
This document explains how to write correct documentation in header source files for the ?MutekH API reference
manual.

The manual is generate from both plain documentation file located in the doc/ directory and some chosen header
source files. These files are processed using the ?MkDoc tool. This tool comes with a manual, but it's still worth
detailing some MutekH specific issues here.

Documentation generation

Get the MkDoc tool

Installation is quite easy, you just have to get the source and add the mkdoc/src directory in your PATH
environment variable:

svn co http://svn.savannah.gnu.org/svn/mkdoc/trunk mkdoc
export PATH=$PATH:$PWD/mkdoc/src

You can install the package in a permanent way too with make install.

Building the doc

The MutekH build system handle all the tool invocation stuff:

$ make doc

Adding files and modules

If you want to add new header files, just insert a line in your local Makefile with the relative header name:

doc_headers = stdio.h sys/types.h

Every documented header file must contains a documentation for the file itself. This description comment must
contain a @file tag not to be attached to the next declaration (see example below).

Files, macros and symbols can be grouped in a documentation module. This is a good idea to create a
documentation module for each MutekH library. This can be done by declaring the new module in the
doc/top.mkdoc file:

@moduledef{My great library}
 @short This is a simple module example
 This module ... blabla ... long description.
@end group

The MutekH module must be added in the global doc/header_list.mk file too.

Module ownership can be declared in a per declaration basis using the @module tag, however it's inherited by
default. This means all symbols declared in a header file associated with a module are owned by the same module.

Configuration tokens

Build system configuration tokens are documented in each .config file using the mandatory %desc line. These
descriptions and all token relationships information is used to generate a dedicated section in the documentation.

Documentation generation 1

http://www.mutek.fr/www/mutekh_api/
http://www.mutek.fr/www/mutekh_api/
http://www.nongnu.org/mkdoc/

Module ownership must be specified in .config files for tokens being associated with their module:

%module My great library

%config CONFIG_MY_OPTION
desc Please try to write a really useful description here from now !!!
%config end

Writing documentation in headers

The rules

It's really important to follow these basic rules when
writing the documentation. Not following these rules
carefully would make your documentation useless,
as reading the source code directly will be more
attractve !!!
Here are the rules:

Please always make complete sentences starting with Capitals. (It would be great to apply this to
configuration tokens description too).

•

Do not make sentences for short description of files and modules introduced by a @short tag.•
Do not forget to insert reference tags for each identifier and macro name, so that MkDoc can generate an
hyperlink. Not having a direct link is really frustrating for the reader.

•

Remember that you can not count on other declarations proximity to make things obvious, contiguous
things in the header may not be contiguous in the document.

•

Try to mark all internal declarations as such, this will help sorting lists with relevant items first, using
the right style, and make things clear.

•

Consider the warning messages from MkDoc and read carefully the output document to double check
previous rules and see if everything is easily understandable and make sens.

•

Comments format

Code documentation is inserted in source file using special comment formats beginning with /** (exactly 2
stars) or //<. The former must be placed before the associated declaration. The latter must be placed after the
declaration but doesn't work with macros if on the same line (it's a feature, read the manual :)).

/** This is a special error code. */
#define EPOUFCTOUT 42

int useless; //< @this may not be used.

The @this tag can be used as a shortcut which is replaced by something like "This static function", "This
variable" ...

/**
 @file

Writing documentation in headers 2

 @short Useless header file
 @module {My great library}

 Some optional long description and documentation...
*/

/** get a useless value (BAD) */
int badly_commented();

/** This function gets a useless value. */
int well_commented();

/** @this gets a useless value. */
int smartly_commented();

Useful tags

Many other tags are useful:

@internal: This tag must be used to mark internals functions. In the MutekH project the policy is to
mark all symbols which should not be used directly by the user as internal. Internal are still displayed in
the documentation but marked as such.

•

@hidden: This tag must be used to hide something you really don't want to appear in the documentation.
Note that preprocessor macros are hidden by default if not commented.

•

@multiple: This tag can be used to apply the same documentation more than once, up to the next
documentation comment.

•

@param and @return: These tags can be used to document parameters and return values. Please don't
use it for all functions if the information are obvious. The @return tag starts a sentence like "The return
value is". The @param tag adds a "Parameters list:" if at the beginning of a paragraph. Do not forget to
insert an empty line when beginning a normal text paragraph after these tags.

•

@showcontent: This tag can be used to make the content of a preprocessor macro and numerical values
of enums visible in the documentation.

•

@ref and @see: These tags may be used when refering to an other symbol. The @ref tag just insert a link
to the specified symbol where it appears. @see tags automatically generate a nice sentence add the symbol
documentation end pointing to all related symbols. Do not forget to prepend a sharp (#) sign to macro
names as they are in a different name space to avoid collisions. Headers and modules can be refered too
with @ and + sign prefix.

•

@url can be used to add an internet link. You may use this to link against this wiki.•

Some examples:

/** @hidden */
#define while if

/**
 @multiple @internal
 @this is an internal error code.
 @see #EPOUFCTOUT @see #ESTUPIDUSER
 */
#define EFOO 1
#define EBAR 2

/**
 @this is really complex, you have better using the @ref works_better function instead.

 @param a Action to perform
 @param b Repeat count
 @param c Special parameter
 @return the negative error code.

Comments format 3

 */
int la_fonction_qui_fait_tout(char *a, int b, const short c);

/**
 @this expands to something hard to explain.
 @showcontent
*/
#define X(a,b) do { int c = a(b); } while (0)

/**
 @this defines the prototype for the generic function.
 @see my_prototype_t
*/
#define MYPROTOTYPE(n) int (n)(int a, int b)

/**
 This function type does a lot of cool things which are described here.
 @param a The first parameter
 @param b The second parameter
 @return the special AlmSum operator result.
 @see #MYPROTOTYPE
*/
typedef MYPROTOTYPE(my_prototype_t);

Many other tags can be used to format text, insert examples, write structured plain documentation... Please refer to
the ?MkDoc manual for detailled syntax and usage of discussed tags and list of other cool tags.

What goes in the generated doc
Its embedded preprocessor enables MkDoc to expose declarations which take place in macro expansion
with information about involved header files, macros and exact line positions. Please do not comment
things twice when repeated but enclosed in a #if #else #endif as this is useless unless you want to
show different macro contents for instance.

•

The preprocessor keeps track of nested conditional context and the resulting conditional expression
required for a declaration to actually take place is exposed in the documentation. This includes
configuration tokens which are described in the documentation. Note that macros which are not
documented are ignored here.

•

Multiple declarations of the same macro or symbol name are taken into account separately but generate
links to homonym declarations. This is useful for repeated declaration with different preprocessor
conditions and for prototypes repeated in different files.

•

Links against online MutekH source code repository with file and line number are generated correctly for
each declaration provided that the svn revision number is coherent with the one in doc/mkdoc.conf

•

.

Generated output
The default is to generate html documentation in doc/html, but tweaks and other formats are available as
described in MkDoc manual. You may for instance generate a latex source file:

make doc MKDOCFLAGS='--doc-format latex'

Generated output 4

http://www.nongnu.org/mkdoc/

