && |
---|
1687 | (x>r[(i-3)*x_size+j+2]) && |
---|
1688 | (x>r[(i-3)*x_size+j+3]) && |
---|
1689 | |
---|
1690 | (x>r[(i-2)*x_size+j-3]) && |
---|
1691 | (x>r[(i-2)*x_size+j-2]) && |
---|
1692 | (x>r[(i-2)*x_size+j-1]) && |
---|
1693 | (x>r[(i-2)*x_size+j ]) && |
---|
1694 | (x>r[(i-2)*x_size+j+1]) && |
---|
1695 | (x>r[(i-2)*x_size+j+2]) && |
---|
1696 | (x>r[(i-2)*x_size+j+3]) && |
---|
1697 | |
---|
1698 | (x>r[(i-1)*x_size+j-3]) && |
---|
1699 | (x>r[(i-1)*x_size+j-2]) && |
---|
1700 | (x>r[(i-1)*x_size+j-1]) && |
---|
1701 | (x>r[(i-1)*x_size+j ]) && |
---|
1702 | (x>r[(i-1)*x_size+j+1]) && |
---|
1703 | (x>r[(i-1)*x_size+j+2]) && |
---|
1704 | (x>r[(i-1)*x_size+j+3]) && |
---|
1705 | |
---|
1706 | (x>r[(i)*x_size+j-3]) && |
---|
1707 | (x>r[(i)*x_size+j-2]) && |
---|
1708 | (x>r[(i)*x_size+j-1]) && |
---|
1709 | (x>=r[(i)*x_size+j+1]) && |
---|
1710 | (x>=r[(i)*x_size+j+2]) && |
---|
1711 | (x>=r[(i)*x_size+j+3]) && |
---|
1712 | |
---|
1713 | (x>=r[(i+1)*x_size+j-3]) && |
---|
1714 | (x>=r[(i+1)*x_size+j-2]) && |
---|
1715 | (x>=r[(i+1)*x_size+j-1]) && |
---|
1716 | (x>=r[(i+1)*x_size+j ]) && |
---|
1717 | (x>=r[(i+1)*x_size+j+1]) && |
---|
1718 | (x>=r[(i+1)*x_size+j+2]) && |
---|
1719 | (x>=r[(i+1)*x_size+j+3]) && |
---|
1720 | |
---|
1721 | (x>=r[(i+2)*x_size+j-3]) && |
---|
1722 | (x>=r[(i+2)*x_size+j-2]) && |
---|
1723 | (x>=r[(i+2)*x_size+j-1]) && |
---|
1724 | (x>=r[(i+2)*x_size+j ]) && |
---|
1725 | (x>=r[(i+2)*x_size+j+1]) && |
---|
1726 | (x>=r[(i+2)*x_size+j+2]) && |
---|
1727 | (x>=r[(i+2)*x_size+j+3]) && |
---|
1728 | |
---|
1729 | (x>=r[(i+3)*x_size+j-3]) && |
---|
1730 | (x>=r[(i+3)*x_size+j-2]) && |
---|
1731 | (x>=r[(i+3)*x_size+j-1]) && |
---|
1732 | (x>=r[(i+3)*x_size+j ]) && |
---|
1733 | (x>=r[(i+3)*x_size+j+1]) && |
---|
1734 | (x>=r[(i+3)*x_size+j+2]) && |
---|
1735 | (x>=r[(i+3)*x_size+j+3]) ) |
---|
1736 | #endif |
---|
1737 | { |
---|
1738 | corner_list[n].info=0; |
---|
1739 | corner_list[n].x=j; |
---|
1740 | corner_list[n].y=i; |
---|
1741 | corner_list[n].dx=cgx[i*x_size+j]; |
---|
1742 | corner_list[n].dy=cgy[i*x_size+j]; |
---|
1743 | corner_list[n].I=in[i*x_size+j]; |
---|
1744 | n++; |
---|
1745 | if(n==MAX_CORNERS){ |
---|
1746 | fprintf(stderr,"Too many corners.\n"); |
---|
1747 | exit(1); |
---|
1748 | }}}} |
---|
1749 | corner_list[n].info=7; |
---|
1750 | |
---|
1751 | free(cgx); |
---|
1752 | free(cgy); |
---|
1753 | |
---|
1754 | } |
---|
1755 | |
---|
1756 | /* }}} */ |
---|
1757 | /* {{{ susan_quick(in,r,sf,max_no,corner_list) */ |
---|
1758 | |
---|
1759 | void |
---|
1760 | susan_corners_quick(in,r,bp,max_no,corner_list,x_size,y_size) |
---|
1761 | uchar *in, *bp; |
---|
1762 | int *r, max_no, x_size, y_size; |
---|
1763 | CORNER_LIST corner_list; |
---|
1764 | { |
---|
1765 | int n,x,y,i,j; |
---|
1766 | uchar *p,*cp; |
---|
1767 | |
---|
1768 | memset (r,0,x_size * y_size * sizeof(int)); |
---|
1769 | |
---|
1770 | for (i=7;i<y_size-7;i++) |
---|
1771 | for (j=7;j<x_size-7;j++) { |
---|
1772 | n=100; |
---|
1773 | p=in + (i-3)*x_size + j - 1; |
---|
1774 | cp=bp + in[i*x_size+j]; |
---|
1775 | |
---|
1776 | n+=*(cp-*p++); |
---|
1777 | n+=*(cp-*p++); |
---|
1778 | n+=*(cp-*p); |
---|
1779 | p+=x_size-3; |
---|
1780 | |
---|
1781 | n+=*(cp-*p++); |
---|
1782 | n+=*(cp-*p++); |
---|
1783 | n+=*(cp-*p++); |
---|
1784 | n+=*(cp-*p++); |
---|
1785 | n+=*(cp-*p); |
---|
1786 | p+=x_size-5; |
---|
1787 | |
---|
1788 | n+=*(cp-*p++); |
---|
1789 | n+=*(cp-*p++); |
---|
1790 | n+=*(cp-*p++); |
---|
1791 | n+=*(cp-*p++); |
---|
1792 | n+=*(cp-*p++); |
---|
1793 | n+=*(cp-*p++); |
---|
1794 | n+=*(cp-*p); |
---|
1795 | p+=x_size-6; |
---|
1796 | |
---|
1797 | n+=*(cp-*p++); |
---|
1798 | n+=*(cp-*p++); |
---|
1799 | n+=*(cp-*p); |
---|
1800 | if (n<max_no){ |
---|
1801 | p+=2; |
---|
1802 | n+=*(cp-*p++); |
---|
1803 | if (n<max_no){ |
---|
1804 | n+=*(cp-*p++); |
---|
1805 | if (n<max_no){ |
---|
1806 | n+=*(cp-*p); |
---|
1807 | if (n<max_no){ |
---|
1808 | p+=x_size-6; |
---|
1809 | |
---|
1810 | n+=*(cp-*p++); |
---|
1811 | if (n<max_no){ |
---|
1812 | n+=*(cp-*p++); |
---|
1813 | if (n<max_no){ |
---|
1814 | n+=*(cp-*p++); |
---|
1815 | if (n<max_no){ |
---|
1816 | n+=*(cp-*p++); |
---|
1817 | if (n<max_no){ |
---|
1818 | n+=*(cp-*p++); |
---|
1819 | if (n<max_no){ |
---|
1820 | n+=*(cp-*p++); |
---|
1821 | if (n<max_no){ |
---|
1822 | n+=*(cp-*p); |
---|
1823 | if (n<max_no){ |
---|
1824 | p+=x_size-5; |
---|
1825 | |
---|
1826 | n+=*(cp-*p++); |
---|
1827 | if (n<max_no){ |
---|
1828 | n+=*(cp-*p++); |
---|
1829 | if (n<max_no){ |
---|
1830 | n+=*(cp-*p++); |
---|
1831 | if (n<max_no){ |
---|
1832 | n+=*(cp-*p++); |
---|
1833 | if (n<max_no){ |
---|
1834 | n+=*(cp-*p); |
---|
1835 | if (n<max_no){ |
---|
1836 | p+=x_size-3; |
---|
1837 | |
---|
1838 | n+=*(cp-*p++); |
---|
1839 | if (n<max_no){ |
---|
1840 | n+=*(cp-*p++); |
---|
1841 | if (n<max_no){ |
---|
1842 | n+=*(cp-*p); |
---|
1843 | |
---|
1844 | if (n<max_no) |
---|
1845 | r[i*x_size+j] = max_no-n; |
---|
1846 | }}}}}}}}}}}}}}}}}}} |
---|
1847 | |
---|
1848 | /* to locate the local maxima */ |
---|
1849 | n=0; |
---|
1850 | for (i=7;i<y_size-7;i++) |
---|
1851 | for (j=7;j<x_size-7;j++) { |
---|
1852 | x = r[i*x_size+j]; |
---|
1853 | if (x>0) { |
---|
1854 | /* 5x5 mask */ |
---|
1855 | #ifdef FIVE_SUPP |
---|
1856 | if ( |
---|
1857 | (x>r[(i-1)*x_size+j+2]) && |
---|
1858 | (x>r[(i )*x_size+j+1]) && |
---|
1859 | (x>r[(i )*x_size+j+2]) && |
---|
1860 | (x>r[(i+1)*x_size+j-1]) && |
---|
1861 | (x>r[(i+1)*x_size+j ]) && |
---|
1862 | (x>r[(i+1)*x_size+j+1]) && |
---|
1863 | (x>r[(i+1)*x_size+j+2]) && |
---|
1864 | (x>r[(i+2)*x_size+j-2]) && |
---|
1865 | (x>r[(i+2)*x_size+j-1]) && |
---|
1866 | (x>r[(i+2)*x_size+j ]) && |
---|
1867 | (x>r[(i+2)*x_size+j+1]) && |
---|
1868 | (x>r[(i+2)*x_size+j+2]) && |
---|
1869 | (x>=r[(i-2)*x_size+j-2]) && |
---|
1870 | (x>=r[(i-2)*x_size+j-1]) && |
---|
1871 | (x>=r[(i-2)*x_size+j ]) && |
---|
1872 | (x>=r[(i-2)*x_size+j+1]) && |
---|
1873 | (x>=r[(i-2)*x_size+j+2]) && |
---|
1874 | (x>=r[(i-1)*x_size+j-2]) && |
---|
1875 | (x>=r[(i-1)*x_size+j-1]) && |
---|
1876 | (x>=r[(i-1)*x_size+j ]) && |
---|
1877 | (x>=r[(i-1)*x_size+j+1]) && |
---|
1878 | (x>=r[(i )*x_size+j-2]) && |
---|
1879 | (x>=r[(i )*x_size+j-1]) && |
---|
1880 | (x>=r[(i+1)*x_size+j-2]) ) |
---|
1881 | #endif |
---|
1882 | #ifdef SEVEN_SUPP |
---|
1883 | if ( |
---|
1884 | (x>r[(i-3)*x_size+j-3]) && |
---|
1885 | (x>r[(i-3)*x_size+j-2]) && |
---|
1886 | (x>r[(i-3)*x_size+j-1]) && |
---|
1887 | (x>r[(i-3)*x_size+j ]) && |
---|
1888 | (x>r[(i-3)*x_size+j+1]) && |
---|
1889 | (x>r[(i-3)*x_size+j+2]) && |
---|
1890 | (x>r[(i-3)*x_size+j+3]) && |
---|
1891 | |
---|
1892 | (x>r[(i-2)*x_size+j-3]) && |
---|
1893 | (x>r[(i-2)*x_size+j-2]) && |
---|
1894 | (x>r[(i-2)*x_size+j-1]) && |
---|
1895 | (x>r[(i-2)*x_size+j ]) && |
---|
1896 | (x>r[(i-2)*x_size+j+1]) && |
---|
1897 | (x>r[(i-2)*x_size+j+2]) && |
---|
1898 | (x>r[(i-2)*x_size+j+3]) && |
---|
1899 | |
---|
1900 | (x>r[(i-1)*x_size+j-3]) && |
---|
1901 | (x>r[(i-1)*x_size+j-2]) && |
---|
1902 | (x>r[(i-1)*x_size+j-1]) && |
---|
1903 | (x>r[(i-1)*x_size+j ]) && |
---|
1904 | (x>r[(i-1)*x_size+j+1]) && |
---|
1905 | (x>r[(i-1)*x_size+j+2]) && |
---|
1906 | (x>r[(i-1)*x_size+j+3]) && |
---|
1907 | |
---|
1908 | (x>r[(i)*x_size+j-3]) && |
---|
1909 | (x>r[(i)*x_size+j-2]) && |
---|
1910 | (x>r[(i)*x_size+j-1]) && |
---|
1911 | (x>=r[(i)*x_size+j+1]) && |
---|
1912 | (x>=r[(i)*x_size+j+2]) && |
---|
1913 | (x>=r[(i)*x_size+j+3]) && |
---|
1914 | |
---|
1915 | (x>=r[(i+1)*x_size+j-3]) && |
---|
1916 | (x>=r[(i+1)*x_size+j-2]) && |
---|
1917 | (x>=r[(i+1)*x_size+j-1]) && |
---|
1918 | (x>=r[(i+1)*x_size+j ]) && |
---|
1919 | (x>=r[(i+1)*x_size+j+1]) && |
---|
1920 | (x>=r[(i+1)*x_size+j+2]) && |
---|
1921 | (x>=r[(i+1)*x_size+j+3]) && |
---|
1922 | |
---|
1923 | (x>=r[(i+2)*x_size+j-3]) && |
---|
1924 | (x>=r[(i+2)*x_size+j-2]) && |
---|
1925 | (x>=r[(i+2)*x_size+j-1]) && |
---|
1926 | (x>=r[(i+2)*x_size+j ]) && |
---|
1927 | (x>=r[(i+2)*x_size+j+1]) && |
---|
1928 | (x>=r[(i+2)*x_size+j+2]) && |
---|
1929 | (x>=r[(i+2)*x_size+j+3]) && |
---|
1930 | |
---|
1931 | (x>=r[(i+3)*x_size+j-3]) && |
---|
1932 | (x>=r[(i+3)*x_size+j-2]) && |
---|
1933 | (x>=r[(i+3)*x_size+j-1]) && |
---|
1934 | (x>=r[(i+3)*x_size+j ]) && |
---|
1935 | (x>=r[(i+3)*x_size+j+1]) && |
---|
1936 | (x>=r[(i+3)*x_size+j+2]) && |
---|
1937 | (x>=r[(i+3)*x_size+j+3]) ) |
---|
1938 | #endif |
---|
1939 | { |
---|
1940 | corner_list[n].info=0; |
---|
1941 | corner_list[n].x=j; |
---|
1942 | corner_list[n].y=i; |
---|
1943 | x = in[(i-2)*x_size+j-2] + in[(i-2)*x_size+j-1] + in[(i-2)*x_size+j] + in[(i-2)*x_size+j+1] + in[(i-2)*x_size+j+2] + |
---|
1944 | in[(i-1)*x_size+j-2] + in[(i-1)*x_size+j-1] + in[(i-1)*x_size+j] + in[(i-1)*x_size+j+1] + in[(i-1)*x_size+j+2] + |
---|
1945 | in[(i )*x_size+j-2] + in[(i )*x_size+j-1] + in[(i )*x_size+j] + in[(i )*x_size+j+1] + in[(i )*x_size+j+2] + |
---|
1946 | in[(i+1)*x_size+j-2] + in[(i+1)*x_size+j-1] + in[(i+1)*x_size+j] + in[(i+1)*x_size+j+1] + in[(i+1)*x_size+j+2] + |
---|
1947 | in[(i+2)*x_size+j-2] + in[(i+2)*x_size+j-1] + in[(i+2)*x_size+j] + in[(i+2)*x_size+j+1] + in[(i+2)*x_size+j+2]; |
---|
1948 | |
---|
1949 | corner_list[n].I=x/25; |
---|
1950 | /*corner_list[n].I=in[i*x_size+j];*/ |
---|
1951 | x = in[(i-2)*x_size+j+2] + in[(i-1)*x_size+j+2] + in[(i)*x_size+j+2] + in[(i+1)*x_size+j+2] + in[(i+2)*x_size+j+2] - |
---|
1952 | (in[(i-2)*x_size+j-2] + in[(i-1)*x_size+j-2] + in[(i)*x_size+j-2] + in[(i+1)*x_size+j-2] + in[(i+2)*x_size+j-2]); |
---|
1953 | x += x + in[(i-2)*x_size+j+1] + in[(i-1)*x_size+j+1] + in[(i)*x_size+j+1] + in[(i+1)*x_size+j+1] + in[(i+2)*x_size+j+1] - |
---|
1954 | (in[(i-2)*x_size+j-1] + in[(i-1)*x_size+j-1] + in[(i)*x_size+j-1] + in[(i+1)*x_size+j-1] + in[(i+2)*x_size+j-1]); |
---|
1955 | |
---|
1956 | y = in[(i+2)*x_size+j-2] + in[(i+2)*x_size+j-1] + in[(i+2)*x_size+j] + in[(i+2)*x_size+j+1] + in[(i+2)*x_size+j+2] - |
---|
1957 | (in[(i-2)*x_size+j-2] + in[(i-2)*x_size+j-1] + in[(i-2)*x_size+j] + in[(i-2)*x_size+j+1] + in[(i-2)*x_size+j+2]); |
---|
1958 | y += y + in[(i+1)*x_size+j-2] + in[(i+1)*x_size+j-1] + in[(i+1)*x_size+j] + in[(i+1)*x_size+j+1] + in[(i+1)*x_size+j+2] - |
---|
1959 | (in[(i-1)*x_size+j-2] + in[(i-1)*x_size+j-1] + in[(i-1)*x_size+j] + in[(i-1)*x_size+j+1] + in[(i-1)*x_size+j+2]); |
---|
1960 | corner_list[n].dx=x/15; |
---|
1961 | corner_list[n].dy=y/15; |
---|
1962 | n++; |
---|
1963 | if(n==MAX_CORNERS){ |
---|
1964 | fprintf(stderr,"Too many corners.\n"); |
---|
1965 | exit(1); |
---|
1966 | }}}} |
---|
1967 | corner_list[n].info=7; |
---|
1968 | } |
---|
1969 | |
---|
1970 | /* }}} */ |
---|
1971 | |
---|
1972 | /* }}} */ |
---|
1973 | /* {{{ main(argc, argv) */ |
---|
1974 | |
---|
1975 | void |
---|
1976 | main_susan (argc, argv) |
---|
1977 | int argc; |
---|
1978 | char *argv []; |
---|
1979 | { |
---|
1980 | /* {{{ vars */ |
---|
1981 | |
---|
1982 | //FILE *ofp; |
---|
1983 | char //filename [80], |
---|
1984 | *tcp; |
---|
1985 | uchar *in, *bp, *mid; |
---|
1986 | float dt=4.0; |
---|
1987 | int *r, |
---|
1988 | argindex=3, |
---|
1989 | bt=20, |
---|
1990 | principle=0, |
---|
1991 | thin_post_proc=1, |
---|
1992 | three_by_three=0, |
---|
1993 | drawing_mode=0, |
---|
1994 | susan_quick=0, |
---|
1995 | max_no_corners=1850, |
---|
1996 | max_no_edges=2650, |
---|
1997 | mode = 0, //i, |
---|
1998 | x_size, y_size; |
---|
1999 | CORNER_LIST corner_list; |
---|
2000 | |
---|
2001 | /* }}} */ |
---|
2002 | |
---|
2003 | if (argc<3) |
---|
2004 | usage(); |
---|
2005 | |
---|
2006 | get_image(argv[1],&in,&x_size,&y_size); |
---|
2007 | |
---|
2008 | /* {{{ look at options */ |
---|
2009 | |
---|
2010 | while (argindex < argc) |
---|
2011 | { |
---|
2012 | tcp = argv[argindex]; |
---|
2013 | if (*tcp == '-') |
---|
2014 | switch (*++tcp) |
---|
2015 | { |
---|
2016 | case 's': /* smoothing */ |
---|
2017 | mode=0; |
---|
2018 | break; |
---|
2019 | case 'e': /* edges */ |
---|
2020 | mode=1; |
---|
2021 | break; |
---|
2022 | case 'c': /* corners */ |
---|
2023 | mode=2; |
---|
2024 | break; |
---|
2025 | case 'p': /* principle */ |
---|
2026 | principle=1; |
---|
2027 | break; |
---|
2028 | case 'n': /* thinning post processing */ |
---|
2029 | thin_post_proc=0; |
---|
2030 | break; |
---|
2031 | case 'b': /* simple drawing mode */ |
---|
2032 | drawing_mode=1; |
---|
2033 | break; |
---|
2034 | case '3': /* 3x3 flat mask */ |
---|
2035 | three_by_three=1; |
---|
2036 | break; |
---|
2037 | case 'q': /* quick susan mask */ |
---|
2038 | susan_quick=1; |
---|
2039 | break; |
---|
2040 | case 'd': /* distance threshold */ |
---|
2041 | if (++argindex >= argc){ |
---|
2042 | printf ("No argument following -d\n"); |
---|
2043 | exit(0);} |
---|
2044 | dt=atof(argv[argindex]); |
---|
2045 | if (dt<0) three_by_three=1; |
---|
2046 | break; |
---|
2047 | case 't': /* brightness threshold */ |
---|
2048 | if (++argindex >= argc){ |
---|
2049 | printf ("No argument following -t\n"); |
---|
2050 | exit(0);} |
---|
2051 | bt=atoi(argv[argindex]); |
---|
2052 | break; |
---|
2053 | } |
---|
2054 | else |
---|
2055 | usage(); |
---|
2056 | argindex++; |
---|
2057 | } |
---|
2058 | |
---|
2059 | if ( (principle==1) && (mode==0) ) |
---|
2060 | mode=1; |
---|
2061 | |
---|
2062 | /* }}} */ |
---|
2063 | /* {{{ main processing */ |
---|
2064 | |
---|
2065 | switch (mode) |
---|
2066 | { |
---|
2067 | case 0: |
---|
2068 | /* {{{ smoothing */ |
---|
2069 | |
---|
2070 | setup_brightness_lut(&bp,bt,2); |
---|
2071 | susan_smoothing(three_by_three,in,dt,x_size,y_size,bp); |
---|
2072 | break; |
---|
2073 | |
---|
2074 | /* }}} */ |
---|
2075 | case 1: |
---|
2076 | /* {{{ edges */ |
---|
2077 | |
---|
2078 | r = (int *) malloc(x_size * y_size * sizeof(int)); |
---|
2079 | setup_brightness_lut(&bp,bt,6); |
---|
2080 | |
---|
2081 | if (principle) |
---|
2082 | { |
---|
2083 | if (three_by_three) |
---|
2084 | susan_principle_small(in,r,bp,max_no_edges,x_size,y_size); |
---|
2085 | else |
---|
2086 | susan_principle(in,r,bp,max_no_edges,x_size,y_size); |
---|
2087 | int_to_uchar(r,in,x_size*y_size); |
---|
2088 | } |
---|
2089 | else |
---|
2090 | { |
---|
2091 | mid = (uchar *)malloc(x_size*y_size); |
---|
2092 | memset (mid,100,x_size * y_size); /* note not set to zero */ |
---|
2093 | |
---|
2094 | if (three_by_three) |
---|
2095 | susan_edges_small(in,r,mid,bp,max_no_edges,x_size,y_size); |
---|
2096 | else |
---|
2097 | susan_edges(in,r,mid,bp,max_no_edges,x_size,y_size); |
---|
2098 | if(thin_post_proc) |
---|
2099 | susan_thin(r,mid,x_size,y_size); |
---|
2100 | edge_draw(in,mid,x_size,y_size,drawing_mode); |
---|
2101 | } |
---|
2102 | |
---|
2103 | break; |
---|
2104 | |
---|
2105 | /* }}} */ |
---|
2106 | case 2: |
---|
2107 | /* {{{ corners */ |
---|
2108 | |
---|
2109 | r = (int *) malloc(x_size * y_size * sizeof(int)); |
---|
2110 | setup_brightness_lut(&bp,bt,6); |
---|
2111 | |
---|
2112 | if (principle) |
---|
2113 | { |
---|
2114 | susan_principle(in,r,bp,max_no_corners,x_size,y_size); |
---|
2115 | int_to_uchar(r,in,x_size*y_size); |
---|
2116 | } |
---|
2117 | else |
---|
2118 | { |
---|
2119 | if(susan_quick) |
---|
2120 | susan_corners_quick(in,r,bp,max_no_corners,corner_list,x_size,y_size); |
---|
2121 | else |
---|
2122 | susan_corners(in,r,bp,max_no_corners,corner_list,x_size,y_size); |
---|
2123 | corner_draw(in,corner_list,x_size,drawing_mode); |
---|
2124 | } |
---|
2125 | |
---|
2126 | break; |
---|
2127 | |
---|
2128 | /* }}} */ |
---|
2129 | } |
---|
2130 | |
---|
2131 | /* }}} */ |
---|
2132 | |
---|
2133 | put_image(argv[2],in,x_size,y_size); |
---|
2134 | } |
---|
2135 | |
---|
2136 | /* }}} */ |
---|