
This document describes the MutekH build system.

Overview of the build process
The build system use one or more used defined build configuration files to compiles the desired kernel together
with the application.

The build system takes care of features dependencies, file modifications, ... but is still simple to use for the
beginner. Available features, tweakable values and associated constraints are represented by configuration tokens
and described by developers through configuration description files (.config) in the source tree.

Depending on the target architecture, the binary output file may be an ELF (.out), a plain binary file (.bin), an
intel-hex file (.hex) or an object file (.o).

User point of view

Invocation

When building MutekH, several options may be used to change the behavior of the build system. These options are
given through variables when calling make, in the form:

$ make VAR1=value1 VAR2=value2

Real build process invocation just need to specify build configuration to use:

When using a flat build configuration file:

$ make CONF=examples/hello/config_soclib_mipsel

When using a sectioned build configuration files, you need to specify which sections must be considered for the
build:

$ make CONF=examples/hello/config BUILD=soclib-mips32el
$ make CONF=examples/hello/config BUILD=soclib-arm:debug

Main variables

The following option is mandatory:

CONF=
An absolute path to the build configuration file.

The following option may be required depending on build configuration file:

BUILD=
A colon separated list of build section names to consider in the build configuration file.

The following options may be useful:

VERBOSE=1
Prints all the commands executed

User point of view 1

The following options are useful when building out of the source tree:

MUTEK_SRC_DIR
An absolute path to the MutekH source tree. This defaults to .

BUILD_DIR
An absolute path to the directory containing the objects and results, this defaults to .

CONF_DIR
An absolute path to the directory containing the .config.* files, this defaults to $(BUILD_DIR)

Make targets

The following targets are available

kernel
This is the default target. It builds the kernel for the specified configuration file.

kernel-het
This target builds multiple kernels for heterogeneous multiprocessors platforms.

clean
This target cleans all the compilation results

The following targets are for informational purposes

showpaths
This prints the modules that will be built, their paths, ?

cflags
This prints the flags used for compilation

The following targets are available to get help about configuration.

listconfig
Prints the current configuration as expanded by MutekH build system. It also prints available --- but
currently undefined --- configuration tokens.

listallconfig
Prints all the configuration tokens, even the ones incompatible with the current configuration.

showconfig
This prints detailed information about a given configuration token. Token must be specified with TOKEN=
variable argument.

See usage below.

Build configuration files

Content

MutekH build configuration files contain token values pairs defining the kernel we are currently building. They
must contain:

the license for the application, enforcing license compatibility between some kernel parts and your code,•
the target architecture•
the libraries used, and their configurations•
the used drivers•
some global compilation switches (optimization, debugging, ?)•

Main variables 2

...•

Basic syntax

Syntax is token space value. Tokens begin with CONFIG_. Value may be omitted thus defaults to defined.
e.g.

CONFIG_LICENSE_APP_LGPL

Platform type
CONFIG_ARCH_EMU

Processor type
CONFIG_CPU_X86_EMU

Mutek features
CONFIG_PTHREAD

Device drivers
CONFIG_DRIVER_CHAR_EMUTTY

Code compilation options
CONFIG_COMPILE_DEBUG undefined

...

Most common values are defined and undefined to enable and disables features, but some tokens may need
numerical or string values.

The easiest way to write a configuration file is to rely on and include common sectioned configuration files and just
write the minimal application related configuration yourself. See below.

Have a look to trunk/mutekh/examples/hello for examples of working build configuration files.

The MutekH API reference manual describes all available configuration tokens.

Help display

You can display a list of relevant tokens with their value for a given configuration:

$ make CONF=path/to/config_file listconfig

You can display a list of *all* tokens with their value for a given configuration:

$ make CONF=path/to/config_file listallconfig

To display help about a specific token:

$ make CONF=path/to/config_file showconfig TOKEN=CONFIG_PTHREAD

Module declaration

A build configuration file may declare a new module. Modules can be located anywhere outside of the main source
tree. We must tell the build system the directory where the configuration lies. The path to the module directory is
usually the same as its configuration file and the CONFIGPATH special variable is well suited:

New source code module to be compiled

Content 3

http://www.mutekh.org/www/mutekh_api/

%append MODULES name:module_dir
 %append MODULES hello:$(CONFIGPATH)

Output name

the MutekH build system takes care of building in directory named after application name and build target. This
determine the application output file name too. You may want to set your application output name in build
configuration file:

 %set OUTPUT_NAME hello

Advanced syntax

Basic configuration is really simple. Complex applications or multiple target architectures require maintaining
multiple configuration files which can be difficult and annoying. The directives presented here are used to make
things easier. They are mainly used in common build configuration files found in trunk/mutekh/examples/build.

Sectioning directives are useful to consider a set of configuration definitions depending on the BUILD variable of
make invocation:

%section pattern [pattern ...]
Start a section which will be conditionaly considered depending on the BUILD variable. pattern is a
pattern matching expression which may contain text, hypens and wildcards (e.i. text-text-*).
Wildcards match non-empty and non-hypens text. A new %section token automatically
terminate previous section.

%common
Revert to unconditional common file part, default at beginning of a file.

%else
Change current conditional state.

%subsection [pattern ...]
Begin a nested section. Multiple levels of subsections can be used. Subsections thus defined must be end by
%end.

%end
End a subsection started with %subsection.

Section types directives can be used to enforce use of sections:

%types type [type ...]
Specify that the current section exhibits the given types. No more than one section can be in use with the
same type.

%requiretypes type [type ...]
All specified types must have been defined. May be used in sections or common part.

Build configuration files may contain variables:

%set variable content
Set a variable which can be expanded using $(variable) syntax. Environment is initially imported as
variables. Moreover $(CONFIGPATH) and $(CONFIGSECTION) are predefined special variables.

%append variable content
Appends content to a variable.

Build configuration files may include other files:

%include filename

Module declaration 4

Include a configuration file, the new file always begin in %common state.

Build configuration files may report things to the user:

%notice text
Produce a notice message.

%warning text
Produce a warning message.

%die text
Produce an error message.

%error text
Produce an error message with file location information.

The default section name is in use when no section name is passed through the BUILD variable.

Some build configuration files are available in examples/common and can be included to target common platforms
without having to deals with all configuration token. This helps keeping application configuration file short.
Configuration tokens can be redefined multiple times, allowing to override values set in included files.

Developer point of view
MutekH has a component-based architecture where each module declares its configuration tokens.

Tokens are declared in configuration description files which are located at various places in the MutekH source
tree. These constraints configuration files have a different syntax from the build configuration files. They are
designed to declare configuration tokens and express relationships between available tokens.

Declared tokens can have their value changed in build configuration files and can be tested from C source code and
Makefile.

The .config constraints files

For each configuration token, one may use the following tags:

desc Description string without quotes
Short description about the token flags FLAGS [?] Set some flags with special meaning for the token.

parent TOKEN
Hierarchical dependency, it ensures all token with a parent gets silently undefined if the parent is
undefined. This prevents options enabled by default to stay enabled if the parent is disabled; this way it
avoids errors due to unneeded requirements. This is also used to hide irrelevant tokens from the help screen
if the parent token is undefined. Tokens with no parent must have the root flag set or use the module
tag.

default value
Set the token default value. defined and undefined values act as booleans. default value is
undefined if this line is omitted. module name [long name] The feature token is associated with
a module name. A module with the given name and the actual config file directory will be considered for
building when the token gets defined.

The following tags may be used to specify features constraints:

depend TOKEN [?]

Developer point of view 5

Dependencies, at least one of the feature tokens on the line is required, if unsatisfied the current token gets
undefined and a notice is emitted. May be used to disable features because of missing prerequisites.

exclude TOKEN
Specify excluded token, the current and specified token must not be defined at the same time.

single TOKEN [?]
Only one of the following tokens may be defined at the same time

when TOKEN_CONDITION [?]
The current feature token will be automatically defined if all specified conditions are met.

Some tags may be used to deals with values rather than features enabling tokens. Value tokens must have the
value flag set:

require TOKEN_CONDITION [?]
Mandatory requirements, having at least one of the tokens on the line is mandatory, conflict yields error.
May be used to enforce definition of some mandatory configuration values.

provide TOKEN=value
Defining the current feature token enforce definition of the specified value token with the given value. The
nodefine flag indicate token is for internal use and can not be defined by the user.

Some tags can be used to give some configurations advice to the user when building MutekH:

suggest TOKEN_CONDITION
Defining the current feature token suggest the given condition to the user.

suggest_when TOKEN_CONDITION [?]
The current token will suggest being considered to the user if it still has its default value and all condition
are met.

The TOKEN_CONDITION might check different conditions:

Token definition check: TOKEN or TOKEN!•
Token value equality check: TOKEN=value•
Token numerical value magnitude check: TOKEN<value or TOKEN>value•

The configuration tool will check all rules when building MutekH with a given build configuration file.

Example:

%config CONFIG_FEATURE
 desc This is a great module for MutekH
 depend CONFIG_MUTEK_SCHEDULER
 module great The great library
 require CONFIG_CPU_MAXCOUNT>1
%config end

%config CONFIG_FEATURE_DEBUG
 desc Enable debug mode for the great feature
 parent CONFIG_FEATURE
 provide CONFIG_FEATURE_STACK_SIZE=4096
 when CONFIG_DEBUG
%config end

%config CONFIG_FEATURE_STACK_SIZE
 desc This is the thread stack size for the great feature
 parent CONFIG_FEATURE
 flags value
 default 512
%config end

The .config constraints files 6

Source tree Makefile syntax & rules

Makefiles in source directories may use the following variables:

objs
A list of .o files compiled from .c, .s or .S files

meta
A list of files that may be translated from .m4, .cpp or .def files

copy
A list of files that must be copied verbatim from source directory to object directory

subdirs
A list of subdirectories where more files are to be processed. These directories must exist and contain a
Makefile.

doc_headers
A list of header files which must be parsed to generate the MutekH API reference manual, see header
documentation for details.

Makefiles may contain optional flags that may be used for compilation:

file.o_CFLAGS=?
CFLAGS to use for a given object

DIR_CFLAGS=?
CFLAGS to use for all the objects compiled by the current Makefile. Flags added by this setting add-up
with the object-specific ones above.

Moreover, one may use ifeq (?,?) make constructs to conditionally compile different things. Configuration
tokens are usable.

Example:

objs = main.o

ifeq ($(CONFIG_SRL_SOCLIB),defined)
objs += barrier.o sched_wait.o srl_log.o hw_init.o
else
objs += posix_wait_cycles.o
endif

main.o_CFLAGS = -O0 -ggdb

The arch & cpu specific parts

Architecture and CPU directories have some special files which are injected in the building process:

config.mk, included by make. It can define some compilation flags•
ldscript, invoked at link-time.

Architecture ldscript must create a loadable binary♦
CPU ldscript usually only specifies the entry point name♦

•

config.mk

The arch config.mk may override the following variables:

ARCHCFLAGS

Source tree Makefile syntax & rules 7

http://www.mutekh.org/www/mutekh_api/

C-compiler flags
ARCHLDFLAGS

Linker flags
LD_NO_Q

Linker for the current architecture does not support -q switch, this slightly changes the linking process.
HOSTCPPFLAGS

Flags to give to host's cpp (HOSTCPP) program. This is only used for expansion of .def files.

The cpu config.mk may override the following variables:

CPUCFLAGS
C-compiler flags

CPULDFLAGS
Linker flags

ldscript

Try info ld for a guide through ldscripts?

This ldscript is taken from architecture's object directory, thus it may be obtained from either:

copy•
m4 processing•
cpp processing•

See arch/emu/ldscript, arch/soclib/ldscript.m4, and arch/simple/ldscript.cpp for the three flavors !

Notes

Prerequisites

The MutekH build-system is based on GNU Make features. It makes intensive use of:

includes•
$(foreach) $(subst) $(eval) $(call) macros•
macro definitions•

Therefore, a Make-3.81 at least is mandatory.

Notes 8

