Modélisation dynamique de l'inverseur CMOS

Analyse Temporelle MASTER ACSI M2

Habib MEHREZ

Modèles Dynamiques Equivalents

Modèles Dynamiques Equivalents

Etude du temps de descente

$$Td_{1}: 0.9V_{DD} > V_{o} > V_{DD} - V_{tn}$$

$$Td_{2}: V_{DD} - V_{tn} > V_{o} > 0.1V_{DD}$$

$$I_{C} = I_{DSn} \qquad \text{saturation } V_{o} > V_{DD} - V_{tn}$$

$$-C_{L} \frac{dV_{o}}{dt} = K_{n}(V_{DD} - V_{tn})^{2}$$

$$\Rightarrow C_{L} \frac{dV_{o}}{dt} + K_{n}(V_{DD} - V_{tn})^{2} = 0$$

$$td_{1} = \frac{C_{L}}{K_{n}(V_{DD} - V_{tn})^{2}} \int_{V_{DD} - V_{tn}}^{0.9V_{DD}} dV_{o}$$

$$td_{1} = \frac{C_{L}(V_{tn} - 0.1V_{DD})}{K_{n}(V_{DD} - V_{tn})^{2}}$$

Etude du temps de descente

linéaire $V_o < V_{DD} - V_{tn}$ $-C_{L}\frac{dV_{o}}{dt} = K_{n}[2(V_{DD} - V_{tn})V_{o} - V_{o}^{2}] \qquad C_{L}\frac{dV_{o}}{dt} + K_{n}[2(V_{DD} - V_{tn})V_{o} - V_{o}^{2}] = 0$ dt $\frac{K_n}{C_L}dt = \frac{dV_o}{V_o^2 - 2(V_{DD} - V_{tn})V_o}$ $t_{d_2} = \frac{C_L}{K_n} \int_{V_{DD}-V_{tn}}^{0.1V_{DD}} \frac{dV_o}{V_o^2 - 2(V_{DD}-V_{tn})V_o} \quad t_{d_2} = \frac{C_L}{K_n(V_{DD}-V_{tn})} \log \frac{19V_{DD}-20V_{tn}}{V_{DD}}$ $t_{d} = t_{d_{1}} + t_{d_{2}} = \frac{C_{L}}{K_{n}(V_{DD} - V_{tn})} \left(\frac{V_{tn} - 0.1V_{DD}}{V_{DD} - V_{tn}} + \frac{1}{2}\log\frac{19V_{DD} - 20V_{tn}}{V_{DD}}\right)$ A.N $V_{tn} \approx 0.2 V_{DD} \approx 1 V$ $t_d \approx \frac{C_L}{\ldots}$ pour VDD=5V $K_n V_{DD}$ 5/26

Etude du temps de montée

Etude identique que pour le temps de descente mais il faut considérer que V_o évolue de:

$$0.1V_{DD} \rightarrow |V_{tp}| \Rightarrow t_{m1}(saturation)$$

$$|V_{tp}| \rightarrow 0.9V_{DD} \Rightarrow t_{m2}(linéaire)$$

$$t_{m} = \frac{C_{L}}{K_{p}(V_{DD} - |V_{tp}|)} \left[\frac{|V_{tp}| - 0.1V_{DD}}{V_{DD} - |V_{tp}|} + \frac{1}{2} \log \frac{19V_{DD} - 20|V_{tp}|}{V_{DD}} \right]$$

$$A.N: \qquad |V_{tp}| = 0.2V_{DD} \Rightarrow t_{m} \approx \frac{C_{L}}{K_{p}V_{DD}}$$

Equilibre: $t_d = t_m \Longrightarrow K_n = K_p$ $\Rightarrow \mu_n \frac{W_n}{L_n} = \mu_p \frac{W_p}{L_p}$

Etude du temps de propagation tPHL

tPHL₁: $V_{DD} > V_o > V_{DD} - V_{tn}$ tPHL₂: $V_{DD} - V_{tn} > V_o > 0.5V_{DD}$ $I_C = I_{DSn}$ saturation $V_o > V_{DD} - V_{tn}$ $-C_L \frac{dV_o}{dt} = K_n (V_{DD} - V_{tn})^2$ $\Rightarrow C_L \frac{dV_o}{dt} + K_n (V_{DD} - V_{tn})^2 = 0$

$$t_{PHL_1} = \frac{C_L}{K_n (V_{DD} - V_{tn})^2} \int_{V_{DD} - V_{tn}}^{V_{DD}} \frac{dV_o}{V_{DD} - V_{tn}}$$
$$t_{PHL_1} = \frac{C_L (V_{tn})}{K_n (V_{DD} - V_{tn})^2}$$

Etude du temps de propagation tPHL
linéaire
$$V_o < V_{DD} - V_{tn}$$

 $-C_L \frac{dV_o}{dt} = K_n [2(V_{DD} - V_m)V_o - V_o^2]$ $C_L \frac{dV_o}{dt} + K_n [2(V_{DD} - V_m)V_o - V_o^2] = 0$
 $\frac{K_n}{C_L} dt = \frac{dV_o}{V_o^2 - 2(V_{DD} - V_m)V_o}$
 $t_{PHL_2} = \frac{C_L}{K_n} \int_{V_{DD} - V_m}^{0.5V_{DD}} \frac{dV_o}{V_o^2 - 2(V_{DD} - V_m)V_o}$
 $tPHL = tPHL_1 + tPHL_2 = \frac{C_L}{K_n(V_{DD} - V_m)} (\frac{2V_m}{V_{DD} - V_m} + \log(\frac{4(V_{DD} - V_m)}{V_{DD}} - 1))$
 $\frac{A.N}{V_{tn}} \approx 0.2V_{DD} \approx 1V$ $td \approx \frac{C_L}{K_n V_{DD}}$

Etude du temps de propagation tPLH

Etude identique que pour le temps de descente mais il faut considérer que V_o évolue de:

$$V_{SS} \rightarrow |V_{tp}| \Rightarrow t_{PLH_1}(saturation)$$

$$|V_{tp}| \rightarrow 0.5V_{DD} \Rightarrow t_{PLH_2}(linéaire)$$

$$tPLH = \frac{C_L}{K_p(V_{DD} - |V_{tp}|)} [\frac{2|V_{tp}|}{V_{DD} - |V_{tp}|} + \log(\frac{4(V_{DD} - |V_{tp}|)}{V_{DD}} - 1)]$$

$$A.N: \qquad |V_{tp}| = 0.2V_{DD} \Rightarrow t_{PLH} \approx \frac{C_L}{K_pV_{DD}}$$

Equilibre: $t_{PHL} = t_{PLH} \Longrightarrow K_n = K_p$

$$\Rightarrow \mu_n \frac{W_n}{L_n} = \mu_p \frac{W_p}{L_p}$$

Dimensions W/L en fonction des temps

$$\frac{K_n = \mu n Cox}{Ln} \qquad Kp = \mu p Cox} \frac{Wp}{Lp}$$

$$tPHL = \frac{C_L}{K_n (V_{DD} - V_m)} \left(\frac{2V_m}{V_{DD} - V_m} + \log(\frac{4(V_{DD} - V_m)}{V_{DD}} - 1)\right)$$

$$\frac{Wn}{Ln} = \frac{C_L}{tPHL \mu n Cox} (V_{DD} - V_m) \left(\frac{2V_m}{V_{DD} - V_m} + \log(\frac{4(V_{DD} - V_m)}{V_{DD}} - 1)\right)$$

$$tPLH = \frac{C_L}{K_p (V_{DD} - |V_m|)} \left[\frac{2|V_m|}{V_{DD} - |V_m|} + \log(\frac{4(V_{DD} - |V_m|)}{V_{DD}} - 1)\right]$$

$$\frac{Wp}{Lp} = \frac{C_L}{tPLH . \mu p . Cox} (V_{DD} - |V_m|)} \left[\frac{2|V_m|}{V_{DD} - |V_m|} + \log(\frac{4(V_{DD} - |V_m|)}{V_{DD}} - 1)\right]$$

General electrical parameters for 2 mic. 2 metal CMOS processes

Parameter	Unit	typical		min - max	
		N-channel	P-channel	N-channel	P-channel
Threshold V _{TO}	V	.7 <->.9	9<->7	.5 <->1.2	-1.2 <->4
TransconductanceK (1/2µCox)	a.v ⁻² .E-6	30<->37	9<->13	24<->45	6.5<->13
Bulk threshold KB, λ ($\frac{\sqrt{2 \ qe^{-si} N \ sub}}{Cox}$)	v ^{1/2}	.65<->.9	.4<->.75	.55<->1.1	.4<->.9
Poly Field threshold Voltage VTFP	v			10	-10
Breakdown voltage BVDS	V			7	-7
Delta L (drawn minus effective channel length)	m.E-6	.3<->.5	.5<->.9	<.8	<1.3
Delta W (drawn minus Effective channel width)(*)	m.E-6	1.2<->1.8	1.2<->1.5	<2.3	<2

General electrical parameters for 2 mic. 2 metal CMOS processes

Parameter	Unit	typical		min - max	
		N-channel	P-channel	N-channel	P-channel
Junction capacitances:					
surface	f.m ⁻² E-6	210<->390			
periph.	f.m ⁻¹ E-12	270<->420			
Capacitances :					
poly/ thin ox	f.m ⁻² E-6	860<->1150		780<->1250	
field ox	f.m ⁻² E-6	36<->60		32<->70	
m1/ thin ox	f.m ⁻² E-6	30<->50		27<->58	
field ox	f.m ⁻² E-6	19<->28		16<->32	
poly	f.m ⁻² E-6	35<->50		31<->58	
m2/ thin ox	f.m ⁻² E-6	17<->23		15<->27	
field ox	f.m ⁻² E-6	13<->17		11<->20	
poly	f.m ⁻² E-6	17<->25		12<->29	
ml	f.m ⁻² E-6	28<->45		22<->52	
				8/26	

General electrical parameters for 2 mic. 2 metal CMOS processes

Parameter	Unit	typical		min - max		
		N-channel	P-channel	N-channel	P-channel	
Resistances:						
well	Ω / sq	2000<->3500		1500<->3500		
P+	Ω / sq	60<->200		40<->220		
\mathbf{N}^+	Ω / sq	35<->50		25<->55		
Poly	Ω / sq	18<->25		14<->30		
métal 1	Ω / sq	.05<->.1		.04<->.11		
métal 2	Ω / sq	.03<->.05		.02<->.06		
2×2 µcontact :						
\mathbf{N}^+	Ω	35<->50		20<->150		
P+	Ω	25<->60		15<->200		
poly	Ω	10<->20		5<->50		
2.5×2.5 µvias	Ω	.1<->.2		.1<->.3		
Thin oxyde thickness	m E-10	250<->400		230<->440		

General electrical parameters for 2 mic. 2 metal CMOS processes

Parameter	Unit	typical		min - max		
		N-channel	P-channel	N-channel	P-channel	
Max. current density						
métal 1	a.E-3/m.E-6	.3				
métal 2	a.E-3/m.E-6	1				

Delta WN =
$$.2 \pm .4$$

Delta WP = $.1 \pm .4$

Définition R_b

$$R = \rho \frac{w}{l \cdot e} = \frac{\rho}{e} \cdot \frac{w}{l} = R_{\rm b} \cdot \frac{w}{l}$$

