
gpsim

T. Scott Dattalo

27 JANUARY 2004

Contents

1 gpsim - An Overview 5
1.1 Making the executable . 5

1.1.1 Make Details - ./configure options . 5

1.2 Running . 5

1.3 Requirements . 6

2 Command Line Interface 7

3 Graphical User Interface 12
3.1 Main window . 12

3.1.1 Menus . 12

3.1.2 Buttons . 12

3.1.3 Simulation mode . 12

3.2 Source Browsers . 13

3.2.1 .asm Browser . 13

3.2.2 Opcode view - the .obj Browser . 13

3.3 Register views . 14

3.4 Symbol view . 15

3.5 Watch view . 15

3.6 Stack viewer . 15

3.7 Breadboard . 16

3.8 Trace viewer . 16

3.9 Profile viewer . 16

3.10 Stopwatch . 17

4 Controlling the Flow: Break Points 18
4.1 Execution Break Points . 18

4.1.1 Invalid Instruction Break Points . 18

4.2 Register Break Points . 18

4.3 Cycle Break Points . 18

5 What has happen?: Trace 19

6 Simulating the Real World: Stimuli 20
6.1 How They Work . 20

6.1.1 Contention among stimuli . 21

6.2 I/O Pins . 21

6.3 Synchronous Stimuli . 21

6.3.1 Square Wave . 22

6.3.2 Triangle Wave . 23

6.3.3 Sine Wave . 23

6.4 Asynchronous Stimuli . 23

6.5 Analog Stimuli . 242

CONTENTS 3

7 Modules 25

8 Symbolic Debugging 26

9 Hex Files 27

10 The ICD 28

11 Theory of Operation 30

11.1 Background . 30

11.2 Instructions . 30

11.3 General File Registers . 30

11.4 Special File Registers . 30

11.5 Example of an instruction . 31

11.6 Trace . 32

11.7 Breakpoints . 32

Introduction

gpsim is a full-featured software simulator for Microchip PIC microcontrollers distributed under the GNU General Public
License (see the COPYING section).

gpsim has been designed to be as accurate as possible. Accuracy includes the entire PIC - from the core to the I/O pins
and including ALL of the internal peripherals. Thus it’s possible to create stimuli and tie them to the I/O pins and test the
PIC the same PIC the same way you would in the real world.

gpsim has been designed to be as fast as possible. Real time simulation speeds of 20Mhz pics are possible.

gpsim has been designed to be as useful as possible. The standard simulation paradigm including breakpoints, single
stepping, disassembling, memory inspect & change, and so on has been implemented. In addition, gpsim supports
many debugging features that are only available with in-circuit emulators. For example, a continuous trace buffer tracks
every action of the simulator (whether you want it or not). Also, it’s possible to set read and write break points on values
(e.g. break if a specific value is read from or written to a register).

gpsim can be operated either in a command line only mode or in a graphical mode. The command line mode is similar
to gdb. Users can set break points and control the simulation. The graphical mode provides a more intuitive debugging
interface.

gpsim also supports external modules. Users can extend gpsim for their custom debugging applications.

4

Chapter 1

gpsim - An Overview

If you don’t care to wade through details, this chapter should help you get things up and running. The INSTALL and
README files will provide more up-to-date information then this document, so please refer to those first.1.1 Making the executable

gpsim’s executable is create in a manner that’s consistant with many of the other open source software:

command description
tar -xvzf gpsim-x.y.z.tar.gz expand the compressed tar file
./configure Create a ’makefile’ unique to your system
make compile gpsim
make install install gpsim

The last step will require root privileges.1.1.1 Make Details - ./configure options

gui-less

The default configuration will provide a gui (graphical user interface). The cli (command line interface) is still available,
however many people prefer just to use the cli. These hardy souls may build a command-line only interface by configuring
gpsim:

./configure –disable-gui

debugging

If you want to debug gpsim then you’ll probably use gdb. Consequently, you’ll want to disable shared libraries:

./configure –disable-shared

This will create one, huge monolithic executable with symbolic information.1.2 Running

The executable created above is called: gpsim. The following command line options may be specified when gpsim is
invoked.

gpsim [-?] [-p <device> [<hex_file>]] [-c <stc_file>]
-p, –processor=<processor name> processor (e.g. -pp16c84 for the ’c84)
-c, –command=STRING startup command file
-s, –symbol=STRING .cod symbol file
-L, – colon separated list of directories to

search. 5

CHAPTER 1. GPSIM - AN OVERVIEW 6
-v, –version gpsim version
-i, –cli command line mode only
-d, –icd=STRING use ICD (e.g. -d /dev/ttyS0).
Help options:
-?, –help Show this help message
–usage Display brief usage message1.3 Requirements

gpsim has been developed under Linux. It should build and run just fine under the popular Linux distributions like Redhat.
gpsim has also been ported to the MAC, MicroSoft Windows, Solaris, and BSD. Two packages gpsim requires that may
not be available with all Linux distributions are readline and gtk (the gimp tool kit). The ./configure script should tell you
if these packages are not installed on your system or if the revisions that are installed are too old.

There are no minimum hardware requirements to run gpsim. Faster is better though!

gputils, the gnupic utilities package, is also very useful. gpsim will accept straight hex files, but if you want to do any
symbolic debugging then you’ll want to use the .cod1 files that gputils produces. The .cod files are in the same format as
the .cod files MPASM2 produces.

1.cod files are symbol files that were created by ByteCraft and are used by Microchip.2MPASM is Microchip’s Assembler.

Chapter 2

Command Line Interface

The command line interface is fairly straight-forward. If you’re familiar with gdb’s cli, then you’ll fill fairly comfortable with
gpsim’s cli. The table below summarizes the available commands.

command summary

attach Attach stimuli to nodes
break Set a break point
bus Add or display node busses

clear Remove a break point
disassemble Disassemble the current cpu

dump Display either the RAM or EEPROM
frequency Set processor frequency

help Type help "command" for more help on a command
icd In Circuit Debugger support.
list Display source and list files

load Load either a hex or command file
log Log/record events to a file

node Add or display stimulus nodes
module Select & Display modules

processor Add/list processors
quit Quit gpsim

reset Reset all or parts of the simulation
run Execute the pic program
set display and control gpsim behavior flags
step Execute one or more instructions

stimulus Create a stimulus
stopwatch Measure time between events

symbol Add/list symbols
trace Dump the trace history

version Display gpsim’s version
x examine and/or modify memory

The built in ’help’ command provides additional online information.

attach

attach node1 stimulus1 [stimulus2 stimulus_N]

attach is used to define the connections between stimuli and nodes. At least one node and one stimulus must be
specified. If more stimuli are specified then they will all be attached to the node examples:

gpsim> node n1 # Define a new node.
gpsim> attach n1 porta4 portb0 # Connect two I/O pins to the node.
gpsim> node # Display the new "net list". 7

CHAPTER 2. COMMAND LINE INTERFACE 8
break

The break command is used to set and examine break points:

break [c | e | w | r | wv | rv | wdt [location] [value]]
options:

c - cycle
e - execution
w - write
r - read
wv - write value
rv - read value
wdt - wdt timeout

- no argument, display the break points that are set.
examples:

break e 0x20 # set an execution break point at address 0x20
break wv 0x30 0 # break if zero is written to register 0x30
break c 1000000 # break on the one million’th cycle
break # display all of the break points

bus

clear

The clear command is used to clear break points:

clear bp_number
where bp_number is the number assigned to the break point
when it was created. (type "break" without any arguments to
display the currently set break points.

disassemble

disassemble [[start | length] [end]]

no arguments: disassembles 10 instructions before and 5 after the pc.
one argument: disassemble [length] instructions after the pc.
two arguments: disassemble from [start] to [end].

disasemble does not use symbols. However, special function registers like status will be displayed by name rather than
value.

dump

dump [r | e]

dump r or dump with no options will display all of the file
registers and special function registers.
dump e will display the contents of the eeprom (if the pic
being simulated contains any)

See the ’x’ command for examining and modifying individual registers.

echo

The echo command is used like a print statement within configuration files. It just lets you display information about your
configuration file.

CHAPTER 2. COMMAND LINE INTERFACE 9

frequency

This command sets the clock frequency. By default gpsim uses 4 MHz as clock. The clock frequency is used to compute
time in seconds. Use this command to adjust this value. If no value is provided this command prints the current clock.
Note that PICs have an instruction clock that’s a forth of the external clock. This value is the external clock.

help

By itself, help will display all of the commands along with a brief description on how they work. ’help <command>’
provides more extensive online help.

icd

icd [open <port>]

The open command is used to enable ICD mode and specify the serial port where the ICD is. (e.g. "icd open /dev/ttyS0").
Without options (and after the icd is enabled), it will print some information about the ICD.

list

list [[s | l] [*pc] [line_number1 [,line_number2]]]
Display the contents of source and list files.
Without any options, list will use the last specified options.
list s will display lines in the source (or .asm) file.
list l will display lines in the .lst file
list *pc will display either .asm or .lst lines around the pc

The list command allows you to view the source code while you are debugging.

load

The load command is used to load either hex, configuration, or .cod files. A hex file is usually used to program the
physical part. Consequently, it provides no symbolic information. .cod files on the other hand, do provide symbolic
information. Unless you suspect there’s something wrong with the way you’re assembler or compiler is generating hex
files, I’d recommend always using .cod files for debugging.

Configuration files are script files containing gpsim commands. These are extremely useful for creating a debugging
enviroment that will be used repeatedly. For example

log

module

node

node [new_node1 new_node2 ...]
If no new_node is specified then all of the nodes that have been
defined are displayed. If a new_node is specified then it will be
added to the node list. See the "attach" and "stimulus" commands
to see how stimuli are added to the nodes.

examples:

node // display the node list
node n1 n2 n3 // create and add 3 new nodes to the list

processor

processor [new_processor_type [new_processor_name]] | [list] | [dump]

CHAPTER 2. COMMAND LINE INTERFACE 10
If no new processor is specified, then the currently defined processor(s) will be dis-

played. To see a list of the processors supported by gpsim, type ’processor list’. To define a new proces-
sor, specify the processor type and name. To display the state of the I/O processor, type ’proces-
sor pins’ (For now, this will display the pin numbers and their current state.
examples:
processor // Display the processors you’ve already defined. processor list // Display the list of pro-
cessors supported. processor pins

// Display the processor package and pin state processor p16cr84 fred
// Create a new processor. processor p16c74 wilma
// and another. processor p16c65
// Create one with no name.

quit

Quit gpsim.

run

Start (or continue) simulation. The simulation will continue until the next break point is encountered.

step

step [over | n]

no arguments: step one instruction.
numeric argument: step a number of instructions
"over" argument: step over the next instruction

symbol

stimulus

stimulus [[type] options]
stimulus will create a signal that can be tied to an io port.
Note that in most cases it is easier to create a stimulus
file then to type all this junk by hand.

Supported stimuli:

square_wave | sqw [period p] [high_time h] [phase ph] [initial_state i]
port port_name bit_pos end

creates a square wave with a period of "p" cpu cycles.
If the high time is specified then that’s the number of cycles
the square wave will be high.
The phase is with respect to the cpu’s cycle counter.
The "port_name" and "bit_pos" describe where the stimulus
will be attached.

asynchronous_stimulus | asy [period p] [phase ph] [initial_state i]
d0 [d1 d2 ... dn] port port_name bit_pos end

creates an asynchronous square wave with a period of "p" cpu
cycles. The phase is with respect to the cpu’s cycle counter.
The "port_name" and "bit_pos" describe where the stimulus
will be attached.

examples:
stimulus sqw period 200 high_time 20 phase 60 port portb 0 end
create a square wave stimulus that repeats every 200 cpu cycles,
is high for 20 cpu cycles (and low for 200-20=180 cycles). The
first rising edge will occur at cycle 60, the second at 260,...

CHAPTER 2. COMMAND LINE INTERFACE 11

Bit 0 of portb will receive the stimulus

stopwatch

trace

trace [dump_amount]
trace will print out the most recent "dump_amount" traces.
If no dump_amount is specified, then the entire trace buffer
will be displayed.

version

version
Display gpsim’s version.

x

x [file_register] [new_value]
options:
file_register - ram location to be examined or modified.
new_value - the new value written to the file_register.
if no options are specified, then the entire contents
of the file registers will be displayed (dump).

Chapter 3

Graphical User Interface

gpsim also provides a graphical user interface that simplifies some of the drudgery associated with the cli. It’s possible
to open windows to view all the details about your debug environment. To get the most out of your debugging session,
you’ll want to assemble your code with gpasm (the gnupic assembler) and use the symbolic .cod files it produces.3.1 Main window3.1.1 Menus

File->Open .stc or .cod files.

File->Quit Quit gpsim

Windows->* Open/Close the windows.3.1.2 Buttons

(These are also found as keyboard bindings in the source windows.)

Step Step one instruction

Over Step until pc is after next instruction

Finish Run to return address

Run Run continuously

Stop Stop execution

Reset Reset CPU3.1.3 Simulation mode

This controls how gpsim simulates, and how the gui updates.

Never Don’t ever update the gui when simulating. This is the fastest mode. You’ll have to stop simulation by
pressing Ctrl-C in the command line interface.

x cycles Update the gui every x cycles simulated.

every cycle Update the gui every cycle. (you see everything, if you have filled up on coffee :-)

x ms animate Here you can slow down simulation with a delay between every cycle.

realtime This will make gpsim try to synchronize simulation speed with wall clock time.

12

CHAPTER 3. GRAPHICAL USER INTERFACE 133.2 Source Browsers

gpsim provides two views of your source: ’.asm’ and ’.obj’ browsers. The ’.asm’ browser is a color coded display of your
pic source.3.2.1 .asm Browser

When a .cod file with source is loaded, there should be something in this display. (TODO: add section about high level
debugging).

There is an area to the left of the source, where symbols representing the program counter, breakpoints, etc are dis-
played. Double clicking in this area toggles breakpoints. You can drag these symbols up or down in order to move them
and change the PC or move a breakpoint.

A right button click on the source pops up a menu with six items (the word ’here’ in some menu items denote the line in
source the mouse pointer was on when right mouse button was clicked.):

Menu item Description

Find PC This menu item will find the PC and changed page tab and scroll the source view to the current PC.

Run here This sets a breakpoint ’here’and starts running until a breakpoint is hit.

Move PC here This simply changes PC to the address that line ’here’in source has.

Breakpoint here Set a breakpoint ’here’.

Profile start here Set a start marker for routine profiling here.

Profile stop here Set a stop marker. (See the section for the profiling window.)

Select symbol. This menu item is only available when some text is selected in the text widget. What it does is search
the list of symbols for the selected word, and if it is found it is selected in the symbol window. Depending
of type of symbol other things are also done, the same thing as when selecting a symbol in the symbol
window:� If it is an address, then the opcode and source views display the address.� If it’s a register, the register viewer selects the cell.� If it’s a constant, address, register or ioport, it is selected in the symbol window.

Find text This opens up a search dialog. Every time you hit the ’Find’ button, the current notebook page is found
and the source in that page is used.

Settings A dialog with which you can change the fonts used.

Controls A submenu containing the simulation commands. (these are also found as keyboard bindings (recom-
mended), or in the main window.)

These are the keyboard bindings:

Key command

s,S,F7 Step one instruction.

o,O,F8 Step over instruction

r,R,F9 Run continously.

Escape Stop simulation.

f,F Run to return address3.2.2 Opcode view - the .obj Browser

This window has two tabs. One with each memory cell on one line and information about address, hexadecimal value
and decoded instruction (i.e. disassembly), and one with the program memory

displayed with sixteen memory cells per row and a configurable ascii column.

CHAPTER 3. GRAPHICAL USER INTERFACE 14
The Assembly tab you can:� Double click on a line to toggle breakpoints.� Use the same keyboard commands as the in the source browser.� Right click to get a menu where you can change the fonts.

The Opcode tab.

Here the program memory is ordered as columns of sixteen memory cells per column and as many row as needed to
contain all memory.

The seventeenth column contains an ASCII representation of the program memory. You can configure this column to
use one of three different modes:� One byte per cell� Two bytes per cell, MSB first.� Two bytes per cell, LSB first.

You can change fonts with the menu item ’Settings’.

You can set breakpoints on one or more (drag the mouse to select more cells) addresses with the right click menu.3.3 Register views

There are two similar register windows. One for the RAM and one for the EEPROM data, when available.

Here you see all registers in the current processor. Clicking on a cell displays it’s name and value above the sheet of
registers. You can change values by entering it in the entry (or in the spreadsheet cell).

The following things can be done on one register, or a range of registers. (Selecting a range of registers is done by
holding down left mouse button, moving cursor, and releasing button.)� Set and clear breakpoints. Use the right mousebutton menu to pop up a menu where you can select set read,

write, read value and write value breakpoints. You can also "clear breakpoints", notice the s in "clear breakpoints",
every breakpoint on the registers are cleared.� Set and clear logging of registers. You can log reads, writes, reads/writes of specific values and to bits selected
by a specified mask. You can select a different file name with ’set log filename...’. Default is "gpsim.log". You can
choose LXT or ASCII format. LXT can be read with the program gtkwave. ASCII is default.� Copy cells. You copy cells by dragging the border of the selected cell(s).� Fill cells. Move mouse to lower right corner of the frame of the selected cell(s), and drag it. The one cell’s contents
will be copied to the other cells.� Watch them. Select the "Add Watch" menu item.

The cells have different background colors depending on if they represent:� File Register (e.g. RAM): light cyan.� Special Function Registers (e.g. STATUS,TMR0): dark cyan� aliased register (e.g. the INDF located at address 0x80 is the same as the one located at address 0x00): gray� invalid register: black. If all sixteen registers in a row are invalid, then the row is not shown.� a register with one or more breakpoints: red. Logged registers are also red.

gpsim dynamically updates the registers as the simulation proceeds. Registers that change value between updates of
the window during simulation are highlighted with a blue foreground color.

The menu also has a ’settings’ item where you can change the font used.

CHAPTER 3. GRAPHICAL USER INTERFACE 153.4 Symbol view

This window, as its name suggests, displays symbols. All of the special function registers will have entries in the symbol
viewer. If you’re using .cod files then you’ll additionally have file registers (that are defined in cblocks), equates, and
address labels.

You can filter out some symbol types using the buttons in the top of the window, and you can sort the rows by clicking on
the column buttons (the ones reading ’symbol’, ’type’ and ’address’).

You can add the symbol to the watch window by right-clicking and selecting the "Add to watch window" menu item. This
will add the ram register with address equal to the symbols value to the watch window.

The symbol viewer is linked to the other windows. For example, if you click on a symbol and:� If it is an address, then the opcode and source views display the address.� If it’s a register, the register viewer selects the cell.3.5 Watch view

This is not a output-only window as the name suggests (change name?). You can both view and change data. Double-
clicking on a bit toggles the bit. You add variables here by marking them in a register viewer and select “Add watch” from
menu. The right-click menu has the following items:� Remove watch� Set register value� Clear Breakpoints� Set break on read� Set break on write� Set break on read value� Set break on write value� Columns...

"Columns...” opens up a window where you can select which of the following data to display:� BP� Type� Name� Address� Dec� Hex� Bx (bits of word)

You can sort the list of watches by clicking on the column buttons. Clicking twice sorts the list backwards.3.6 Stack viewer

This window displays current stack. Selecting an entry makes the code windows display the return address. Double
clicking sets a breakpoint on the return address.

CHAPTER 3. GRAPHICAL USER INTERFACE 163.7 Breadboard

Here you can create/modify and examine the environment around the pic. Pins are displayed as an arrow. The direction
of the arrow indicates if its an input or output pin. The color of the arrow indicates its state (green=low, red=high).

You can’t instantiate pic processors from here, you’ll have to do that from the command line, or from a .stc file.

Your can create nodes by clicking on the "new node" button. (A node is ’a piece of wire’ to which you can connect
stimulus.) You can see the list of created nodes under the "nodes" item in the upper-left tree widget.

You can create connections to nodes by clicking on a pin, and then clicking on the button "Connect stimulus to node".
This will bring up a list of nodes. Choose one by double-clicking on the one you like.

If you click on a pin that is already connected to a node, then you’ll see the node and its connections in the lower left
part of the window. You can disconnect a stimulus by clicking on it and pressing the "remove stimulus" button.

When you want to add a module to the simulation, you first have to specify the library which contains the module you
want. Click on the "add library" button and enter the library name (e.g. "libgpsim_modules.so"). Now you can click the
"add module" button. Select the module you want from the list by double-clicking on it. Enter a name for the module (this
has to be unique, and not used before). You now have to position the module. Move the mouse pointer to where you’d
like the module, and left-click.

If you middle-click on a pin, you’ll see how the pin is connected. Press the "trace all" to see all at

once, and "clear traces" to remove all (you’ll only remove the graphical trace, not the connection!). If the tracing doesn’t
work, try moving the packages so that there are more space around the pins.

When you are done, you can save by clicking the "save configuration" button. You can then load this file from the
command line like this (assuming the .cod file with your source is called "mycode.cod", and the file you just saved was
called "mynets.stc":

gpsim -s mycode.cod -c mynets.stc

You can’t load only the .stc file since this doesn’t contain the processor type and code. You can create (with an editor)
your own .stc file (e.g. my_project.stc) and in that file put a command "load c mynets.stc" after you have loaded the .cod
file. You then only have to load this file (gpsim -c my_project.stc).3.8 Trace viewer

This window shows the trace of instructions executed. See 5.3.9 Profile viewer

This window show execution count for program memory addresses. The profile window must be opened before starting
simulation, because the traceing is not enabled by default.

Instruction profile

This shows the number of times each instruction are executed.

Instruction range profile

Here you can group ranges of instruction into one entry.

The right click menu contains:

Remove range Remove an entry.

Add range... Open a disalog from where you can add a range of instructions as an entry.

Add all labels Add all code labels as ranges.

Snapshot to plot Open a window containing a graph of the data. From this new window you can also save (postscript)
or print it.

Register profile

This shows the number of reads or writes the simulator does on register.

CHAPTER 3. GRAPHICAL USER INTERFACE 17

Routine profile

Here you can see statistics about execution time for a selected routine. You mark the entry and exit points from the
source browser (profile start/stop). If the routine you want to measure have multiple entry and/or exit points, then you
have to put a marker on every entry point as well as (and especially) every exit point. Othervise you will get bad data.

When you have done that, gpsim will (as simulation goes by) store the execution times of that routine and calculate
min/max/average/etc. You can also use the menu item ’Plot distribution’ to open a window displaying a histogram of the
data. From this new window you can also save (in postscript) or print it.

You can also measure call period by switching the ’entry’ and ’exit’ points. If also want the time from reset (or some equal
point) to the first ’entry’, then you must also put an ’entry’ point there.3.10 Stopwatch

The stopwatch window shows a cycle counter and a re-settable counter. The cycle counter is the same as the one in the
register window. It basically counts instructions.

The other counter counts at the same rate as the cycle counter, but can be cleared by clicking the "clear" button (or
preset by entering a number in the entry box).

The up/down indicator denotes the direction the counter counts.

The rollover value specifies the range the cycle counter can be in (a modulo counter). For example, if the rollover value is
specified to be 0x42, then whenever the resettable counter reaches 0x42 it will rollover to zero. If the counter is counting
down, then when it reaches 0 the next state will be 0x41. If you don’t want is like this, then set the rollover value to
something large.

Chapter 4

Controlling the Flow: Break Points

One of gpsim’s strong features is the flexibility provided with break points. Most simulators are limited to execution type
break points.

If you want to set break points on registers, on execution cycles, invalid program locations, stack over flows, etc. then
you’re usually forced to debug your code with an ICE.4.1 Execution Break Points

An execution break point is one that will halt a running program when the program memory address at which it is set is
encountered. For example, if you were debugging a mid-ranged PIC and wished to stop execution when ever an interrupt
occurs, you could set a break point at program memory address 0x04:

gpsim> break e 4

(To be more precise, an interrupt doesn’t have to occur for this break point to be encountered - errant code could have
branched here too).

The break point occurs BEFORE the instruction executes. Other simulators such as MPLAB break after the instruction
executes. In many cases this distinction is insignificant. However, if the break is set on a ’goto’ or ’call’ instruction, then
it’s convenient to stop before the branch occurs. This way it’s easy to determine from where a brance occurred.4.1.1 Invalid Instruction Break Points

gpsim automatically will halt execution if a program attempts to venture beyond its bounds. Program memory locations
that are not defined by your source code will be initialized with an ’Invalid Instruction’. These are quite visible when you
disassemble the program.4.2 Register Break Points

gpsim provides the ability to break whenever a register accessed, either read or written or both. Furthermore, it’s possible
to break whenever a specific value is written to or read from a register.4.3 Cycle Break Points

Cycle break points allow the program to be halted at a specific instruction cycle. Suppose you have a 20 Mhz pic and
want to break after one second of simulation time. You could set a break at the 5 millionth instruction cycle.1

1There are 4 clock cycles per instruction. Also, a future feature of gpsim will provide you with the ability to set break points in terms of seconds.18

Chapter 5

What has happen?: Trace

Inspecting the current state of your program is sometimes insufficient to determine the cause of a bug. Often times it’s
useful to know the conditions that led up to the current state. gpsim provides a history or trace of everything that occurs
- whether you want it or not - to help you diagnose these otherwise difficult to analyze bugs.

What’s traced notes

program counter adresses executed
instructions opcode
register read value and location
register write value and location
cycle counter current value

skipped instructions addresses skipped
status register during implicit modification

interrupts
break points type

resets type

The ’trace’ command will dump the contents of the trace buffer.

A large circular buffer (whose size is hard coded) stores the information for the trace buffer. When it fills, it will wrap
around and write over the old history. To sustain high performance, gpsim encodes all trace information into a 32 bit
integer.

19

Chapter 6

Simulating the Real World: Stimuli

Stimuli are extremely useful, if not necessary, for simulations. They provides a means for simulating interactions with the
real world.

The gpsim stimuli capability is designed to be accurate, efficient and flexible. The models for the PIC’s I/O pins mimic
the real devices. For example, the open collector output on port A of an PIC16C84 can only drive low. Multiple I/O pins
may tied to one another so that the open collector on port A can get a pull up resistor from port B. The overhead for
stimuli only occurs when a stimulus changes states. In other words, stimuli are not polled to determine their state.

Analog stimuli are also available. It’s possible to create voltage references and sources to simulate almost any kind of
real world thing. For example, it’s possible to combine two analog stimuli together to create signals like DTMF tones.6.1 How They Work

In the simplest case, a stimulus acts a source for an I/O pin on a pic. For example, you may want to simulate a clock and
measure its period using TMR0. In this case, the stimulus is the source and the TMR0 input pin on the pic is the load.
In gpsim you would create a stimulus for the clock using the stimulus command and connect it to the I/O pin using the
node command.

In general, you can have several ’sources’ and several ’loads’ that are interconnected with nodes1. A good analogy is
a spice circuit. The spice netlist corresponds to a node-list in gpsim and the spice elements correspond to the stimuli
sources and loads. This general approach makes it possible to create a variety of simulation environments. Here’s a list
of different ways in which stimuli may be connected:1. Stimulus connected to one I/O pin2. Stimulus connected to several I/O pins3. Several stimuli connected to one I/O pin4. Several stimuli connected to several I/O pins5. I/O pins connected to I/O pins

The general technique for implementing stimuli is as follows:1. Define the stimulus or stimuli.2. Define a node.3. Attach the stimuli to the node.

More often then not, the stimulus definition will reside in a file.1Although, gpsim is currently limited to ’one-port’ devices. In other words, it is assumed that ground serves as a common reference for the sources
and the loads.

20

CHAPTER 6. SIMULATING THE REAL WORLD: STIMULI 216.1.1 Contention among stimuli

One of the problems with this nodal approach to modeling stimuli is that it’s possible for contention to exist. For example,
if two I/O pins are connected to one another and driving in the opposite directions, there will be contention. gpsim
resolves contention with attribute summing. Each stimulus - even if it’s an input - has an effect on the node. This effect
is given a weight. When a node is updated, gpsim will simply add the weights of all the stimuli together and assign that
numeric value to the node. A weight value of zero corresponds to no load. A large positive weight is used by a stimulus
to drive the node positive, while a large negative weight is used to drive it negative.

Attribute summing is useful for pull up resistors. In the port A open collector / port B weak pull-up connection example,
gpsim assigns a relatively small weight to the pull up resistor and a large negative weight to the open collector if it
is active or no weight if it’s not driving. Capacitive effects (which are not currently supported) can be simulated with
dynamically changing weight values.6.2 I/O Pins

gpsim models I/O pins as stimuli. Thus anywhere a stimulus is used, an I/O pin may be substituted. For example, you
may want to tie two I/O pins to one another (for example, a port B pull up resistor to a port A open collector). gpsim
automatically creates the I/O pin stimuli whenever a processor is created. All you need to do is to specify a node and
then attach the stimuli to it. The names of these stimuli are formed by concatenating the port name with the bit position
of the I/O pin. For example, bit 3 in port B is called portb3.

Here’s a list of the types of I/O pin stimuli that are supported:

I/O Pin Type Function

INPUT_ONLY Only accepts input (like MCLR)
BI_DIRECTIONAL Can be a source or a load (most I/O pins)

BI_DIRECTIONAL_PU PU=Pullup resistor (PORTB)
OPEN_COLLECTOR Can only drive low (RA4 on c84)

There is no special pin type for analog I/O pins. All pic analog inputs are multiplexed with digital inputs. The I/O pin
definition will always be for the digital input. gpsim automatically knows when I/O pin is analog input6.3 Synchronous Stimuli

Synchronous stimuli are periodic functions that are synchronized to the cpu’s clock2. They are defined by the following
parameters:

parameter function

phase The # of cycles (after start) before the stimulus starts
period The # of cycles for one period
start The cycle the stimulus becomes active

initial_state The initial state of the stimulus
type Analog or Digital

One cycle of the periodic function can be written like sofun
(t) = something for t = 0 : : : period
And then can be made periodic by: fun
(t+ period) = fun
(t)2This will probably be made optional in the future. In other words, you’ll get the choice to specify whether or not the ’synchronous’ stimulus
parameters are synchronized to the cpu or are absolute time values.

CHAPTER 6. SIMULATING THE REAL WORLD: STIMULI 22
which just says that the function has the same value at t and t+ period.

The phase allows the periodic function to be shifted by an arbitrary amount.

In some instances, you don’t want the stimulus to be active until after a certain amount of time. The parameters startandinitial state describe how long the stimulus should wait before becoming active and what state the stimulus should be
in during that waiting period.

By default, the synchronous stimulus is assumed to be digital. This can be overridden by specifying analog. In many
cases, the context in which the stimulus is used makes the analog/digital choice clear. For example, a square wave is
usually digital and a sine wave is usually analog. There are instances where you might want to change this. For example,
[how would you create a sinusoidally PWM’d wave form??? add it here...]6.3.1 Square Wave

The simplest example of a synchronous stimulus is a square wave. All of the parameters described above still apply.
There’s one additional parameter for the square wave:

parameter function

duty cycle ’high time’ for a square wave

The synchronous stimulus begins with the ’initial state’ at cycle 0. After ’phase’ cycles happen, the stimulus changes
states. After ’high time’ more cycles, the state changes again. The frequency of the square wave is:fsq = 1period � fos
4
Where fos
 is the simulated oscillator frequency. The duty cycle is:DutyCy
le = hightimeperiod

Synchronous stimuli are useful as clocks. For example, it’s possible to create a synchronous stimulus and attach it to
the TMR0 input pin. Or another example may be the clock line in an I2C interface.

Square Wave example

Here’s a sequence of commands to create a square wave:

stimulus sqw
initial_state 1
start 10000
period 1000
high_time 300
phase 100
port portb 0
end

There’s really just one command, ’stimulus’, spread over several lines. In this example, the square wave has a period
of 1000 cpu cycles and a 30% duty cycle (it’s high for 300 out of the 1000 cycles). It will start off high and remain high
until cycle 10000, the start cycle, after which it will go low. Then 100 cycles later (phase delay) it will go high. This is the
’phase shift’. 300 more cycles later, or cycle 14000 it will go low. Since the period is 1000 cycles, the square will repeat
this sequence at cycle 11000, 12000, etc. So in terms of absolute cpu cycles, the stimulus starts off high and then goes
low at cycle 10000, high at cycle 10100, low at 10400, high at 11100, low at 11400...

Or if you prefer, the state of the square wave can be expressed:

if(cpu cycle < start)
state = initial_state;

else {
cycle_in_period = (cpu cycle - start) % period;

CHAPTER 6. SIMULATING THE REAL WORLD: STIMULI 23

if((cycle_in_period > phase) && (cycle_in_period < (phase+high_time)))
state = 1;

else
state = 0;

}6.3.2 Triangle Wave

In it’s simplest form, you can described a triangle wave as a periodic wave that is composed of two line segments, one
with a positive slope the other with a negative slope. It’s sometimes also called a ’sawtooth’ wave because the repeated
rising and falling edges look similar to the cutting teeth on a hand saw. gpsim defines triangle waves the same way
as square waves and adds two new parameters. In other words, all of the parameters that apply to square waves also
apply to triangle waves and in addition you may also specify the positive and negative peaks. The traingle wave can
be most easily envisioned (PICTURE!!!) when superimposed on a square wave. When the square wave is ’high’ the
triangle wave has a positive slope and when it’s low the triangle wave has a negative slope. If the triangle wave has
the same amplitude excursions as a square wave, then the triangle wave peaks exactly coincide with the square wave’s
high-to-low and low-to-high transitions.6.3.3 Sine Wave

Doesn’t exist yet.6.4 Asynchronous Stimuli

Asynchronous stimuli are analog or digital stimuli that can change states at any given instant (limited to the resolution of
the cycle counter). They can be defined to be repetitive too.

parameter function
start The # of cycles before the stimulus starts

cycles[] An array of cycle #’s
data[] Stimulus state for a cycle
period The # of cycles for one period

initial state The initial state of data[0]

When the stimulus is first initialized, it will be driven to the ’initial state’ and will remain there until the cpu’s instruction
cycle counter matches the specified ’start’ cycle. After that, the two arrays ’cycles[]’ and ’data[]’ define the stimulus’
outputs. The size of the arrays are the same and correspond to the number of events that are to be created. So the
event number, if you will, serves as the index into these arrays. The ’cycles[]’ array define when the events occur while
the ’data[]’ array defines the states the stimulus will enter. The ’cycles[]’ are measured with respect to the ’start’ cycle.
The asynchronous stimulus can be made periodic by specifying the number of cycles in the ’period’ parameter.

Here’s an example that generates three pulses and then repeats:

stimulus asynchronous_stimulus # or we could’ve used asy
The initial state AND the state the stimulus is when
it rolls over
initial_state 1
all times are with respect to the cpu’s cycle counter
start_cycle 100
the asynchronous stimulus will roll over in ’period’
cycles. Delete this line if you don’t want a roll over.
period 5000
Now the cycles at which stimulus changes states are
specified. The initial cycle was specified above. So
the first cycle specified below will toggle this state.
In this example, the stimulus will start high.
At cycle 100 the stimulus ’begins’. However nothing happens
until cycle 200+100.

CHAPTER 6. SIMULATING THE REAL WORLD: STIMULI 24
200 0
300 1
400 0
600 1
1000 0
3000 1
Give the stimulus a name:
name asy_test
Finally, tell the command line interface that we’re done # with the stimulus
end

ds6.5 Analog Stimuli

Analog Stimuli are really a subset or type of asynchronous or synchronous stimuli.

Chapter 7

Modules

gpsim has been designed to debug microprocessors. However, microprocessors are always a part of a system. And
invariably, the bugs one often encounters are those that are a result of interfacing with a system. Modules provide users
with a way to extend gpsim and simulate a system.

A module is a stand alone application that a user writes.

25

Chapter 8

Symbolic Debugging

Early versions of gpsim provided hard coded symbols like ’status’ or ’porta’. As a version 0.0.12, gpsim provides symbolic
debugging capabilities. So in addition to the hard coded symbols, you can now have access to all of the symbols defined
by your assembler. This includes cross referencing the program memory to source and list files, access to registers
defined within cblocks, access to program memory labels, and access to all of the constants that are defined (either with
equates or #defines) by your program.

26

Chapter 9

Hex Files

The target code simulated by gpsim comes from a hex file, or more specifically an Intel Hex file. gpsim accepts the format
of hex provided by gpasm and mpasm. The hex file does not provide any symbolic information. It’s recommended that
hex files only be used if 1) you suspect there’s a problem with the way .cod files are generated by your assembler or
compiler OR 2) your assembler or compiler doesn’t generate .cod files.

27

Chapter 10

The ICD

gpsim supports (partly) the first version of the ICD (as opposed to ICD2 (the round hockey-puck shaped one)).

Special configuration of the code

Read the MPLAB ICD USER’s GUIDE.

Here’s the short version:� disable at least: brown out detection, low voltage programming and all code protection. It is probably good to turn
of the watchdog too. see the MPLAB ICD USER’s GUIDE for more information.� have a NOP as the first instruction.� Don’t touch RB6 or RB7.� Don’t use the last stack level.� Don’t use these registers and program words:

Processor Register Program

-870/1/2 0x70, 0xBB-0xBF 0x6E0-0x7FF
-873/4 0x6D, 0x1fD, 0xEB-0xF0, 0x1Eb-0x1F0 0xEE0-0xFFF
-876/7 0x70, 0x1Eb-0x1Ef 0x1F00-0x1FFF

icdprog

Download and install icdprog.

Use icdprog to program the target with the hex file (icdprog mycode.hex).

ICD usage

Start gpsim like this:

gpsim -d /dev/ttyS0 -s mycode.cod

, assuming the ICD is connected to the first serial port.

Now you can type ’icd’ to see some information:

**gpsim> icd
ICD version "2.31.00" was found.
Target controller is 16F877 rev 13.
Vdd: 5.2 Vpp: 13.3
Debug module is present

2.31 is the firmware version. I have only tried this particular version...

You can step, reset, run, halt, set the breakpoint and read file registers. It works both from the gui and the cli.

28

CHAPTER 10. THE ICD 29

ICD TODO� MPLAB has a setting for target cpu frequency, I have only tried with a 20MHz crystal, so there may be adjustments
to be made to the serial port timeout settings in gpsim.� The source, disassembly, watch, symbol and RAM windows works. And the rest doesn’t. I guess the breadboard
should be able to work at least for the pic, but it doesn’t.� eeprom support� modifying data� Fix the UI to give more feedback about what’s happening during long delays.� Better error detection. gpsim doesn’t always see that the target is not functional.

Chapter 11

Theory of Operation

This section is only provided for those who may be interested in how gpsim operates. The information in here is ’mostly’
accurate. However, as gpsim evolves so do the details of the theory of operation. Use the information provided here as
a high level introduction and use the (well commented :]) source to learn the details.11.1 Background

gpsim is written mostly in C++. Why? Well the main reason is to easily implement a hierarchical model of a pic. If
you think about a microcontroller, it’s really easy to modularize the various components. C++ lends itself well to this
conceptualization. Furthermore Microchip, like other microcontroller manufacturers, has created families of devices that
are quite similar to one another. Again, the C++ provides ’inheritance’ that allows the relationships to be shared among
the various models of pics.11.2 Instructions

There’s a base class for the 14-bit instructions (I plan to go one step further and create a base class from which all
pic instructions can be derived). It primarily serves two purposes: storage that is common for each instruction and a
means for generically accessing virtual functions. The common information consists of a name - or more specifically the
instruction mnemonic, the opcode, and a pointer to the processor owning the instruction. Some of the virtual functions
are ’execute’ and ’name’. As the hex file is decoded, instances of the instructions are created and stored in an array called
program_memory. The index into this array is the address at which the instruction resides. To execute an instruction the
following code sequence is invoked:

program_memory[pc.value]->execute();

which says, get the instruction at the current program counter (pc.value) and invoke via the virtual function execute().
This approach allows execution break points to be easily set. A special break point instruction can replace the one
residing in the program memory array. When ’execute’ is called the break point can be invoked.11.3 General File Registers

A file register is simulated by the ’file_register’ class. There is one instance of a ’file_register’ object for each file register
in the PIC. All of the registers are collected together into an array called ’registers’ which is indexed by the registers’
corresponding PIC addresses. The array is linear and not banked like it is in the PIC. (Banking is handled during the
simulation.)11.4 Special File Registers

Special file registers are all of the other registers that are not general file registers. This includes the core registers like
status and option and also the peripheral registers like eeadr for the eeprom. The special file registers are derived from
the general file registers and are also stored in the ’registers’ array. There is one instance for each register - even if the30

CHAPTER 11. THEORY OF OPERATION 31

register is accessible in more than one bank. So for example, there’s only one instance for the ’status’ register, however
it may be accessed through the ’registers’ array in more than one place.

All file registers are accessed by the virtual functions ’put’ and ’get’. This is done for two main reasons. First, it con-
veniently encapsulates the breakpoint overhead (for register breakpoints) in the file register and not in the instruction.
Second, and more important, it allows derived classes to implement the put and get more specifically. For example, a
’put’ to the indf register is a whole lot different than a put to the intcon register. In each case, the ’put’ initiates an action
beyond simply storing a byte of data in an array. It also allows the following code sequence to be easily implemented:

movlw trisa ;Get the address of tris
movwf fsr
movf indf,w ;Read trisa indirectly11.5 Example of an instruction

Here’s an example of the code for the movf instruction that illustrates what has been discussed above. Somewhere in
gpsim the code sequence:

program_memory[pc.value]->execute();

is executed. Let’s say that the pc is pointing to a movf instruction. The ->execute() virtual function will invoke MOVF::execute.
I’ve added extra comments (that aren’t in the main code) to illustrate in detail what’s happening.

void MOVF::execute(void)
{

unsigned int source_value;

// All instructions are ’traced’ (discussed below). It’s sufficient
//to only store the opcode. However, even this may be unnecessary since
//the progam counter is also traced. Expect this to disappear in the
//future...
trace.instruction(opcode);

// ’source’ is a pointer to a ’file_register’ object. It is initialized
//by reading the ’registers’ array. Note that the index depends on the
//’rp’ bits (actually just one bit) in the status register. Time is
// saved by caching rp as opposed to decoding the status register.
source = cpu->registers[cpu->rp | opcode®_IN_INSTRUCTION_MASK];

// We have no idea which register we are trying to access and how it
//should be accessed or if there’s a breakpoint set on it. No problem,
//the virtual function ’get’ will resolve all of those details
// and ’do the right thing’.
source_value = source->get();

// If the destination is W, then the constructor has already initialized
//’destination’. Otherwise the destination and source are the same.
if(opcode&DESTINATION_MASK)
destination = source; // Result goes to source

// Write the source value to the destination. Again, we have no idea
// where the destination may be or
// or how the data should be written there.
destination->put(source_value);

// The movf instruction will set Z (zero) bit in the status register
//if the source value was zero.
cpu->status.put_Z(0==source_value);

// Finally, advance the pc by one.
cpu->pc.increment();

CHAPTER 11. THEORY OF OPERATION 32
}11.6 Trace

Everything that is simulated is traced - all of the time. The trace buffer is one huge circular buffer of integers. Information
is or’ed with a trace token and then is stored in the trace buffer. No attempt is made to associate the items in the trace
buffer while the simulator is simulating a PIC. Thus, if you look at the raw buffer you’ll see stuff like: cycle counter = ...,
opcode fetch = ..., register read = ..., register write = ..., etc. However, this information is post processed to ascertain
what happened and when it happened. It’s also possible to use this information to undo the simulation, or in other words
you can step backwards. I don’t have this implemented yet though.11.7 Breakpoints

Breakpoints fall into three categories: execution, register, and cycle.

Execution:

For execution breakpoints a special instruction appropriately called ’Breakpoint_Instruction’ is created and placed into
the program memory array at the location the break point is desired. The original instruction is saved in the newly created
breapoint instruction. When the break point is cleared, the original instruction is fetched from the break point instruction
and placed back into the program memory array.

Note that this scheme has zero overhead. The simulation is only affected when the breakpoint is encountered.

Register:

There are at least four different breakpoint types that can be set on a register: read any value, write any value, read
a specific value, or write a specific value. Like the execution breakpoints, there are special breakpoint registers that
replace a register object. So when the user sets a write breakpoint at register 0x20 for example, a new breakpoint object
is created and insert into the file register array at location 0x20. When the simulator attempts to access register location
0x20, the breakpoint object will be accessed instead.

Note that this scheme too has zero overhead, accept when a breakpoint is encountered.

Cycle:

Cycle breakpoints allow gpsim to alter execution at a specific instruction cycle. This is useful for running your simulation
for a very specific amount of time. Internally, gpsim makes extensive use of the cycle breakpoints. For example, the
TMR0 object can be programmed to generate a periodic cycle break point.

Cycle break points are implemented with a sorted doubly-linked list. The linked list contains two pieces of information
(besides the links): the cycle at which the break is to occur and the call back function1 that’s to be invoked when the
cycle does occur. The break logic is extremely simple. Whenever the cycle counter is advanced (that is, incremented),
it’s compared to the next desired cycle break point. If there’s NO match, then we’re done. So the overhead for cycle
breaks is the time required to implement a comparison. If there IS a match, then the call back function associated with
this break point is invoked and the next break point in the doubly-linked list serves as the reference for the next cycle
break.

1A call back function is a pointer to a function. In this context, gpsim is given a pointer to the function that’s to be invoked (called) whenever a cycle
break occurs.

COPYING

The document is part of gpsim.

gpsim is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at your option) any later version.

gpsim is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with gpsim; see the file COPYING. If not,
write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

33

Indexatta
h, 7break, 7, 8bus, 7, 8
lear, 7, 8disassemble, 7, 8dump, 7, 8e
ho, 8frequen
y, 7, 9GNU, 33help, 7, 9i
d, 7, 9instru
tions, 30Li
ense, 33list, 7, 9load, 7, 9log, 7, 9module, 7, 9NO WARRANTY, 33node, 7, 9pro
essor, 7, 9quit, 7, 10registers, 30run, 7, 10set, 7step, 7, 10Stimulus, 20stimulus, 7, 10stopwat
h, 7, 11symbol, 7, 10tra
e, 7, 11version, 7x, 7, 11

34

