121 | | Soit une fonction Booléenne quelconque F(x1, x2, x3, ... xn), dépendant de n variables. Soit la fonction Booléenne G, définie comme un produit (opérateur AND) d’un nombre queconque de variables xi (directes ou complémentées). On dit que G “satisfait” F sion a la relation G => F. (Autrement dit, si G = 1, alors F = 1). Remarquez que la condition G = 1 impose la valeur de toutes les variables appartenant au support de G (les variables directes doivent prendre la valeur 1, et les variables complémentées doivent prendre la valeur 0). Pour une fonction F donnée, il existe évidemment plusieurs |
122 | | fonction G qui satisfont F... |
| 121 | Soit une fonction Booléenne quelconque F(x1, x2, x3, ... xn), dépendant de n variables. Soit la fonction Booléenne G, définie comme un produit (opérateur AND) d’un nombre queconque de variables xi (directes ou complémentées). On dit que G “satisfait” F si on a la relation G => F. (Autrement dit, si G = 1, alors F = 1). Remarquez que la condition G = 1 impose la valeur de toutes les variables appartenant au support de G (les variables directes doivent prendre la valeur 1, et les variables complémentées doivent prendre la valeur 0). Notez que, |
| 122 | pour une fonction F donnée, il existe plusieurs fonction G qui satisfont F... |