
Building examples applications
MutekH comes with some examples applications available in trunk/mutekh/examples. This page briefly explains
how to build these examples.

Required tools

Building MutekH requires the following standard software packages:

A GNU compiler or cross-compiler. See below.•
GNU make (>=3.81), available in most GNU/Linux and BSD operating systems.•
A perl interpreter (>=5.8), available in most GNU/Linux and BSD operating systems.•
A python interpreter, available in most GNU/Linux and BSD operating systems.•

Some builds may require the following additional tools

The flattened device tree compiler (dtc): ?http://git.jdl.com/gitweb/ . This tool is included in precompiled
toolchains.

•

The heterogeneous linker found in trunk/mutekh/tools/hlink, for heterogeneous platforms only.•

You may need real hardware or a simulator to run MutekH:

?Qemu to run native x86 binaries, available in most GNU/Linux distributions.•
?SoCLib to experiment with various multiprocessor platforms. A precompiled SoCLib platform is available
?here for test purpose. We suggest building your own platforms by installing SoCLib (see
?soclib:InstallationNotes).

•

You may need extra tools to deals with kernel images for some targets:

GNU mtools or mkisofs to create a x86 bootable disk images, available in most GNU/Linux distributions.•
GNU grub or etherboot to boot compiled kernel images, included in boot image in trunk/mutekh/tools/
directory.

•

The trunk/mutekh/tools/x86_cdrom.sh and trunk/mutekh/tools/x86_floppy.sh scripts are available to easily create
boot disk images.

GNU toolchain

MutekH comes with a script to build a complete cross-compilation toolchain for you. Some precompiled toolchains
are avaialble ?here as static i386 Linux binaries for convenience and quick start purpose. It should work on any
GNU/Linux i386 and x86_64 distributions.

We suggest building your own toolchain if you plan to work with MutekH. The tools/crossgen.mk script is able to
download, build and install toolchains for you.

There is an inline help:

 $ tools/crossgen.mk
[prints some help]

You can try a line like this one to get a Mips cross-compiler installed under ~/gnu:

 $ tools/crossgen.mk all TARGET=mipsel-unknown-elf PREFIX=$HOME/gnu

Building examples applications 1

http://git.jdl.com/gitweb/
http://www.qemu.org/
https://www.soclib.fr/
https://www.mutekh.org/www/tools/
http://www.soclib.fr/trac/dev/intertrac/InstallationNotes
https://www.mutekh.org/www/tools/

Building examples

Each example comes with its own config file which is used to configure the MutekH kernel build. This file contains
application specific configuration to enable kernel features.

Some other configuration options are related to target architecture. Some ready to use configuration sets for specific
targets are factored in the trunk/mutekh/examples/common directory. These configuration files are organized in
sections that can be enabled from the build command line. Look at the chosen example config file to determine if it
contains custom standalone configuration or if it relies on common configuration sets by including files from
trunk/mutekh/examples/common.

Please refer to the BuildSystem page for in depth description of the build system.

Some working examples are listed in trunk/mutekh/examples/README file.

You are encouraged to read platform specific tutorials and subscribe to the ?mutekh-users mailing list to get help or
report issues.

Using standalone and specific configuration file

Here is a make invocation for the hello example using a custom and standalone config file which targets x86 Linux
process (see QuickStartUnix):

$ make CONF=examples/hello/config_emu

Relying on common configuration files

Here are make invocations for various target architectures to build examples which are using common
configuration files:

As unix user process, on x86_64 machine running Linux:

$ make CONF=examples/hello/config BUILD=emu-linux-x86_64

•

To build a x86 machine (PC) bootable kernel

$ make CONF=examples/hello/config BUILD=ibmpc-x86

•

For SoCLib simulator, Mips32 Little endian, for caba-vgmn-mutekh_soclib_tutorial or
caba-vgmn-mutekh_kernel_tutorial platforms:

$ make CONF=examples/hello/config BUILD=soclib-mips32el:pf-tutorial

•

Heterogeneous builds for SoCLib simulator, Mips32 and Arm processors for
caba-vgmn-mutekh_kernel_tutorial platform:

$ make kernel-het CONF=examples/hello_het/config BUILD=pf-het EACH=soclib-mips32el:soclib-arm

•

Building examples 2

https://www.mutekh.org/wws/subscribe/mutekh-users

