
MutekH quick start guide for SoCLib platform
SoCLib simulator allow easy experimentation with advanced multi-processor programming.

This guide explains how to run MutekH on a SoCLib hardware simulator with native processor heterogeneity
support.

The SoCLib simulator used here is easy to use but has a complex internal design due to dynamic processors model
instanciation. This is really convenient if you want to experiment with different processors without modifying the
simulator. This simulator allows processor heterogeneity.

If you are interested in learning SoCLib hardware simulator, or plan to use SoCLib to model your own platform,
you have better reading the MutekH/SocCLib tutorial first.

You are highly encouraged to first follow the MutekH as Unix process quick start guide which introduce more
basic concepts.

The SoCLib platform

Getting SoCLib

We now need to have a working SoCLib install. SoCLib installation is explained here: ?soclib:InstallationNotes

Moreover, you'll need the MutekH source tree and its prerequisites. See InstallationNotes

SoCLib platform description

The SoCLib source tree contains a platform dedicated to this tutorial:
soclib/soclib/platform/topcells/caba-vgmn-mutekh_kernel_tutorial/.

The MutekH part

Getting the sources

svn co https://www-asim.lip6.fr/svn/mutekh/trunk/mutekh

Writing the example source code

The MutekH kernel source code is fully configurable and can be tweaked to adapt hardware platform and
application needs. Configuration is handled by a dedicated tool which check dependencies and other relationships
between the large set of available configuration tokens.

What you need to do:

Write the source code in hello.c• 
Write the Makefile• 
Write the platform-mips+arm.dts to describe hardware, see FlattenedDeviceTree for details.• 
Write the source configuration file, see BuildSystem for details.• 

Note: This example is available directly from examples/hello_het directory in source tree:
trunk/mutekh/examples/hello_het

MutekH quick start guide for SoCLib platform 1

http://www.soclib.fr/trac/dev/intertrac/InstallationNotes


Getting the cross-compilers

You can rely on the tools/crossgen.mk script which comes along with MutekH to build some GNU
cross-toolchains:

 $ tools/crossgen.mk
 $ tools/crossgen.mk all TARGET=mipsel-unknown-elf
 $ tools/crossgen.mk all TARGET=arm-unknown-elf

Compiling the application along with MutekH

$ cd path/to/mutekh
$ make kernel-het CONF=examples/hello_het/config BUILD=ph-het EACH=soclib-arm:soclib-mips32el

This will build the MutekH kernel along with the application. The simulator can then be built using:

$ cd path/to/soclib/soclib/platform/topcells/caba-vgmn-mutekh_kernel_tutorial
$ make system.x

Execution

The simulator needs the MutekH executable file name and the processor type and the number of processors of this
type:

$ cd path/to/soclib/soclib/platform/topcells/caba-vgmn-mutekh_kernel_tutorial
$ ./system.x mips32el:2 path/to/mutekh/kernel-mipsel.het.out arm:2 path/to/mutekh/kernel-arm.het.out

You may want to refer to other articles and documents available from the main page to go further with MutekH.

The BuildingExamples article explain how to build other sample applications.

Other more advanced topics and guides are available from the Main page.

Getting the cross-compilers 2


