
Repository Administration
Quick start1. 
Enabling the components2. 
Specifying repositories

In trac.ini1. 
In the database2. 

3. 

Repository caching4. 
Repository synchronization

Mercurial Repositories1. 
Explicit synchronization2. 
Per-request synchronization3. 

5. 

Automatic changeset references in tickets6. 
Troubleshooting

My trac-post-commit-hook doesn't work anymore1. 
7. 

Quick start

Enable the repository connector(s) for the version control system(s) that you will use.• 
Add repositories through the Repositories admin panel, with trac-admin or in the [repositories]
section of trac.ini.

• 

Set up a call to trac-admin $ENV changeset added $REPO $REV in the post-commit hook of
each repository. Additionally, add a call to trac-admin $ENV changeset modified $REPO
$REV in the post-revprop-change hook of repositories allowing revision property changes.

• 

Make sure the user under which your hooks are run has write access to the Trac environment, or use a tool
like sudo to temporarily elevate privileges.

• 

Enabling the components

Support for version control systems is provided by optional components distributed with Trac, which are disabled
by default (since 1.0). Subversion and Git must be explicitly enabled if you wish to use them.

The version control systems can be enabled by adding the following to the [components] section of your
trac.ini, or enabling the components in the Plugins admin panel.

tracopt.versioncontrol.svn.* = enabled

tracopt.versioncontrol.git.* = enabled

Specifying repositories

Trac supports multiple repositories per environment, and the repositories may be for different version control
system types. Each repository must be defined in a repository configuration provider, the two supported by default
are the database store and the trac.ini configuration file. A repository should not be defined in multiple
configuration providers.

It is possible to define aliases of repositories, that act as "pointers" to real repositories. This can be useful when
renaming a repository, to avoid breaking links to the old name.

A number of attributes can be associated with each repository. The attributes define the repository's location, type,
name and how it is displayed in the source browser. The following attributes are supported:

Repository Administration 1



Attribute Description

alias

A repository having an alias attribute is an alias to a real repository. All TracLinks
referencing the alias resolve to the aliased repository. Note that multiple indirection is not
supported, so an alias must always point to a real repository. The alias and dir
attributes are mutually exclusive.

description
The text specified in the description attribute is displayed below the top-level entry
for the repository in the source browser. It supports WikiFormatting.

dir
The dir attribute specifies the location of the repository in the filesystem. It corresponds
to the value previously specified in the option [trac] repository_dir. The
alias and dir attributes are mutually exclusive.

hidden
When set to true, the repository is hidden from the repository index page in the source
browser. Browsing the repository is still possible, and links referencing the repository
remain valid.

sync_per_request
When set to true the repository will be synced on every request. This is not
recommended, instead a post-commit hook should be configured to provide explicit
synchronization and sync_per_request should be set to false.

type

The type attribute sets the type of version control system used by the repository. Trac
supports Subversion and Git out-of-the-box, and plugins add support for many other
systems. If type is not specified, it defaults to the value of the [versioncontrol]
default_repository_type option.

url
The url attribute specifies the root URL to be used for checking out from the repository.
When specified, a "Repository URL" link is added to the context navigation links in the
source browser, that can be copied into the tool used for creating the working copy.

A repository name and one of alias or dir attributes are mandatory. All others are optional.

For some version control systems, it is possible to specify not only the path to the repository in the dir attribute,
but also a scope within the repository. Trac will then only show information related to the files and changesets
below that scope. The Subversion backend for Trac supports this. For other types, check the corresponding plugin's
documentation.

After adding a repository, the cache for that repository must be re-synchronized once with the trac-admin
$ENV repository resync command.

repository resync <repos>
Re-synchronize Trac with a repository.

In trac.ini

Repositories and repository attributes can be specified in the [repositories] section of trac.ini. Every
attribute consists of a key structured as {name}.{attribute} and the corresponding value separated with an
equal sign (=). The name of the default repository is empty.

The main advantage of specifying repositories in trac.ini is that they can be inherited from a global
configuration (see the global configuration section of TracIni). One drawback is that, due to limitations in the
ConfigParser class used to parse trac.ini, the repository name is always all-lowercase.

The following example defines two Subversion repositories named project and lib, and an alias to project
as the default repository. This is a typical use case where a Trac environment previously had a single repository (the
project repository), and was converted to multiple repositories. The alias ensures that links predating the change
continue to resolve to the project repository.

[repositories]

Specifying repositories 2



project.dir = /var/repos/project
project.description = This is the ''main'' project repository.
project.type = svn
project.url = http://example.com/svn/project
project.hidden = true

lib.dir = /var/repos/lib
lib.description = This is the secondary library code.
lib.type = svn
lib.url = http://example.com/svn/lib

.alias = project

Note that name.alias = target makes name an alias for the target repo, not the other way around.

In the database

Repositories can also be specified in the database, using either the "Repositories" admin panel under "Version
Control", or the trac-admin $ENV repository commands.

The admin panel shows the list of all repositories defined in the Trac environment. It allows adding repositories and
aliases, editing repository attributes and removing repositories. Note that repositories defined in trac.ini are
displayed but cannot be edited.

The following trac-admin commands can be used to perform repository operations from the command line.

repository add <repos> <dir> [type]
Add a repository <repos> located at <dir>, and optionally specify its type.

repository alias <name> <target>
Create an alias <name> for the repository <target>.

repository remove <repos>
Remove the repository <repos>.

repository set <repos> <key> <value>
Set the attribute <key> to <value> for the repository <repos>.

Note that the default repository has an empty name, so it will likely need to be quoted when running trac-admin
from a shell. Alternatively, the name "(default)" can be used instead, for example when running
trac-admin in interactive mode.

Repository caching

The Subversion and Git repository connectors support caching, which improves the performance browsing the
repository, viewing logs and viewing changesets. Cached repositories must be synchronized; either explicit or
implicit synchronization can be used. When searching changesets, only cached repositories are searched.

Subversion repositories are cached unless the type is direct-svnfs. Git repositories are cached when [git]
cached_repository is true.

Repository synchronization

Prior to 0.12, Trac synchronized its cache with the repository on every HTTP request. This approach is not very

In trac.ini 3



efficient and not practical anymore with multiple repositories. For this reason, explicit synchronization through
post-commit hooks was added.

There is also new functionality in the form of a repository listener extension point (IRepositoryChangeListener)
that is triggered by the post-commit hook when a changeset is added or modified, and can be used by plugins to
perform actions on commit.

Mercurial Repositories

Please note that at the time of writing, no initial resynchronization or any hooks are necessary for Mercurial
repositories - see ?#9485 for more information.

Explicit synchronization

This is the preferred method of repository synchronization. It requires setting the sync_per_request attribute
to false, and adding a call to trac-admin in the post-commit hook of each repository. Additionally, if a
repository allows changing revision metadata, a call to trac-admin must be added to the
post-revprop-change hook as well.

changeset added <repos> <rev> [?]
Notify Trac that one or more changesets have been added to a repository.

changeset modified <repos> <rev> [?]
Notify Trac that metadata on one or more changesets in a repository has been modified.

The <repos> argument can be either a repository name (use "(default)" for the default repository) or the path
to the repository.

Note that you may have to set the environment variable PYTHON_EGG_CACHE to the same value as was used for
the web server configuration before calling trac-admin, if you changed it from its default location. See Trac
Plugins for more information.

Subversion

Using trac-svn-hook

In a Unix environment, the simplest way to configure explicit synchronization is by using the
?contrib/trac-svn-hook script. trac-svn-hook starts trac-admin asynchronously to avoid slowing the
commit and log editing operations. The script comes with a number of safety checks and usage advice. Output is
written to a log file with prefix svn-hooks- in the environment log directory, which can make configuration
issues easier to debug.

There's no equivalent trac-svn-hook.bat for Windows yet, but the script can be run by Cygwin's bash.

Follow the help in the documentation header of the script to configure trac-svn-hook. Configuring the hook
environment variables is made easier in Subversion 1.8 by using the ?hook script environment configuration.
Rather than directly editing trac-svn-hook to set the environment variables, they can be configured through
the repository conf/hooks-env file. Replace the ?configuration section with:

export PATH=$PYTHON_BIN:$PATH
export LD_LIBRARY_PATH=$PYTHON_LIB:$LD_LIBRARY_PATH

and set the variables TRAC_ENV, PYTHON_BIN and PYTHON_LIB in the hooks-env file. Here is an example,
using a Python virtual environment at /usr/local/venv:

Repository synchronization 4

http://trac.edgewall.org/intertrac/%239485
http://trac.edgewall.org/intertrac/source%3Abranches/1.2-stable/contrib/trac-svn-hook
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.hooks.configuration
http://trac.edgewall.org/intertrac/source%3Abranches/1.2-stable/contrib/trac-svn-hook%40%3A65-67%23L61


[default]
TRAC_ENV=/var/trac/project-1
PYTHON_BIN=/usr/local/venv/bin
PYTHON_LIB=/usr/local/venv/lib

Writing Your Own Hook Script

The following examples are complete post-commit and post-revprop-change scripts for Subversion. They should be
edited for the specific environment, marked executable (where applicable) and placed in the hooks directory of
each repository. On Unix (post-commit):

#!/bin/sh
export PYTHON_EGG_CACHE="/path/to/dir"
/usr/bin/trac-admin /path/to/env changeset added "$1" "$2"

Note: Check with whereis trac-admin, whether trac-admin is really installed under /usr/bin/ or
maybe under /usr/local/bin/ and adapt the path. On Windows (post-commit.cmd):

@C:\Python26\Scripts\trac-admin.exe C:\path\to\env changeset added "%1" "%2"

The post-revprop-change hook for Subversion is very similar. On Unix (post-revprop-change):

#!/bin/sh
export PYTHON_EGG_CACHE="/path/to/dir"
/usr/bin/trac-admin /path/to/env changeset modified "$1" "$2"

On Windows (post-revprop-change.cmd):

@C:\Python26\Scripts\trac-admin.exe C:\path\to\env changeset modified "%1" "%2"

The Unix variants above assume that the user running the Subversion commit has write access to the Trac
environment, which is the case in the standard configuration where both the repository and Trac are served by the
web server. If you access the repository through another means, for example svn+ssh://, you may have to run
trac-admin with different privileges, for example by using sudo.

See the ?section about hooks in the Subversion book for more information. Other repository types will require
different hook setups.

Git

Git hooks can be used in the same way for explicit syncing of Git repositories. If your git repository is one that gets
committed to directly on the machine that hosts trac, add the following to the hooks/post-commit file in your
git repo (note: this will do nothing if you only update the repo by pushing to it):

#!/bin/sh 
REV=$(git rev-parse HEAD)
trac-admin /path/to/env changeset added <repos> $REV

Alternately, if your repository is one that only gets pushed to, add the following to the hooks/post-receive
file in the repo:

#!/bin/sh
tracenv=/path/to/env     # change with your Trac environment's path
repos= # change with your repository's name
while read oldrev newrev refname; do

if [ "$oldrev" = 0000000000000000000000000000000000000000 ]; then
        git rev-list --reverse "$newrev" --

else

Using trac-svn-hook 5

http://svnbook.red-bean.com/en/1.7/svn.reposadmin.create.html#svn.reposadmin.create.hooks


        git rev-list --reverse "$newrev" "^$oldrev" --
fi | xargs trac-admin "$tracenv" changeset added "$repos"

done

The <repos> argument can be either a repository name (use "(default)" for the default repository) or the path
to the repository.

Mercurial

For Mercurial, add the following entries to the .hgrc file of each repository accessed by Trac (if ?TracMercurial
is installed in a Trac plugins directory, download ?hooks.py and place it somewhere accessible):

[hooks]
; If mercurial-plugin is installed globally
commit = python:tracext.hg.hooks.add_changesets
changegroup = python:tracext.hg.hooks.add_changesets

; If mercurial-plugin is installed in a Trac plugins directory
commit = python:/path/to/hooks.py:add_changesets
changegroup = python:/path/to/hooks.py:add_changesets

[trac]
env = /path/to/env
trac-admin = /path/to/trac-admin

Per-request synchronization

If the post-commit hooks are not available, the environment can be set up for per-request synchronization. In that
case, the sync_per_request attribute for each repository in the database and in trac.ini must be set to false.

Note that in this case, the changeset listener extension point is not called, and therefore plugins using it will not
work correctly.

Automatic changeset references in tickets

You can automatically add a reference to the changeset as a ticket comment whenever changes are committed to the
repository. The description of the commit needs to contain one of the following formulas:

Refs #123 - to reference this changeset in #123 ticket• 
Fixes #123 - to reference this changeset and close #123 ticket with the default status fixed• 

This functionality requires installing a post-commit hook as described in #ExplicitSync, and enabling the optional
commit updater components by adding the following line to the [components] section of your trac.ini, or
enabling the components in the Plugins admin panel.

tracopt.ticket.commit_updater.* = enabled

For more information, see the documentation of the CommitTicketUpdater component in the Plugins admin
panel and the ?CommitTicketUpdater page.

Troubleshooting

Git 6

http://trac.edgewall.org/intertrac/TracMercurial
http://trac.edgewall.org/intertrac/source%3Amercurial-plugin/tracext/hg/hooks.py
http://trac.edgewall.org/intertrac/CommitTicketUpdater


My trac-post-commit-hook doesn't work anymore

You must now use the optional components from tracopt.ticket.commit_updater.*, which you can
activate through the Plugins panel in the Administrative part of the web interface, or by directly modifying the
[components] section in the trac.ini. Be sure to use explicit synchronization as explained above.

See ?CommitTicketUpdater#Troubleshooting for more troubleshooting tips.

My trac-post-commit-hook doesn't work anymore 7

http://trac.edgewall.org/intertrac/CommitTicketUpdater%23Troubleshooting

