
Introduction
This document describes the MutekH build system configuration files and is intended for kernel developers.

Be sure to first read the BuildSystem page which contains more basic information.

MutekH has a component-based architecture where each module declares its configuration tokens.

Tokens are declared in configuration description files which are located at various places in the MutekH source
tree. These constraints configuration files have a different syntax from the build configuration files. They are
designed to declare configuration tokens, express relationships between available tokens and describe associated
constraints.

Declared tokens may be assigned in build configuration files to build with a given configuration. Their values can
later be tested from source code and Makefile files using C macros and make variables.

The .config files syntax
Configuration description and constraints files contains blocks. Each block begins with %config or %init and
declares a new token. See examples below for syntax details.

Configuration tokens declaration

Their are several types of configuration tokens:

normal features enabling tokens which can be either defined or undefined in build configuration files.•
meta tokens which can only get defined through definition of other tokens.•
value tokens which can have any value.•

Token flags

Several flags can be attached to tokens, most important ones are:

value
Indicate the token is a value token. Value tokens can not have dependencies but can take values other than
defined and undefined

meta
Indicate the token is a meta token which may only be defined by an other token using the provide tag.

auto
Indicate the token may be automatically defined to satisfy dependencies.

Other flags can be attached to tokens:

harddep
Indicate the token can not be safely undefined due to a unsatisfied dependency.

mandatory
Indicate the token can not be undefined at all. Useful to enforce requirements on other tokens, mainly for
mandatory modules.

root
Indicate the token has no parent.

internal

The .config files syntax 1

Indicate the token is for internal use and can not be defined in build configuration file directly.
noexport

Indicate the token should not be written out in generated files.
private

Indicate the token can not be used with parent, depend or provide tag from an other .config file.

Constraint tags

For each configuration token, one may use the following tags:

desc Description string without quotes
Short description about the token, multiple desc tags will be concatenated.

flags FLAGS [?]
Set some flags with special meaning for the token (see above).

parent CONFIG_TOKEN
Hierarchical dependency, it ensures all token with a parent gets silently undefined if the parent is
undefined. This prevents options enabled by default to stay enabled if the parent is disabled; this way it
avoids errors due to unneeded requirements. This is also used to hide irrelevant tokens from the help screen
if the parent token is undefined.

default value
Set the token default value. defined and undefined values act as booleans. default value is
undefined if this line is omitted.

module name [long name]
The feature token is associated with a module name. A module with the given name and the actual config
file directory will be considered for building when the token gets defined.

The following tags may be used to specify features constraints:

depend CONFIG_TOKEN [?]
The tag must be used to express feature dependencies, at least one of the given feature tokens is required.
Unsatisfied dependency undefine the current token and emit a notice, unless flags modify this behavior.

single CONFIG_TOKEN [?]
Same as depend with the additional constraint that only one of the given tokens may be defined.

exclude CONFIG_TOKEN
Specify excluded tokens, the current token must not be defined at the same time as any given token.

when CONFIG_TOKEN_CONDITION [?]
The current feature token will be automatically defined if all specified conditions are met. Missing
dependencies will emit a notice as if it was defined in the build configuration file.

provide CONFIG_TOKEN
Define a meta token if the current token is defined.

Some tags may be used to deals with values tokens. Value tokens must have the value flag set:

require CONFIG_TOKEN_CONDITION [?]
Requirements on value tokens, having at least one condition evaluates to true on the line is mandatory if the
current token is defined.

provide CONFIG_TOKEN=value
Set a value token to the specified value if the current token is defined.

Some tags can be used to give some configurations advice to the user when building MutekH:

suggest CONFIG_TOKEN_CONDITION
Defining the current feature token suggest the given condition to the user.

Token flags 2

suggest_when CONFIG_TOKEN_CONDITION [?]
The current token will be suggested to the user if dependencies are actually satisfied and all given
conditions are met.

The CONFIG_TOKEN_CONDITION might check different conditions:

Token definition check: CONFIG_TOKEN or CONFIG_TOKEN!•
Token value equality check: CONFIG_TOKEN=value•
Token numerical value magnitude check: CONFIG_TOKEN<value or CONFIG_TOKEN>value•

The configuration tool will check both constraint rules consistency and build configuration file respect of the rules
when building MutekH.

Example

Configuration constraints example:

%config CONFIG_FEATURE
 desc This is a great module for MutekH
 depend CONFIG_MUTEK_SCHEDULER
 module great The great library
 require CONFIG_CPU_MAXCOUNT>1
%config end

%config CONFIG_FEATURE_DEBUG
 desc Enable debug mode for the great feature
 parent CONFIG_FEATURE
 provide CONFIG_FEATURE_STACK_SIZE=4096
 when CONFIG_DEBUG
%config end

%config CONFIG_FEATURE_STACK_SIZE
 desc This is the thread stack size for the great feature
 parent CONFIG_FEATURE
 flags value
 default 512
%config end

Initialization tokens declaration

Initialization order of different software components at system start needs close attention. Having all modules and
features initialized in proper order is challenging in modular and configurable projects like MutekH.

The configuration tools offers a way to specify initialization code ordering constraints and to optionally associate
them to configuration tokens. This has several advantages:

It allows inserting external modules initialization code in the right place without patching the main tree.•
It avoids the burdensome work of maintaining initialization function calls and associated #ifdef
directives.

•

It ensures initialization function invocations do not get badly reordered to satisfy a new constraint, while
ignoring an older one.

•

A C source file will be generated with given initialization code respecting ordering constraints and current
configuration. An error will be emitted if constraints can not be satisfied.

Constraint tags 3

Constraint tags

For each configuration token, one may use the following tags:

parent CONFIG_TOKEN
When this tag is present, the initialization rules described in the block are ignored if the associated
configuration token is undefined.

after INIT_TOKEN
This tag imposes the requirement that the code from current token be executed after the code associated
with INIT_TOKEN.

before INIT_TOKEN
This tag imposes the requirement that the code from current token be executed before the code associated
with INIT_TOKEN.

during INIT_TOKEN
This tag make token inherits from constraints expressed for the given INIT_TOKEN. The given token must
be a place holder token and can not have associated code.

code C code here
This tag associates some initialization C code to the token. This tag may be used multiple times to add
more code lines.

Example

Initialization constraints example:

%init INIT_FEATURE
 parent CONFIG_FEATURE
 during INIT_LIBRARIES
 after INIT_LIBC_STDIO # an explanation why this is needed
 code great_feature_init();
%init end

Source tree Makefile syntax and rules
Makefiles in source directories may use the following variables:

objs
A list of .o files compiled from .c, .s or .S files

meta
A list of files that may be translated from .m4, .cpp or .def files

copy
A list of files that must be copied verbatim from source directory to object directory

subdirs
A list of subdirectories where more files are to be processed. These directories must exist and contain a
Makefile.

doc_headers
A list of header files which must be parsed to generate the MutekH API reference manual, see header
documentation for details.

Makefiles may contain optional flags that may be used for compilation:

file.o_CFLAGS=?
CFLAGS to use for a given object

DIR_CFLAGS=?

Source tree Makefile syntax and rules 4

http://www.mutekh.org/www/mutekh_api/

CFLAGS to use for all the objects compiled by the current Makefile. Flags added by this setting add-up
with the object-specific ones above.

Moreover, one may use ifeq (?,?) make constructs to conditionally compile different things. Configuration
tokens are usable.

Example:

objs = main.o

ifeq ($(CONFIG_SRL_SOCLIB),defined)
objs += barrier.o sched_wait.o srl_log.o hw_init.o
else
objs += posix_wait_cycles.o
endif

main.o_CFLAGS = -O0 -ggdb

The arch/ and cpu/ specific parts
Architecture and CPU directories have some special files which are injected in the building process:

config.mk, included by make. It can define some compilation flags•
ldscript, invoked at link-time.

Architecture ldscript must create a loadable binary♦
CPU ldscript usually only specifies the entry point name♦

•

The config.mk file

The arch config.mk may override the following variables:

ARCHCFLAGS
C-compiler flags

ARCHLDFLAGS
Linker flags

LD_NO_Q
Linker for the current architecture does not support -q switch, this slightly changes the linking process.

HOSTCPPFLAGS
Flags to give to host's cpp (HOSTCPP) program. This is only used for expansion of .def files.

The cpu config.mk may override the following variables:

CPUCFLAGS
C-compiler flags

CPULDFLAGS
Linker flags

The ldscript file

Try info ld for a guide through ldscripts?

This ldscript is taken from architecture's object directory, thus it may be obtained from either:

The arch/ and cpu/ specific parts 5

copy•
m4 processing•
cpp processing•

See arch/emu/ldscript, arch/soclib/ldscript.m4, and arch/simple/ldscript.cpp for the three flavors !

Notes

Prerequisites

The MutekH build-system is based on GNU Make features. It makes intensive use of:

includes•
$(foreach) $(subst) $(eval) $(call) macros•
macro definitions•

Therefore, a Make-3.81 at least is mandatory.

The configuration script requires perl >= 5.8.

Notes 6

