
MutekH as Unix process quick start guide
This guide explain how to run MutekH embedded in a Unix process in a way similar to ?user mode linux. This is
the simplest way to run MutekH as it doesn't require any hardware platform. It will work if you running a Linux or
Darwin host kernel on x86 or x86_64 processor(s).

Overview

The MutekH operation system is built on top of the Hexo hardware abstraction layer. It's composed of several
modules and libraries.

When compiled to run embedded in a Unix process, minimal hardware ressource are needed: The host processor
and unix process memory are used as execution platform and a simple TTY driver redirect output to the Unix
terminal.

It enables running MutekH natively on the host processor. This configuration suffer from several limitations
regarding available peripherals, but it is usefull to test and debug algorithms.

Getting the sources

The example below show how to run MutekH using this configuration, it only requires to get the MutekH source
code.

MutekH as Unix process quick start guide 1

http://en.wikipedia.org/wiki/User-mode_Linux

The MutekH source code is fully configurable and can be tweaked to adapt hardware platform and application
needs. Configuration is handled by a dedicated tool which check dependencies and other relationships between the
large set of available configuration tokens.

svn co https://www.mutekh.org/svn/trunk/mutekh/

Source tree is organized this way:

mutekh
|-- arch contains hardware platforms modules for hexo
|-- cpu contains processors modules for hexo
|-- doc documentation
|-- drivers device and filesystem drivers
|-- examples Test and example programs
|-- gpct container library, available as a separate project
|-- hexo Hexo hardware abstraction layer
|-- mutek hardware independant kernel code
|-- libc standard C library
|-- libm standard math library
|-- libnetwork netwotk stack
|-- libpthread posix thread library
|-- libvfs virtual File System
...
|-- scripts build system scripts
`-- tools some usefull tools

More directories are actually available with other libraries and features.

Writing the example source code

Note: This example is available directly from examples/hello directory in source tree:
trunk/mutekh/examples/hello

Creating a new modules directory
mkdir hello
cd hello

•

Writing the source code in hello.c
#include <pthread.h>

pthread_mutex_t m;
pthread_t a, b;

void *f(void *param)
{

while (1)
{

 pthread_mutex_lock(&m);
 printf("(%i) %s", cpu_id(), param);
 pthread_mutex_unlock(&m);
 pthread_yield();

}
}
int main()
{
 pthread_mutex_init(&m, NULL);
 pthread_create(&a, NULL, f, "Hello ");
 pthread_create(&b, NULL, f, "World\n");
}

•

Writing the Makefile•

Getting the sources 2

objs = hello.o

Writing the MutekH configuration

Standalone configuration file

Our configuration file is named hello/config_emu. Details about configuration file is explained later. This
configuration file describe the following things:

The application license, used to check license consistency for modules in use,•
The target hardware platform and processor•
Use of the POSIX threads library•
Use of terminal output•
Declaration of a new "hello" modules•

The MutekH source code is split in modules. We now have to declare our new module to have it compiled along
with the kernel by the build system. As modules may be located out of the source tree, we have to specify the
module directory.

New source code module to be compiled
 CONFIG_MODULES examples/hello:%CONFIGPATH

Application license
 CONFIG_LICENSE_APP_LGPL

Platform types
 CONFIG_ARCH_EMU
 CONFIG_ARCH_EMU_LINUX

Processor types
 CONFIG_CPU_X86_EMU

 ...

The complete configuration file is available here: trunk/mutekh/examples/hello/config_emu.

Have a look to the BuildSystem page for more information about configuration system and configuration file
format. The MutekH API reference manual describes all available configuration tokens.

Generic configuration file

The flat and standalone configuration file described above is specific to the target emu architecture, GNU/Linux
host operating system and x86 32bits processor.

It's possible to write a more generic configuration file which relies on common files to target more platforms.

The complete generic configuration file is available here: trunk/mutekh/examples/hello/config.

Compiling the application along with MutekH

Getting the cross-compilers

You may have some success in compiling MutekH/emu using your readily available host GNU compiler. If it
doesn't work because, please use a MutekH toolchain. You can rely on the tools/crossgen.mk script which

Writing the example source code 3

http://www.mutekh.org/www/mutekh_api/

comes along with MutekH to build some GNU toolchains or download a precompiled toolchain. See
BuildingExamples page.

Compiling

Simply type something like:

make CONF=examples/hello/config_emu

or to use the generic configuration file:

make CONF=examples/hello/config BUILD=emu-linux-x86

The later allows targeting other emu platforms like MacOs X (darwin) and x86_64 processors and other hardware
platforms. See BuildingExamples for details.

Once the compilation process has finished, the executable binary is available.

Execution

Simply execute the program as a normal unix executable:

$./kernel-emu-x86-emu.out
(0) Hello (0) World
(0) Hello (0) World
(0) Hello (0) World
(0) Hello (0) World
...

Other more advanced topics and guides are available from the Main page.

Getting the cross-compilers 4

