Function Calling Sequence

This section describes the standard function calling sequence, including stack
frame layout, register usage, parameter passing, etc. The system libraries de-
scribed in Chapter 6 require this calling sequence.

CPU Registers

The MIPS 1 ISA specifies 32 general purpose 32-bit registers; two special 32-bit reg-
isters that hold the results of multiplication and division instructions; and a 32-bit
program counter register. The general registers have the names $0..$31. By con-
vention, there is also a set of software names for some of the general registers. Fig-
ure 3-18 describes the conventions that constrain register usage. Figure 3-19 de-
scribes special CPU registers.

Not all register usage conventions are described. In particular, register usage con
NOTE | ventions in languages other than C are not included, nor are the effects of high
optimization levels. These conventions do not affect the interface to the system
I libraries described in Chapter 6.

LOW-LEVEL SYSTEM INFORMATION 3-11

Figure 3-18: General CPU Registers

Register ~ Software

Use
Name Name
$0 zero always has the value 0.
$at AT temporary generally used by assembler.
$2..$3 v0-v1 used for expression evaluations and to hold the integer
and pointer type function return values.
$4..87 a0—a3 used for passing arguments to functions; values are not

$8-$15 t0-t7
$16-$23 s0—s7

$24..$25 t8—t9

$26-$27 kt0o—ktl
$28 or $gp gp
$290r$sp sp

preserved across function calls. Additional arguments
are passed on the stack, as described below.

temporary registers used for expression evaluation; val-
ues are not preserved across function calls.

saved registers; values are preserved across function
calls.

temporary registers used for expression evaluations;
values are not preserved across function calls. When
calling position independent functions $25 must contain
the address of the called function.

used only by the operating system.

global pointer and context pointer.

stack pointer.

$30 s8 saved register (like s0-s7).
$31 ra return address. The return address is the location to
which a function should return control.
3-12 MIPS ABI SUPPLEMENT

There are other user visible registers in some implementations of the architec-
NOTE | ture, butthese are explicitly not part of this processor supplement. A program that
uses these registers is not AB/ compliant and its behavior is undefined.

The Stack Frame

Each called function in a program allocates a stack frame on the run-time stack, if
necessary. A frame is allocated for each non-leaf function and for each leaf func-
tion that requires stack storage. A non-leaf function is one that calls other func-
tion(s); a leaf function is one that does not itself make any function calls. Stack
frames are allocated on the run-time stack; the stack grows downward from high
addresses to low addresses.

Each stack frame has sufficient space allocated for:

B local variables and temporaries.

B saved general registers. Space is allocated only for those registers that
need to be saved. For non-leaf function, $31 must be saved. If any of
$16..$23 or $29..$31 is changed within the called function, it must be saved
in the stack frame before use and restored from the stack frame before re-
turn from the function. Registers are saved in numerical order, with high-
er numbered registers saved in higher memory addresses. The register
save area must be doubleword (8 byte) aligned.

B saved floating-point registers. Space is allocated only for those registers
that need to be saved. If any of $£20..$f30 is changed within the called func-
tion, it must be saved in the stack frame before use and restored from the
stack frame before return from the function. Both even- and odd-num-
bered registers must be saved and restored, even if only single-precision
operations are performed since the single-precision operations leave the
odd-numbered register contents undefined. The floating-point register
save area must be doubleword (8 byte) aligned.

B function call argument area. In a non-leaf function the maximum number
of bytes of arguments used to call other functions from the non-leaf func-
tion must be allocated. However, at least four words (16 bytes) must al-
ways be reserved, even if the maximum number of arguments to any
called function is fewer than four words.

M alignment. Although the architecture requires only word alignment, soft-

LOW-LEVEL SYSTEM INFORMATION 3-15

ware convention and the operating system require every stack frame to be
doubleword (8 byte) aligned.

A function allocates a stack frame by subtracting the size of the stack frame from
$sp on entry to the function. This $sp adjustment must occur before $sp is used
within the function and prior to any jump or branch instructions.

Figure 3-21: Stack Frame

Base Offset Contents Frame
unspecified High addresses
variable size

(if present)
incoming arguments Previous

+16 |passed in stack frame

space for incoming
old $sp +0 arguments 1-4

locals and
temporaries
general register
save area Current
floating-point
register save area
argument
$sp +0 build area Low addresses

The corresponding restoration of $sp at the end of a function must occur after any
jump or branch instructions except prior to the jump instruction that returns from
the function. It can also occupy the branch delay slot of the jump instruction that
returns from the function.

Standard Called Function Rules

By convention, there is a set of rules that must be followed by every function that
allocates a stack frame. Following this set of rules ensures that, given an arbitrary
program counter, return address register $31, and stack pointer, there is a deter-
ministic way of performing stack backtracing. These rules also make possible pro-
grams that translate already compiled absolute code into position-independent

3-16 MIPS ABI SUPPLEMENT

