MutekH quick start guide for SoCLib platform

Dans le cadre du projet SOCLib/ANR seules ces deux types de configuration sont documentées. D'autres
configurations sont possibles dont, par exemple, celle adaptée aux cartes meres de PC/x86. Elles ne sont pas
documentées ici, mais sont présentent dans le dépot svn de MutekH.

MutekH est compilable sur plusieurs processeurs de la bibliotheque SoCLib comme le Mips et le PowerPC. Il est
également compilable sur intel X86 en natif ou en émulation dans un processus Unix.

Les configurations de MutekH

MutekH est entierement configurable pour s'adapter a la fois au matériel sur lequel il s'exécute mais aussi aux
besoins de I'application. Il existe une centaine de parametres permettant de définir une configuraion. Chaque
parametre peut prendre plusieurs valeurs. Les parametres ne sont pas indépandants les uns vis a vis des autres, deux
parametres peuvent s'exclure ou dépendre 1'un de I'autre. MutekH facilite la définition d'une configuration en
vérifiant les regles de dépendances et la cohérences des valeurs.

Dans ce document nous allons voir deux configurations.
1. Une configuration pour une plateforme x86 émulée dans un processus unix.

1]

L'intérét de cette plateforme est qu'elle permet de mettre au point une application en bénéficiant des
performances de la machine hote. Elle permet également d'exécuter une application sans que I'installation
de SoCLib ne soit nécessaire. L'inconvénient est que le seul périphérique disponible est le terminal.

1]

Les premieres applications de ce document utilisent cette configuration. Au dela de son aspect jouet, cette
configuration est utile a chaque fois que 1'on s'intéresse a la mise au point d'un algorithme et que I'on a pas

besoin de coprocesseurs, ni d'interruption.

2. Une configuration pour un cluster a 4 processeurs (Mips ou PowerPC) autour d'un NoC/VCI. Cette
configuration permet de créer une application pour un simulateur de SoC en systemC/SoCLib.

Premiers pas sur une plateforme emulée

Pour ce premier essai seules les sources de MutekH sont nécessaires.

Récuperation des sources

svn co -r 900 https://www—asim.lip6.fr/svn/mutekh/trunk/mutekh

crée un répertoire mutekh contenant les sources et les documentations de MutekH. L'organisation des sources suit
celle des bibliothéques.

Premiers pas sur une plateforme émulée 1

mutekh

|-— arch code dépendant des plateformes
|-— cpu code dépendant des processeurs
| -— doc documentation

|-— drivers pilotes des périphériques

| -— examples Test and example programs

|-— gpct API de gestion des ensembles

| -— hexo API d'Hexo

|-— libc API standard C

|-— libnetwork API de la pile de protocole réseau
|-— libpthread API des threads Posix

|-— libsrl

|-— libunix API des appels systéme Unix
|-— libvfs API Virtual File System

| —— mutek

|-— scripts

'—-— tools

Ecriture du premier programme

Le programme de test va étre placé dans un sous-répertoire du répertoire de mutekh.
Note: Cet exemple est disponible directement dans le sous repertoire examples/hello.

1. Création du répertoire de test, dans le répertoire mutekh

mkdir hello
cd hello

2. Ecriture du programme suivant dans le fichier hello.c

#include <pthread.h>

pthread_mutex_t m;
pthread_t a, b;

void *f (void *param)
{
while (1)
{
pthread_mutex_lock (&m) ;

printf (" (%1i) %s", cpu_id(), param);
pthread_mutex_unlock (&m) ;
pthread_yield();
}
}
int main ()
{
pthread_mutex_init (&m, NULL);
pthread_create(&a, NULL, £, "Hello ");
pthread_create (&b, NULL, f, "World\n");

}
3. Ecriture d'un Makefile

objs = hello.o

Configuration de MutekH

Tapez le fichier de configuration suivant dans le fichier hello/config_emu Nous verrons plus loin la
signification des configurations. Disons rapidement que cette configuration indique:

Récuperation des sources

¢]a licence de I'application (et la vérification que les composants sont compatibles avec ce choix),
e que la plateforme cible s'exécute dans un processus Unix sur une plateforme X86

e que l'application utilise les Pthreads.

® que les affichages se font sur le terminal.

e que 'on déclare un nouveau module nommé "hello".

Le code source de MutekH est découpé en modules. Nous devons declarer un noveau module que nous appelerons
"hello" pour que notre application soit compilée en méme temps que le reste du systeme. Le chemin de ce module
doit étre spécifié, dans notre cas ce chemin est identique a celui du fichier de configuration que nous écrivons.

Application license
CONFIG_LICENSE_APP_LGPL

Platform types
CONFIG_ARCH_EMU

Processor types
CONFIG_CPU_X86_EMU

Mutek features
CONFIG_PTHREAD
CONFIG_MUTEK_CONSOLE

Device drivers
CONFIG_DRIVER_CHAR_EMUTTY

Code compilation options
CONFIG_COMPILE_DEBUG

New source code module to be compiled
CONFIG_MODULES hello:%CONFIGPATH

4. Compilation de I'application et de MutekH

La compilation se fait depuis le répertoire de MutekH en tapant:

make CONF=hello/config_emu

Le Makefile compile les sources du systeme et de 1'application en tenant compte du fichier de configuration. Le
résultat de cette compilation est:

kernel-emu-x86-emu.out

5. Exécution

L'exécution du programmme kernel-emu-x86-emu.out rend normalement:

(0) Hello (0) World
(0) Hello (0) World
(0) Hello (0) World
(0) Hello (0) World

Aller plus loin avec une plateforme SoCLib

Aller plus loin avec une plateforme SoCLib

Récupération des sources de SoCLib

Il faut disposer d'une installation fonctionnelle de SoCLib, on vous renvoie au site de soclib a la page d'installation:
2https://www.soclib.fr/trac/dev/wiki/InstallationNotes

Description de la plafeforme SoCLib

Pour ce premier contact avec MutekH, nous avons préparé un plateforme a 4 processeurs. Cette plateforme se
trouve dans les plateformes de démo de SoCLib dans le répertoire
soclib/soclib/platform/topcells/caba-vgmn-mutekh_tutorial/.

Configuration de MutekH

Note: Cet exemple est disponible directement dans le sous repertoire examples/hello.

La configuration de MutekH pour une plateforme simulée de 4 processeurs va etre placée dans le fichier
hello/config_soclib_mips:

Application license
CONFIG_LICENSE_APP_LGPL

Platform types
CONFIG_ARCH_SOCLIB

Processor types, Mips little endian with multiprocessor support up to 4 cpus
CONFIG_CPU_MIPS
CONFIG_CPU_MIPS_VERSION 32
CONFIG_CPU_ENDIAN_LITTLE
CONFIG_SMP
CONFIG_CPU_MAXCOUNT 4

CONFIG_CPU_RESET_HANDLER

Mutek features
CONFIG_PTHREAD
CONFIG_MUTEK_CONSOLE

Device drivers
CONFIG_DRIVER_CHAR_SOCLIBTTY
CONFIG_DRIVER_ICU_SOCLIB
CONFIG_ARCH_DEVICE_TREE

New source code module to be compiled
CONFIG_MODULES examples/hello:$%$CONFIGPATH

definitions of the memory sections where to put things
CONFIG_ROM_ADDR 0x60100000
CONFIG_ROM_SIZE 0x00100000

CONFIG_RAM ADDR 0x62600000
CONFIG_RAM SIZE 0x00100000

Add an hardware enumerator

CONFIG_FDT
CONFIG_DRIVER_ENUM_FDT

On note que la définition des processeurs change. On indique qu'il s'agit de 4 mips de type bigendian. Le systeme
peut donner des informations sur les options en tapant la commande:

Récupération des sources de SoCLib 4

https://www.soclib.fr/trac/dev/wiki/InstallationNotes

make CONF=hello/config_mips showconfig TOKEN=CONFIG_SMP
L'ensemble des configurations possibles (une centaine) peut étre obtenu par la commande ci-apres:
make CONF=hello/config_mips listconfig

Voir BuildSystem pour plus d'informations

Description de la plateforme

On voit qu'on a ajouté un token CONFIG_ARCH_DEVICE_TREE dans le fichier de configuration, celui-ci sert a
dire qu'on a une définition de la plateforme sous forme d'un FlattenedDeviceTree qui accompagne le kernel.

11 faut en fait compiler cette description dans le kernel, en 1'ajoutant dans la Makefile. Le fichier
hello/Makefile contient alors:

objs = hello.o platform.o

Il faut ensuite ajouter un fichier plat form.dts, au format accepté par I'utilitaire dt c, contenant la définition de
la plateforme. Ce format est issu de I'lEEE1275 (Open Firmware).

/dts-vl/;
/A
model = "MutekH_Tutorial";
compatible = "MutekH_Tutorial";
#address-cells = <1>;
#size-cells = <1>;
cpus {
#address-cells = <1>;
#size-cells = <0>;
Mips, 32Q0 {
name = "Mips,32";
device_type = "cpu";
reg = <0>;
}i
Mips, 32@1 {
name = "Mips,32";
device_type = "cpu";
reg = <1>;
}i
Mips, 32@2 {
name = "Mips,32";
device_type = "cpu";
reg = <2>;
}i
Mips, 32Q@3 {
name = "Mips,32";
device_type = "cpu";
reg = <3>;
}i
}i
tty@O {

device_type = "soclib:tty";
tty_count = <1>;

Configuration de MutekH 5

reg = <0x90600000 0x10>;
icudev = &{/icu@0};
irg = <1>;

bi

icu@0 {
device_type = "soclib:icu";
input_count = <2>;
reg = <0x20600000 0x20>;
icudev = &{/cpus/Mips,32Q@0};
irg = <0>;
bi

timer@0 {
device_type = "soclib:timer";
timer_count = <1>;
reg = <0x01620000 0x10>;
icudev = &{/icuR0};
irg = <0>;
bi

memory@0 {
device_type = "memory";
cached;
memreg: reg = <0x61100000 0x00100000>;

}i

memory@1 {

device_type = "memory";

memreg: reg = <0x62600000 0x00100000>;
bi

chosen {
console = &{/ttyQ0};
}i
}i

Compilation de I'application et de MutekH

La plateforme mutek_tutorial s'adapte automatique a la configuration des sources de MutekH (type de cpu, ...). De
plus, on peut compiler le noyau depuis le répertoire de la plateforme, donc en dehors de 1'arborescence de MutekH.

La Makefile fournie contient tout le code nécessaire. Elle a besoin de 3 variables:

MUTEKH_DIR

Le répertoire contenant les sources de MutekH
APP

Le répertoire contenant les sources de l'application (ici le répertoire de hello)
CONFIG

Le fichier de configuration, dans le répertoire de la plateforme

La compilation de MutekH impose que les cross tools suivants soient disponibles:

¢ mipsel-unknown-elf-gcc

¢ mipsel-unknown-elf-1d
°?

$ cd soclib/soclib/platform/topcells/caba-vgmn-mutekh_tutorial
$ make MUTEKH_DIR=~/mutekh/ APP=~/mutekh/examples/hello CONFIG=config_ soclib

Description de la plateforme

Cette commande compile successivement le noyau, puis la plateforme.

Exécution

Le simulateur prend en argument le kernel a charger, ici, il est dans mutekh/kernel-soclib-mips.out

$./system.x mutekh/kernel-soclib-mips.out

Compilation de I'application et de MutekH

