
MutekH quick start guide for SoCLib platform
This quickstart guide only present 2 target plaforms among those supported by MutekH. These platforms are
linux/darwin user process and the SoCLib hardware simulator. Other supported platforms are multiprocessors
IBMPC/x86 and some micro-controllers.

MutekH can be compiled for Mips, Arm, PowerPC, x86 and Avr porcessors.

MutekH configurations
The MutekH kernel source code is fully configurable and can be tweaked to adapt hardware platform and
application needs. Configuration is handled by a dedicated tool which check dependencies and other relationships
between the large set of available configuration tokens.

This document present two source code configurations:

A first MutekH build designed to run embedded in a unix process.

This is the simplest way to have MutekH running as it does not need extra hardware or simulator. It enables
running MutekH natively on the host processor. This configuration suffer from several limitations
regarding available peripheral, but it is usefull to test and debug algorithms.

The first example below show how to run MutekH using this configuration.

1.

The second example below explain how to setup a SoCLib hardware simulator with 4 RISC processor
(Mips, Arm or PowerPC).

2.

Part 1 : Running MutekH in a UNIX process
This first example only require to get the MutekH source code.

Getting the sources
svn co -r 1024 https://www-asim.lip6.fr/svn/mutekh/trunk/mutekh

Source tree is organized this way:

mutekh
|-- arch contains hardware platforms modules for hexo
|-- cpu contains processors modules for hexo
|-- doc documentation
|-- drivers device and filesystem drivers
|-- examples Test and example programs

Part 1 : Running MutekH in a UNIX process 1

|-- gpct container library, available as a separate project
|-- hexo Hexo hardware abstraction layer
|-- libc standard C library
|-- libm standard math library
|-- libnetwork netwotk stack
|-- libpthread posix thread library
|-- libvfs virtual File System
|-- mutek hardware independant kernel code
|-- scripts build system scripts
`-- tools some usefull tools

More directories are actually available with other libraries and features.

Writing the example source code

Note: This example is available directly from examples/hello in source tree.

Creating a new modules directory

mkdir hello
cd hello

•

Writing the source code in hello.c

#include <pthread.h>

pthread_mutex_t m;
pthread_t a, b;

void *f(void *param)
{
 while (1)
 {
 pthread_mutex_lock(&m);
 printf("(%i) %s", cpu_id(), param);
 pthread_mutex_unlock(&m);
 pthread_yield();
 }
}
int main()
{
 pthread_mutex_init(&m, NULL);
 pthread_create(&a, NULL, f, "Hello ");
 pthread_create(&b, NULL, f, "World\n");
}

•

Writing the Makefile

objs = hello.o

•

Writing the MutekH configuration file

Our configuration file is named hello/config_emu. Details about configuration file is explained later. This
configuration file describe the following things:

The application license, used to check license consistency for modules in use,•
The target hardware platform and processor•
Use of the POSIX threads library•
Use of terminal output•

Getting the sources 2

Declaration of a new "hello" modules•

The MutekH source code is split in modules. We now have to declare our new module to have it compiled along
with the kernel by the build system. As modules may be located out of the source tree, we have to specify the
module directory.

Application license
 CONFIG_LICENSE_APP_LGPL

Platform types
 CONFIG_ARCH_EMU

Processor types
 CONFIG_CPU_X86_EMU

Mutek features
 CONFIG_PTHREAD
 CONFIG_MUTEK_CONSOLE

Device drivers
 CONFIG_DRIVER_CHAR_EMUTTY

Code compilation options
 CONFIG_COMPILE_DEBUG

New source code module to be compiled
 CONFIG_MODULES hello:%CONFIGPATH

Compiling the application along with MutekH

Simply type:

make CONF=hello/config_emu

Once the compilation process has finished, the executable binary is available:

kernel-emu-x86-emu.out

Execution

Simply execute the program as a normal unix executable:

$./kernel-emu-x86-emu.out
(0) Hello (0) World
(0) Hello (0) World
(0) Hello (0) World
(0) Hello (0) World
...

Part2 : Running MutekH in a multiprocessor SoCLib
simulator

Getting SoCLib

We now need to have a working SoCLib install. SoCLib installation is explained here:
?https://www.soclib.fr/trac/dev/wiki/InstallationNotes

Part2 : Running MutekH in a multiprocessor SoCLib simulator 3

https://www.soclib.fr/trac/dev/wiki/InstallationNotes

SoCLib platform description

The SoCLib source tree contains a platform dedicated to this tutorial:
soclib/soclib/platform/topcells/caba-vgmn-mutekh_tutorial/.

Getting the cross-compilers

You can rely on the tools/crossgen.mk script which comes along with MutekH to build some GNU
cross-compilers:

 $ tools/crossgen.mk
 $ tools/crossgen.mk all TARGET=mipsel-unknown-elf

Configuration de MutekH

Note: This example is readily available in the examples/hello directory in the MutekH source tree.

The MutekH configuration for the 4 Mips processors platform is in the hello/config_soclib_mipsel file:

Application license
 CONFIG_LICENSE_APP_LGPL

Platform types
 CONFIG_ARCH_SOCLIB

Processor types, Mips little endian with multiprocessor support up to 4 cpus
 CONFIG_CPU_MIPS
 CONFIG_CPU_MIPS_VERSION 32
 CONFIG_CPU_ENDIAN_LITTLE
 CONFIG_SMP
 CONFIG_CPU_MAXCOUNT 4

 CONFIG_CPU_RESET_HANDLER

Mutek features
 CONFIG_PTHREAD
 CONFIG_MUTEK_CONSOLE

Device drivers
 CONFIG_DRIVER_CHAR_SOCLIBTTY
 CONFIG_DRIVER_ICU_SOCLIB
 CONFIG_ARCH_DEVICE_TREE

New source code module to be compiled
 CONFIG_MODULES examples/hello:%CONFIGPATH

definitions of the memory sections where to put things
 CONFIG_ROM_ADDR 0x60100000
 CONFIG_ROM_SIZE 0x00100000

 CONFIG_RAM_ADDR 0x62600000
 CONFIG_RAM_SIZE 0x00100000

Add an hardware enumerator
 CONFIG_FDT
 CONFIG_DRIVER_ENUM_FDT

You may have noticed the processor definition change: we are now building for a 4 little-endian Mips processor
platform.

SoCLib platform description 4

Have a look to the BuildSystem page for more information about configuration system.

Platform description

As this hardware platform use now hardware enumeration (plug and play), the CONFIG_ARCH_DEVICE_TREE
token in the configuration file let the kernel get the platform layout description from a FlattenedDeviceTree which
will be built-in.

We have to provided the platform description FlattenedDeviceTree and add it to the Makefile to have it compiled
in. The hello/Makefile file must contain:

objs = hello.o platform-mips.o

The actual FlattenedDeviceTree source file platform-mips.dts contains:

/dts-v1/;

/ {
 model = "MutekH_Tutorial";
 compatible = "MutekH_Tutorial";
 #address-cells = <1>;
 #size-cells = <1>;

 cpus {
 #address-cells = <1>;
 #size-cells = <0>;
 Mips,32@0 {
 name = "Mips,32";
 device_type = "cpu";
 reg = <0>;
 icudev_type = "cpu:mips";
 };

 Mips,32@1 {
 name = "Mips,32";
 device_type = "cpu";
 reg = <1>;
 icudev_type = "cpu:mips";
 };

 Mips,32@2 {
 name = "Mips,32";
 device_type = "cpu";
 reg = <2>;
 icudev_type = "cpu:mips";
 };

 Mips,32@3 {
 name = "Mips,32";
 device_type = "cpu";
 reg = <3>;
 icudev_type = "cpu:mips";
 };

 };

 tty@0 {
 device_type = "soclib:tty";
 tty_count = <1>;
 reg = <0x90600000 0x10>;
 icudev = &{/icu@0};
 irq = <0>;

Configuration de MutekH 5

 };

 icu@0 {
 device_type = "soclib:icu";
 input_count = <2>;
 reg = <0x20600000 0x20>;
 icudev = &{/cpus/Mips,32@0};
 irq = <0>;
 };

 timer@0 {
 device_type = "soclib:timer";
 reg = <0x01620000 0x10>;
 icudev = &{/icu@0};
 irq = <1>;
 };

 memory@0 {
 device_type = "memory";
 cached;
 memreg: reg = <0x61100000 0x00100000>;
 };

 memory@1 {
 device_type = "memory";
 memreg: reg = <0x62600000 0x00100000>;
 };

 chosen {
 console = &{/tty@0};
 timer = &{/timer@0};
 };

};

Compiling the application along with MutekH

The MutekH kernel and th application may be built out of the source tree.

Change to the SoCLib platform directory and apply the following steps to experiment with out of tree compilation.
You have to setup the following variables:

MUTEKH_DIR
Path to MutekH source tree

APP
Path to application source

CONFIG
MutekH configuration file name

$ cd soclib/soclib/platform/topcells/caba-vgmn-mutekh_tutorial
$ make MUTEKH_DIR=~/mutekh/ APP=~/mutekh/examples/hello CONFIG=config_soclib_mipsel all

This will build the MutekH kernel allong with the application. You can still build MutekH separately as explained
in the first part. The simulator can then be built using:

$ cd soclib/soclib/platform/topcells/caba-vgmn-mutekh_tutorial
$ make system.x

Platform description 6

Execution

The simulator needs the MutekH executable file name and the processor type and count:

$./system.x mutekh/kernel-soclib-mips.out:mips32:4

You may want to refer to other articles available from the main page to go further with MutekH.

Execution 7

