1 | ---------------------------------------------------------------------------------- |
---|
2 | -- Company: |
---|
3 | -- Engineer: KIEGAING EMMANUEL |
---|
4 | -- GAMOM ROLAND CHRISTIAN |
---|
5 | -- |
---|
6 | -- Create Date: 04:39:43 05/21/2011 |
---|
7 | -- Design Name: |
---|
8 | -- Module Name: DMA_ARBITER - Behavioral |
---|
9 | -- Project Name: |
---|
10 | -- Target Devices: |
---|
11 | -- Tool versions: |
---|
12 | -- Description: |
---|
13 | -- gestionnaire DMA pour le port secodaire de la RAM true dual port des mémoire |
---|
14 | -- privée de chaque noeud |
---|
15 | -- Dependencies: |
---|
16 | -- |
---|
17 | -- Revision: 09/07/2012 |
---|
18 | -- Revision 1.01 - File Created |
---|
19 | -- Revision 1.2 - 19/03/2013 |
---|
20 | -- Correction de bugs et optimisation du nombre de cycles |
---|
21 | -- Création d'un testbench |
---|
22 | -- Additional Comments: Ce module pourra être optimisé pour générer les adresses automatiquement |
---|
23 | -- par le controleur DMA lorsqu'il est sollicité par la périphérie |
---|
24 | -- |
---|
25 | ---------------------------------------------------------------------------------- |
---|
26 | library IEEE; |
---|
27 | library NocLib; |
---|
28 | use IEEE.STD_LOGIC_1164.ALL; |
---|
29 | use IEEE.STD_LOGIC_ARITH.ALL; |
---|
30 | use IEEE.STD_LOGIC_UNSIGNED.ALL; |
---|
31 | use IEEE.numeric_std.all; |
---|
32 | use NocLib.CoreTypes.all; |
---|
33 | ---- Uncomment the following library declaration if instantiating |
---|
34 | ---- any Xilinx primitives in this code. |
---|
35 | --library UNISIM; |
---|
36 | --use UNISIM.VComponents.all; |
---|
37 | |
---|
38 | entity DMA_ARBITER is |
---|
39 | Port ( dma_rd_request : in STD_LOGIC_VEctor (3 downto 0):=(others=>'0'); |
---|
40 | data_wr_in : in STD_LOGIC_VECTOR (Word-1 downto 0); |
---|
41 | data_rd_out : out STD_LOGIC_VECTOR (Word-1 downto 0); |
---|
42 | address_rd : in STD_LOGIC_VECTOR (ADRLEN-1 downto 0); --adresse pour lecture |
---|
43 | address_wr : in STD_LOGIC_VECTOR (ADRLEN-1 downto 0); -- adresse pour écriture |
---|
44 | address_out_wr : out STD_LOGIC_VECTOR (ADRLEN-1 downto 0); -- adresse de sortie du DMA Arbiter |
---|
45 | address_out_rd : out STD_LOGIC_VECTOR (ADRLEN-1 downto 0); |
---|
46 | ram_en : out STD_LOGIC; -- |
---|
47 | ram_we : out STD_LOGIC; |
---|
48 | data_wr_mem : out STD_LOGIC_VECTOR (Word-1 downto 0); -- donnée en sortie écriture |
---|
49 | data_rd_mem : in STD_LOGIC_VECTOR (Word-1 downto 0); -- données en sortie lecture |
---|
50 | dma_wr_grant : out STD_LOGIC_vector(3 downto 0):=(others=>'0'); -- autorisation d'écriture |
---|
51 | hold_req : out STD_Logic; --requete vers application |
---|
52 | hold_ack : in STD_Logic; --autorisation par l'application |
---|
53 | clk : in std_logic; |
---|
54 | reset : in std_logic; |
---|
55 | dma_rd_grant : out STD_LOGIC_vector(3 downto 0):=(others=>'0'); -- autorisation de lecture |
---|
56 | dma_wr_request : in STD_LOGIC_vector(3 downto 0):=(others=>'0')); -- demande de lecture |
---|
57 | end DMA_ARBITER; |
---|
58 | |
---|
59 | architecture Behavioral of DMA_ARBITER is |
---|
60 | type fsm_states is (idle,wait_ack,arbiter_ack, writing,ReadWrite,reading);-- definition du type etat pour le codage des etats des fsm |
---|
61 | signal dmac_state : fsm_states; |
---|
62 | |
---|
63 | signal prio_rd,prio_wr:std_logic_vector(3 downto 0);--vecteur de bits de priorité |
---|
64 | signal pri_rd,pri_wr : natural range 0 to 3; -- stocke le numéro du module qui a la priorité |
---|
65 | signal dma_rd_logic : std_logic_vector(3 downto 0):=(others=>'0'); |
---|
66 | signal dma_wr_logic : std_logic_vector(3 downto 0):=(others=>'0'); |
---|
67 | signal dma_rd_latch,dma_wr_latch: std_logic_vector(3 downto 0):=(others=>'0'); |
---|
68 | signal dma_req_wr, dma_req_rd : std_logic; |
---|
69 | signal last_grant_rd,last_grant_wr : STD_LOGIC_vector(3 downto 0):=(others=>'0'); |
---|
70 | signal tmp :std_logic_vector(3 downto 0):="0000"; |
---|
71 | |
---|
72 | begin |
---|
73 | --========================================================================== |
---|
74 | ---le MUX qui contrôle les adresses est géré à l'extérieur du contrôleur DMA |
---|
75 | dma_sync: process (clk,data_rd_mem,data_wr_in,address_rd,address_wr) |
---|
76 | begin |
---|
77 | data_rd_out<=data_rd_mem ; |
---|
78 | data_wr_mem <= data_wr_in; |
---|
79 | address_out_rd <= address_rd; |
---|
80 | address_out_wr <= address_wr; |
---|
81 | |
---|
82 | end process; |
---|
83 | --dma_rd_grant<= dma_rd_logic; |
---|
84 | --dma_wr_grant<= dma_wr_logic; |
---|
85 | dma_rd_grant<= dma_rd_latch; |
---|
86 | dma_wr_grant<= dma_wr_latch; |
---|
87 | --========================================================================== |
---|
88 | |
---|
89 | --Déterminer si une requête HOLD doit être émise vers l'application pour la libération du |
---|
90 | --bus mémoire |
---|
91 | tmp<=(others =>'0'); |
---|
92 | |
---|
93 | --for i in 0 to 3 loop |
---|
94 | --dma_req_wr<=dma_req_wr or dma_wr_request(i); |
---|
95 | --loop; |
---|
96 | |
---|
97 | --for i in 0 to 3 loop |
---|
98 | -- dma_req_rd<=dma_req_rd or dma_rd_request(i); -- construire le signal request vers l'extérieur |
---|
99 | --loop; |
---|
100 | hold_req<='1' when dma_req_rd='1' or dma_req_wr='1' else '0'; --envoyer un Hold vers l'application |
---|
101 | |
---|
102 | |
---|
103 | -- machine à etat du DMAC |
---|
104 | dmac_process : process(clk,reset) |
---|
105 | --variable tmp : natural range 0 to 15; |
---|
106 | variable tmp_rd,tmp_wr: std_logic_vector(3 downto 0); |
---|
107 | variable req_rd,req_wr : std_logic:='0' ; |
---|
108 | |
---|
109 | begin |
---|
110 | if rising_edge(clk) then |
---|
111 | if reset = '1' then |
---|
112 | dmac_state<= idle; |
---|
113 | |
---|
114 | prio_rd <="0001"; -- au debut priorité lecture au premier module |
---|
115 | prio_wr <="0010"; -- au debut priorité ecriture au deuxième module |
---|
116 | pri_rd<=0;--index de la priorité |
---|
117 | pri_wr<=1; |
---|
118 | req_rd:='0'; |
---|
119 | req_wr:='0'; |
---|
120 | else |
---|
121 | if req_wr='0' then --tant que le Ctrl DMA est libre alors faire bouger la priorité en écriture |
---|
122 | case dma_wr_request is |
---|
123 | when "0001" => pri_wr<=0; |
---|
124 | prio_wr<="0001"; |
---|
125 | req_wr:='1'; |
---|
126 | dma_req_wr<= '1'; |
---|
127 | dma_wr_logic <="0001"; |
---|
128 | when "0010" => pri_wr<=1; |
---|
129 | prio_wr<="0010"; |
---|
130 | req_wr:='1'; |
---|
131 | dma_req_wr<= '1'; |
---|
132 | dma_wr_logic <="0010"; |
---|
133 | when "0100" => pri_wr<=2; |
---|
134 | prio_wr<="0100"; |
---|
135 | req_wr:='1'; |
---|
136 | dma_req_wr<= '1'; |
---|
137 | dma_wr_logic <="0100"; |
---|
138 | when "1000" => pri_wr<=3; |
---|
139 | prio_wr<="1000"; |
---|
140 | req_wr:='1'; |
---|
141 | dma_req_wr<= '1'; |
---|
142 | dma_wr_logic <="1000"; |
---|
143 | |
---|
144 | when others => |
---|
145 | if req_rd='1' then --demande simultané de lecture et d'écriture |
---|
146 | |
---|
147 | if dma_rd_request(pri_rd)='1' then |
---|
148 | pri_wr<=pri_rd; |
---|
149 | req_wr:='1'; |
---|
150 | for i in 0 to 3 loop |
---|
151 | if i=pri_rd then |
---|
152 | prio_wr(i)<='1'; |
---|
153 | dma_wr_logic(i)<='1'; |
---|
154 | else |
---|
155 | prio_wr(i)<='0'; |
---|
156 | dma_wr_logic(i)<='0'; |
---|
157 | end if; |
---|
158 | end loop; |
---|
159 | |
---|
160 | |
---|
161 | end if; |
---|
162 | |
---|
163 | else --on affecte l'accè à la mémoire suivant le round robbin |
---|
164 | tmp_wr:= (dma_wr_request and prio_wr) ; |
---|
165 | dma_wr_logic <=tmp_wr; |
---|
166 | |
---|
167 | req_wr:= not(All_zeros(tmp_wr)); |
---|
168 | dma_req_wr<= not(All_zeros(tmp_wr)); |
---|
169 | end if; |
---|
170 | -- la priorité est circulaire et décale à chaque coup d'horloge |
---|
171 | if req_wr='0' then |
---|
172 | prio_wr<=rol_vec(prio_wr); |
---|
173 | if pri_wr=3 then |
---|
174 | pri_wr<=0; |
---|
175 | Prio_wr<="0001"; |
---|
176 | else |
---|
177 | pri_wr<=pri_wr+1; |
---|
178 | end if; |
---|
179 | end if; |
---|
180 | end case; |
---|
181 | else --req_wr='1' |
---|
182 | |
---|
183 | --demande simultané de lecture et d'écriture |
---|
184 | |
---|
185 | if dma_rd_request(pri_wr)='1' then |
---|
186 | pri_rd<=pri_wr; |
---|
187 | req_rd:='1'; |
---|
188 | prio_rd<=prio_wr; |
---|
189 | -- for i in 0 to 3 loop |
---|
190 | -- if i=pri_rd then |
---|
191 | -- prio_wr(i)<='1'; |
---|
192 | -- dma_wr_logic(i)<='1'; |
---|
193 | -- else |
---|
194 | -- prio_wr(i)<='0'; |
---|
195 | -- dma_wr_logic(i)<='0'; |
---|
196 | -- end if; |
---|
197 | -- end loop; |
---|
198 | |
---|
199 | end if; |
---|
200 | |
---|
201 | end if; |
---|
202 | |
---|
203 | if req_rd='0' then --tant que le Ctrl DMA est libre alors faire bouger la priorité |
---|
204 | case dma_rd_request is |
---|
205 | when "0001" => pri_rd<=0; |
---|
206 | prio_rd<="0001"; |
---|
207 | req_rd:='1'; |
---|
208 | dma_req_rd<= '1'; |
---|
209 | dma_rd_logic<="0001"; |
---|
210 | when "0010" => pri_rd<=1; |
---|
211 | prio_rd<="0010"; |
---|
212 | req_rd:='1'; |
---|
213 | dma_req_rd<= '1'; |
---|
214 | dma_rd_logic<="0010"; |
---|
215 | |
---|
216 | when "0100" => pri_rd<=2; |
---|
217 | prio_rd<="0100"; |
---|
218 | req_rd:='1'; |
---|
219 | dma_req_rd<= '1'; |
---|
220 | dma_rd_logic<="0100"; |
---|
221 | |
---|
222 | when "1000" => pri_rd<=3; |
---|
223 | prio_rd<="1000"; |
---|
224 | req_rd:='1'; |
---|
225 | dma_req_rd<= '1'; |
---|
226 | dma_rd_logic<="1000"; |
---|
227 | |
---|
228 | when others => |
---|
229 | --si une demande survient de la part d'un composant déjà acquitté alors celui-ci est prioritaire |
---|
230 | if req_wr='1' then |
---|
231 | |
---|
232 | if dma_rd_request(pri_wr)='1' then |
---|
233 | pri_rd<=pri_wr; |
---|
234 | req_rd:='1'; |
---|
235 | for i in 0 to 3 loop |
---|
236 | if i=pri_wr then |
---|
237 | prio_rd(i)<='1'; |
---|
238 | dma_rd_logic(i)<='1'; |
---|
239 | else |
---|
240 | prio_rd(i)<='0'; |
---|
241 | dma_rd_logic(i)<='0'; |
---|
242 | end if; |
---|
243 | end loop; |
---|
244 | |
---|
245 | |
---|
246 | end if; |
---|
247 | |
---|
248 | else |
---|
249 | tmp_rd:= (dma_rd_request and prio_rd) ; |
---|
250 | dma_rd_logic<=tmp_rd; |
---|
251 | dma_req_rd<= not (All_Zeros(tmp_rd)); |
---|
252 | req_rd:= not (All_Zeros(tmp_rd)); |
---|
253 | end if; |
---|
254 | -- la priorité est circulaire et décale à chaque coup d'horloge |
---|
255 | if req_rd='0' then |
---|
256 | prio_rd<=rol_vec(prio_rd); |
---|
257 | if pri_rd =3 then |
---|
258 | pri_rd<=0; |
---|
259 | prio_rd<="0001"; |
---|
260 | else |
---|
261 | |
---|
262 | pri_rd<=pri_rd+1; |
---|
263 | end if; |
---|
264 | end if; |
---|
265 | end case; |
---|
266 | |
---|
267 | end if; |
---|
268 | |
---|
269 | case dmac_state is |
---|
270 | when idle => if req_rd='1' or req_wr='1' then |
---|
271 | dmac_state<=wait_ack; |
---|
272 | else -- initialiser la priorité |
---|
273 | |
---|
274 | |
---|
275 | req_rd:='0'; |
---|
276 | dma_req_rd<= '0'; |
---|
277 | |
---|
278 | |
---|
279 | |
---|
280 | req_wr:='0'; |
---|
281 | dma_req_wr<= '0'; |
---|
282 | |
---|
283 | dma_wr_logic <="0000"; --aucun accès mémoire n'est accrédité |
---|
284 | dma_rd_logic <="0000"; |
---|
285 | |
---|
286 | end if; |
---|
287 | |
---|
288 | when wait_ack => -- l'application doit autoriser l'utilisation de la RAM par le Core |
---|
289 | if dma_wr_request(pri_wr) ='1' or dma_rd_request(pri_rd) ='1' then |
---|
290 | if hold_ack='1' then |
---|
291 | --dmac_state<=arbiter_ack; |
---|
292 | if dma_wr_request(pri_wr) ='1' and dma_rd_request(pri_rd) ='1' then -- |
---|
293 | dmac_state <= Readwrite; |
---|
294 | elsif dma_wr_request(pri_wr) ='0' and dma_rd_request(pri_rd) ='1' then |
---|
295 | dmac_state <= Reading; |
---|
296 | elsif dma_wr_request(pri_wr) ='1' and dma_rd_request(pri_rd) ='0' then |
---|
297 | dmac_state <= Writing; |
---|
298 | else |
---|
299 | dmac_state<=Idle; |
---|
300 | end if; |
---|
301 | end if; |
---|
302 | else |
---|
303 | |
---|
304 | if dma_wr_request(pri_wr) ='0' then |
---|
305 | req_wr:='0';-- forcer une nouvelle recherche de priorité |
---|
306 | end if; |
---|
307 | |
---|
308 | if dma_rd_request(pri_rd) ='0' then |
---|
309 | req_rd:='0'; |
---|
310 | end if; |
---|
311 | dmac_state<=Idle; |
---|
312 | end if; |
---|
313 | |
---|
314 | |
---|
315 | when arbiter_ack => |
---|
316 | -- if dma_wr_request(pri_wr) ='1' and dma_rd_request(pri_rd) ='1' then -- |
---|
317 | -- dmac_state <= Readwrite; |
---|
318 | -- elsif dma_wr_request(pri_wr) ='0' and dma_rd_request(pri_rd) ='1' then |
---|
319 | -- dmac_state <= Reading; |
---|
320 | -- elsif dma_wr_request(pri_wr) ='1' and dma_rd_request(pri_rd) ='0' then |
---|
321 | -- dmac_state <= Writing; |
---|
322 | -- else |
---|
323 | dmac_state<=Idle; |
---|
324 | -- end if; |
---|
325 | -- cet état a été combiné au précédent pour gagner un cycle |
---|
326 | when Writing => if dma_wr_request(pri_wr) ='1' then |
---|
327 | if hold_ack='1' then |
---|
328 | -- on reste dans cet état |
---|
329 | if dma_rd_request(pri_rd)='1' then |
---|
330 | dmac_state<=ReadWrite; |
---|
331 | else |
---|
332 | req_rd:='0'; |
---|
333 | end if; |
---|
334 | else |
---|
335 | dmac_state<=wait_ack; |
---|
336 | end if; |
---|
337 | elsif dma_rd_request(pri_rd) ='1' then |
---|
338 | dmac_state <= Reading; |
---|
339 | req_wr:='0'; |
---|
340 | else |
---|
341 | dmac_state <= idle; |
---|
342 | req_wr:='0'; |
---|
343 | end if; |
---|
344 | |
---|
345 | |
---|
346 | when ReadWrite => if hold_ack='1' then |
---|
347 | if dma_wr_request(pri_wr)='1' and dma_rd_request(pri_rd)='1' then |
---|
348 | dmac_state <= ReadWrite; |
---|
349 | elsif dma_wr_request(pri_wr)='1' and dma_rd_request(pri_rd)='0' then |
---|
350 | dmac_state <= Writing; |
---|
351 | req_rd:='0'; |
---|
352 | elsif dma_wr_request(pri_wr)='0' and dma_rd_request(pri_rd)='1' then |
---|
353 | dmac_state <= Reading; |
---|
354 | req_wr:='0'; |
---|
355 | else |
---|
356 | dmac_state <= Idle; |
---|
357 | req_rd:='0';req_wr:='0'; |
---|
358 | end if; |
---|
359 | else |
---|
360 | if (dma_wr_request(pri_wr)='1') or (dma_rd_request(pri_rd)='1') then |
---|
361 | dmac_state <= Wait_ack; |
---|
362 | else |
---|
363 | dmac_state <= Idle; |
---|
364 | end if; |
---|
365 | end if; |
---|
366 | when Reading => |
---|
367 | if dma_rd_request(pri_rd) ='1' then |
---|
368 | if hold_ack='1' then |
---|
369 | -- on reste dans cet état |
---|
370 | if dma_wr_request(pri_wr)='1' then |
---|
371 | dmac_state<=ReadWrite; |
---|
372 | else |
---|
373 | req_wr:='0'; |
---|
374 | end if; |
---|
375 | else |
---|
376 | dmac_state<=wait_ack; |
---|
377 | end if; |
---|
378 | elsif dma_wr_request(pri_wr) ='1' then |
---|
379 | dmac_state<=writing; |
---|
380 | req_rd:='0'; |
---|
381 | else |
---|
382 | dmac_state <= idle; |
---|
383 | req_rd:='0'; |
---|
384 | end if; |
---|
385 | when others => dmac_state <= idle; |
---|
386 | end case; |
---|
387 | end if; |
---|
388 | end if; |
---|
389 | end process; |
---|
390 | -- action_asociées |
---|
391 | ol: process(dmac_state, address_rd, address_wr,pri_wr,pri_rd,prio_wr,prio_rd,dma_wr_request,dma_rd_request) |
---|
392 | |
---|
393 | begin |
---|
394 | --tester les requêtes DMA en lecture ou en écriture |
---|
395 | |
---|
396 | case dmac_state is |
---|
397 | when idle => |
---|
398 | ram_en <='0'; |
---|
399 | ram_we <='0'; |
---|
400 | dma_wr_latch <=(others=>'0'); |
---|
401 | dma_rd_latch <=(others=>'0'); |
---|
402 | --address_out_rd <= address_rd; |
---|
403 | --hold_req<='0'; |
---|
404 | when wait_ack => |
---|
405 | ram_en <='0'; |
---|
406 | ram_we <='0'; |
---|
407 | dma_wr_latch<=(others=>'0'); |
---|
408 | dma_rd_latch<=(others=>'0'); |
---|
409 | --address_out_rd <= (others=>'Z'); |
---|
410 | --address_out_wr <= (others=>'Z'); |
---|
411 | --hold_req<='1'; |
---|
412 | when arbiter_ack => --à optimiser pour gagner un cycle |
---|
413 | ram_en <='0'; |
---|
414 | ram_we <='0'; |
---|
415 | dma_wr_latch<=(others=>'0'); |
---|
416 | dma_rd_latch<=(others=>'0'); |
---|
417 | --address_out_rd <= (others=>'Z'); |
---|
418 | --address_out_wr <= (others=>'Z'); |
---|
419 | when writing => -- ecriture dans la ram |
---|
420 | ram_en <='1'; |
---|
421 | ram_we <='1'; |
---|
422 | dma_wr_latch<=(others=>'0'); |
---|
423 | dma_wr_latch(pri_wr) <='1'; |
---|
424 | dma_rd_latch <=(others=>'0'); |
---|
425 | --address_out_rd <= (others=>'Z'); |
---|
426 | --address_out_wr <= address_wr; |
---|
427 | --hold_req<='1'; |
---|
428 | |
---|
429 | when ReadWrite => -- Lecture et écriture simultannée dans la Dual Port RAM |
---|
430 | ram_en <='1'; |
---|
431 | ram_we <='1'; |
---|
432 | dma_wr_latch<=(others=>'0'); |
---|
433 | dma_wr_latch(pri_wr) <='1'; |
---|
434 | dma_rd_latch<=(others=>'0'); |
---|
435 | dma_rd_latch(pri_rd)<='1'; |
---|
436 | |
---|
437 | --address_out_rd <= address_rd; |
---|
438 | --address_out_wr <= address_wr; |
---|
439 | --hold_req<='1'; |
---|
440 | when Reading => -- lecture dans la ram |
---|
441 | ram_en <='1'; |
---|
442 | ram_we <='0'; |
---|
443 | dma_wr_latch<=(others=>'0'); |
---|
444 | dma_rd_latch<=(others=>'0'); |
---|
445 | dma_rd_latch(pri_rd)<='1'; |
---|
446 | |
---|
447 | --address_out_rd <= address_rd; |
---|
448 | --address_out_wr <= (others=>'Z'); |
---|
449 | --hold_req<='1'; |
---|
450 | when others => |
---|
451 | ram_en <='0'; |
---|
452 | ram_we <='0'; |
---|
453 | dma_wr_latch <=(others=>'0'); |
---|
454 | dma_rd_latch <=(others=>'0'); |
---|
455 | --address_out_rd <= (others=>'Z'); |
---|
456 | --address_out_wr <= (others=>'Z'); |
---|
457 | --hold_req<='0'; |
---|
458 | end case; |
---|
459 | end process; |
---|
460 | |
---|
461 | |
---|
462 | end Behavioral; |
---|
463 | |
---|