1 | #!/usr/bin/python |
---|
2 | |
---|
3 | import subprocess |
---|
4 | import os |
---|
5 | import re |
---|
6 | import sys |
---|
7 | |
---|
8 | |
---|
9 | #apps = [ 'histo-opt', 'mandel', 'filt_ga', 'radix_ga', 'fft_ga', 'pca-opt', 'fft', 'radix', 'filter', 'kmeans-opt' ] |
---|
10 | apps = [ 'fft_ga', 'filt_ga', 'lu', 'radix_ga', 'histo-opt', 'mandel', 'pca-opt', 'kmeans-opt' ] |
---|
11 | #apps = [ 'histogram', 'mandel', 'filter', 'fft', 'fft_ga', 'filt_ga', 'pca', 'lu' ] # radix radix_ga kmeans |
---|
12 | #apps = [ 'histo-opt', 'histogram2', 'histo-opt2' ] |
---|
13 | #nb_procs = [ 1, 4, 8, 16, 32, 64, 128, 256 ] |
---|
14 | nb_procs = [ 1, 4, 8, 16, 32, 64, 128, 256 ] |
---|
15 | single_protocols = ['dhccp', 'hmesi'] |
---|
16 | joint_protocols = ['dhccp', 'hmesi'] |
---|
17 | #joint_protocols = [] |
---|
18 | |
---|
19 | top_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..") |
---|
20 | scripts_path = os.path.join(top_path, 'scripts') |
---|
21 | counter_defs_name = os.path.join(scripts_path, "counter_defs.py") |
---|
22 | |
---|
23 | exec(file(counter_defs_name)) |
---|
24 | |
---|
25 | gen_dir = 'generated' |
---|
26 | graph_dir = 'graph' |
---|
27 | template_dir = 'templates' |
---|
28 | data_dir = 'data' |
---|
29 | |
---|
30 | log_stdo_name = '_stdo_' |
---|
31 | log_term_name = '_term_' |
---|
32 | |
---|
33 | coherence_tmpl = os.path.join(scripts_path, template_dir, 'coherence_template.gp') # 1 graph per appli |
---|
34 | speedup_tmpl = os.path.join(scripts_path, template_dir, 'speedup_template.gp') |
---|
35 | metric_tmpl = os.path.join(scripts_path, template_dir, 'metric_template.gp') # 1 graph per metric |
---|
36 | stacked_tmpl = os.path.join(scripts_path, template_dir, 'stacked_template.gp') |
---|
37 | |
---|
38 | |
---|
39 | |
---|
40 | def create_file(name, content): |
---|
41 | file = open(name, 'w') |
---|
42 | file.write(content) |
---|
43 | file.close() |
---|
44 | |
---|
45 | def is_numeric(s): |
---|
46 | try: |
---|
47 | float(s) |
---|
48 | return True |
---|
49 | except ValueError: |
---|
50 | return False |
---|
51 | |
---|
52 | def get_x_y(nb_procs): |
---|
53 | x = 1 |
---|
54 | y = 1 |
---|
55 | to_x = True |
---|
56 | while (x * y * 4 < nb_procs): |
---|
57 | if to_x: |
---|
58 | x = x * 2 |
---|
59 | else: |
---|
60 | y = y * 2 |
---|
61 | to_x = not to_x |
---|
62 | return x, y |
---|
63 | |
---|
64 | |
---|
65 | |
---|
66 | # We first fill the m_metric_id table |
---|
67 | for metric in all_metrics: |
---|
68 | for tag in all_tags: |
---|
69 | if m_metric_tag[metric] == tag: |
---|
70 | m_metric_id[tag] = metric |
---|
71 | break |
---|
72 | |
---|
73 | |
---|
74 | # We start by processing all the log files |
---|
75 | # Term files are processed for exec time only |
---|
76 | # Init files are processed for all metrics |
---|
77 | exec_time = {} |
---|
78 | metrics_val = {} |
---|
79 | for prot in joint_protocols: |
---|
80 | metrics_val[prot] = {} |
---|
81 | exec_time[prot] = {} |
---|
82 | for app in apps: |
---|
83 | exec_time[prot][app] = {} |
---|
84 | metrics_val[prot][app] = {} |
---|
85 | for i in nb_procs: |
---|
86 | metrics_val[prot][app][i] = {} |
---|
87 | log_stdo_file = os.path.join(scripts_path, data_dir, app + '_' + prot + log_stdo_name + str(i)) |
---|
88 | log_term_file = os.path.join(scripts_path, data_dir, app + '_' + prot + log_term_name + str(i)) |
---|
89 | |
---|
90 | # Term |
---|
91 | lines = open(log_term_file, 'r') |
---|
92 | for line in lines: |
---|
93 | tokens = line[:-1].split() |
---|
94 | if len(tokens) > 0 and tokens[0] == "[PARALLEL_COMPUTE]": |
---|
95 | exec_time[prot][app][i] = int(tokens[len(tokens) - 1]) |
---|
96 | |
---|
97 | # Init files |
---|
98 | lines = open(log_stdo_file, 'r') |
---|
99 | for line in lines: |
---|
100 | tokens = line[:-1].split() |
---|
101 | if len(tokens) == 0: |
---|
102 | continue |
---|
103 | tag = tokens[0] |
---|
104 | value = tokens[len(tokens) - 1] |
---|
105 | pattern = re.compile('\[0[0-9][0-9]\]') |
---|
106 | if pattern.match(tag): |
---|
107 | metric = m_metric_id[tag] |
---|
108 | if (not metrics_val[prot][app][i].has_key(metric) or tag == "[000]" or tag == "[001]"): |
---|
109 | # We don't add cycles of all Memcaches (they must be the same for all) |
---|
110 | metrics_val[prot][app][i][metric] = int(value) |
---|
111 | else: |
---|
112 | metrics_val[prot][app][i][metric] += int(value) |
---|
113 | |
---|
114 | # Completing unset metrics (i.e. they are not present in the data file) with 0 |
---|
115 | for prot in joint_protocols: |
---|
116 | for app in apps: |
---|
117 | for i in nb_procs: |
---|
118 | for metric in all_metrics: |
---|
119 | if metric not in metrics_val[prot][app][i]: |
---|
120 | metrics_val[prot][app][i][metric] = 0 |
---|
121 | |
---|
122 | # We make a 2nd pass to fill the derived fields, e.g. nb_total_updates |
---|
123 | for prot in joint_protocols: |
---|
124 | for app in apps: |
---|
125 | for i in nb_procs: |
---|
126 | x, y = get_x_y(i) |
---|
127 | metrics_val[prot][app][i]['total_read'] = metrics_val[prot][app][i]['local_read'] + metrics_val[prot][app][i]['remote_read'] |
---|
128 | metrics_val[prot][app][i]['total_write'] = metrics_val[prot][app][i]['local_write'] + metrics_val[prot][app][i]['remote_write'] |
---|
129 | metrics_val[prot][app][i]['total_ll'] = metrics_val[prot][app][i]['local_ll'] + metrics_val[prot][app][i]['remote_ll'] |
---|
130 | metrics_val[prot][app][i]['total_sc'] = metrics_val[prot][app][i]['local_sc'] + metrics_val[prot][app][i]['remote_sc'] |
---|
131 | metrics_val[prot][app][i]['total_cas'] = metrics_val[prot][app][i]['local_cas'] + metrics_val[prot][app][i]['remote_cas'] |
---|
132 | metrics_val[prot][app][i]['total_update'] = metrics_val[prot][app][i]['local_update'] + metrics_val[prot][app][i]['remote_update'] |
---|
133 | metrics_val[prot][app][i]['total_m_inv'] = metrics_val[prot][app][i]['local_m_inv'] + metrics_val[prot][app][i]['remote_m_inv'] |
---|
134 | metrics_val[prot][app][i]['total_cleanup'] = metrics_val[prot][app][i]['local_cleanup'] + metrics_val[prot][app][i]['remote_cleanup'] |
---|
135 | metrics_val[prot][app][i]['total_cleanup_d'] = metrics_val[prot][app][i]['local_cleanup_d'] + metrics_val[prot][app][i]['remote_cleanup_d'] |
---|
136 | metrics_val[prot][app][i]['total_getm'] = metrics_val[prot][app][i]['local_getm'] + metrics_val[prot][app][i]['remote_getm'] |
---|
137 | metrics_val[prot][app][i]['total_inval_ro'] = metrics_val[prot][app][i]['local_inval_ro'] + metrics_val[prot][app][i]['remote_inval_ro'] |
---|
138 | metrics_val[prot][app][i]['total_direct'] = metrics_val[prot][app][i]['total_read'] + metrics_val[prot][app][i]['total_write'] |
---|
139 | metrics_val[prot][app][i]['total_ncc_to_cc'] = metrics_val[prot][app][i]['ncc_to_cc_read'] + metrics_val[prot][app][i]['ncc_to_cc_write'] |
---|
140 | metrics_val[prot][app][i]['direct_cost'] = metrics_val[prot][app][i]['read_cost'] + metrics_val[prot][app][i]['write_cost'] |
---|
141 | metrics_val[prot][app][i]['broadcast_cost'] = metrics_val[prot][app][i]['broadcast'] * 2 * (x * y - 1) |
---|
142 | metrics_val[prot][app][i]['coherence_cost'] = metrics_val[prot][app][i]['broadcast_cost'] + metrics_val[prot][app][i]['m_inv_cost'] + metrics_val[prot][app][i]['update_cost'] |
---|
143 | if metrics_val[prot][app][i]['broadcast'] < metrics_val[prot][app][i]['write_broadcast']: |
---|
144 | # test to patch a bug in mem_cache |
---|
145 | metrics_val[prot][app][i]['nonwrite_broadcast'] = 0 |
---|
146 | print "*** Error which should not happen anymore: incorrect number of Broadcasts/Write Broadcasts" |
---|
147 | else: |
---|
148 | metrics_val[prot][app][i]['nonwrite_broadcast'] = metrics_val[prot][app][i]['broadcast'] - metrics_val[prot][app][i]['write_broadcast'] |
---|
149 | |
---|
150 | metrics_val[prot][app][i]['total_stacked'] = 0 |
---|
151 | for stacked_metric in stacked_metrics: |
---|
152 | metrics_val[prot][app][i]['total_stacked'] += metrics_val[prot][app][i][stacked_metric] |
---|
153 | |
---|
154 | |
---|
155 | print "mkdir -p", os.path.join(scripts_path, gen_dir) |
---|
156 | subprocess.call([ 'mkdir', '-p', os.path.join(scripts_path, gen_dir) ]) |
---|
157 | |
---|
158 | print "mkdir -p", os.path.join(scripts_path, graph_dir) |
---|
159 | subprocess.call([ 'mkdir', '-p', os.path.join(scripts_path, graph_dir) ]) |
---|
160 | |
---|
161 | ############################################################ |
---|
162 | ### Graph 1 : Coherence traffic Cost per application ### |
---|
163 | ############################################################ |
---|
164 | |
---|
165 | for prot in single_protocols: |
---|
166 | for app in apps: |
---|
167 | data_coherence_name = os.path.join(scripts_path, gen_dir, prot + '_' + app + '_coherence.dat') |
---|
168 | gp_coherence_name = os.path.join(scripts_path, gen_dir, prot + '_' + app + '_coherence.gp') |
---|
169 | |
---|
170 | # Creating the data file |
---|
171 | width = 15 |
---|
172 | content = "" |
---|
173 | |
---|
174 | for metric in [ '#nb_procs' ] + grouped_metrics: |
---|
175 | content += metric + " " |
---|
176 | nb_spaces = width - len(metric) |
---|
177 | content += nb_spaces * ' ' |
---|
178 | content += "\n" |
---|
179 | |
---|
180 | for i in nb_procs: |
---|
181 | content += "%-15d " % i |
---|
182 | for metric in grouped_metrics: |
---|
183 | val = float(metrics_val[prot][app][i][metric]) / exec_time[prot][app][i] * 1000 |
---|
184 | content += "%-15f " % val |
---|
185 | content += "\n" |
---|
186 | |
---|
187 | create_file(data_coherence_name, content) |
---|
188 | |
---|
189 | # Creating the gp file |
---|
190 | template_file = open(coherence_tmpl, 'r') |
---|
191 | template = template_file.read() |
---|
192 | |
---|
193 | plot_str = "" |
---|
194 | col = 2 |
---|
195 | for metric in grouped_metrics: |
---|
196 | if metric != grouped_metrics[0]: |
---|
197 | plot_str += ", \\\n " |
---|
198 | plot_str += "\"" + data_coherence_name + "\" using ($1):($" + str(col) + ") lc rgb " + colors[col - 2] + " title \"" + m_metric_name[metric] + "\" with linespoint" |
---|
199 | col += 1 |
---|
200 | gp_commands = template % dict(app_name = m_app_name[app], nb_procs = nb_procs[-1] + 1, plot_str = plot_str, svg_name = os.path.join(graph_dir, prot + '_' + app + '_coherence')) |
---|
201 | |
---|
202 | create_file(gp_coherence_name, gp_commands) |
---|
203 | |
---|
204 | # Calling gnuplot |
---|
205 | print "gnuplot", gp_coherence_name |
---|
206 | subprocess.call([ 'gnuplot', gp_coherence_name ]) |
---|
207 | |
---|
208 | |
---|
209 | ############################################################ |
---|
210 | ### Graph 2 : Speedup per Application ### |
---|
211 | ############################################################ |
---|
212 | |
---|
213 | for prot in single_protocols: |
---|
214 | for app in apps: |
---|
215 | |
---|
216 | data_speedup_name = os.path.join(scripts_path, gen_dir, prot + '_' + app + '_speedup.dat') |
---|
217 | gp_speedup_name = os.path.join(scripts_path, gen_dir, prot + '_' + app + '_speedup.gp') |
---|
218 | |
---|
219 | # Creating data file |
---|
220 | width = 15 |
---|
221 | content = "#nb_procs" |
---|
222 | nb_spaces = width - len(content) |
---|
223 | content += nb_spaces * ' ' |
---|
224 | content += "speedup\n" |
---|
225 | |
---|
226 | for i in nb_procs: |
---|
227 | content += "%-15d " % i |
---|
228 | val = exec_time[prot][app][i] |
---|
229 | content += "%-15f\n" % (exec_time[prot][app][1] / float(val)) |
---|
230 | |
---|
231 | plot_str = "\"" + data_speedup_name + "\" using ($1):($2) lc rgb \"#654387\" title \"Speedup\" with linespoint" |
---|
232 | |
---|
233 | create_file(data_speedup_name, content) |
---|
234 | |
---|
235 | # Creating the gp file |
---|
236 | template_file = open(speedup_tmpl, 'r') |
---|
237 | template = template_file.read() |
---|
238 | |
---|
239 | gp_commands = template % dict(appli = m_app_name[app], nb_procs = nb_procs[-1] + 1, plot_str = plot_str, svg_name = os.path.join(graph_dir, prot + '_' + app + '_speedup')) |
---|
240 | |
---|
241 | create_file(gp_speedup_name, gp_commands) |
---|
242 | |
---|
243 | # Calling gnuplot |
---|
244 | print "gnuplot", gp_speedup_name |
---|
245 | subprocess.call([ 'gnuplot', gp_speedup_name ]) |
---|
246 | |
---|
247 | |
---|
248 | ############################################################ |
---|
249 | ### Graph 3 : All speedups on the same Graph ### |
---|
250 | ############################################################ |
---|
251 | |
---|
252 | for prot in single_protocols: |
---|
253 | # This graph uses the same template as the graph 2 |
---|
254 | data_speedup_name = os.path.join(scripts_path, gen_dir, prot + '_all_speedup.dat') |
---|
255 | gp_speedup_name = os.path.join(scripts_path, gen_dir, prot + '_all_speedup.gp') |
---|
256 | |
---|
257 | # Creating data file |
---|
258 | width = 15 |
---|
259 | content = "#nb_procs" |
---|
260 | nb_spaces = width - len(content) |
---|
261 | content += (nb_spaces + 1) * ' ' |
---|
262 | for app in apps: |
---|
263 | content += app + " " |
---|
264 | content += (width - len(app)) * " " |
---|
265 | content += "\n" |
---|
266 | |
---|
267 | for i in nb_procs: |
---|
268 | content += "%-15d " % i |
---|
269 | for app in apps: |
---|
270 | val = exec_time[prot][app][i] |
---|
271 | content += "%-15f " % (exec_time[prot][app][1] / float(val)) |
---|
272 | content += "\n" |
---|
273 | |
---|
274 | create_file(data_speedup_name, content) |
---|
275 | |
---|
276 | # Creating gp file |
---|
277 | template_file = open(speedup_tmpl, 'r') |
---|
278 | template = template_file.read() |
---|
279 | |
---|
280 | plot_str = "" |
---|
281 | col = 2 |
---|
282 | for app in apps: |
---|
283 | if app != apps[0]: |
---|
284 | plot_str += ", \\\n " |
---|
285 | plot_str += "\"" + data_speedup_name + "\" using ($1):($" + str(col) + ") lc rgb %s title \"" % (colors[col - 2]) + m_app_name[app] + "\" with linespoint" |
---|
286 | col += 1 |
---|
287 | |
---|
288 | gp_commands = template % dict(appli = "All Applications", nb_procs = nb_procs[-1] + 1, plot_str = plot_str, svg_name = os.path.join(graph_dir, prot + '_all_speedup')) |
---|
289 | |
---|
290 | create_file(gp_speedup_name, gp_commands) |
---|
291 | |
---|
292 | # Calling gnuplot |
---|
293 | print "gnuplot", gp_speedup_name |
---|
294 | subprocess.call([ 'gnuplot', gp_speedup_name ]) |
---|
295 | |
---|
296 | |
---|
297 | ############################################################ |
---|
298 | ### Graph 4 : Graph per metric ### |
---|
299 | ############################################################ |
---|
300 | |
---|
301 | # The following section creates the graphs grouped by measure (e.g. #broadcasts) |
---|
302 | # The template file cannot be easily created otherwise it would not be generic |
---|
303 | # in many ways. This is why it is mainly created here. |
---|
304 | # Graphs are created for metric in the "individual_metrics" list |
---|
305 | |
---|
306 | for prot in single_protocols: |
---|
307 | for metric in individual_metrics: |
---|
308 | data_metric_name = os.path.join(scripts_path, gen_dir, prot + '_' + metric + '.dat') |
---|
309 | gp_metric_name = os.path.join(scripts_path, gen_dir, prot + '_' + metric + '.gp') |
---|
310 | |
---|
311 | # Creating the gp file |
---|
312 | # Setting xtics, i.e. number of procs for each application |
---|
313 | xtics_str = "(" |
---|
314 | first = True |
---|
315 | xpos = 1 |
---|
316 | app_labels = "" |
---|
317 | for num_appli in range(0, len(apps)): |
---|
318 | for i in nb_procs: |
---|
319 | if not first: |
---|
320 | xtics_str += ", " |
---|
321 | first = False |
---|
322 | if i == nb_procs[0]: |
---|
323 | xpos_first = xpos |
---|
324 | xtics_str += "\"%d\" %.1f" % (i, xpos) |
---|
325 | xpos_last = xpos |
---|
326 | xpos += 1.5 |
---|
327 | xpos += 0.5 |
---|
328 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
329 | app_labels += "set label \"%s\" at first %f,character 1 center font \"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
330 | xtics_str += ")" |
---|
331 | |
---|
332 | xmax_val = float(xpos - 1) |
---|
333 | |
---|
334 | # Writing the lines of "plot" |
---|
335 | plot_str = "" |
---|
336 | xpos = 0 |
---|
337 | first = True |
---|
338 | column = 2 |
---|
339 | for i in range(0, len(nb_procs)): |
---|
340 | if not first: |
---|
341 | plot_str += ", \\\n " |
---|
342 | first = False |
---|
343 | plot_str += "\"%s\" using ($1+%.1f):($%d) lc rgb %s notitle with boxes" % (data_metric_name, xpos, column, colors[i]) |
---|
344 | column += 1 |
---|
345 | xpos += 1.5 |
---|
346 | |
---|
347 | template_file = open(metric_tmpl, 'r') |
---|
348 | template = template_file.read() |
---|
349 | |
---|
350 | gp_commands = template % dict(xtics_str = xtics_str, app_labels = app_labels, ylabel_str = m_metric_name[metric], norm_factor_str = m_norm_factor_name[m_metric_norm[metric]], xmax_val = xmax_val, plot_str = plot_str, svg_name = os.path.join(graph_dir, prot + '_' + metric)) |
---|
351 | |
---|
352 | create_file(gp_metric_name, gp_commands) |
---|
353 | |
---|
354 | # Creating the data file |
---|
355 | width = 15 |
---|
356 | content = "#x_pos" |
---|
357 | nb_spaces = width - len(content) |
---|
358 | content += nb_spaces * ' ' |
---|
359 | for i in nb_procs: |
---|
360 | content += "%-15d" % i |
---|
361 | content += "\n" |
---|
362 | |
---|
363 | x_pos = 1 |
---|
364 | for app in apps: |
---|
365 | # Computation of x_pos |
---|
366 | content += "%-15f" % x_pos |
---|
367 | x_pos += len(nb_procs) * 1.5 + 0.5 |
---|
368 | for i in nb_procs: |
---|
369 | if m_metric_norm[metric] == "N": |
---|
370 | content += "%-15d" % (metrics_val[prot][app][i][metric]) |
---|
371 | elif m_metric_norm[metric] == "P": |
---|
372 | content += "%-15f" % (float(metrics_val[prot][app][i][metric]) / i) |
---|
373 | elif m_metric_norm[metric] == "C": |
---|
374 | content += "%-15f" % (float(metrics_val[prot][app][i][metric]) / exec_time[prot][app][i] * 1000) |
---|
375 | elif m_metric_norm[metric] == "W": |
---|
376 | content += "%-15f" % (float(metrics_val[prot][app][i][metric]) / float(metrics_val[prot][app][i]['total_write'])) # Number of writes |
---|
377 | elif m_metric_norm[metric] == "R": |
---|
378 | content += "%-15f" % (float(metrics_val[prot][app][i][metric]) / float(metrics_val[prot][app][i]['total_read'])) # Number of reads |
---|
379 | elif m_metric_norm[metric] == "D": |
---|
380 | content += "%-15f" % (float(metrics_val[prot][app][i][metric]) / float(metrics_val[prot][app][i]['total_direct'])) # Number of req. |
---|
381 | elif is_numeric(m_metric_norm[metric]): |
---|
382 | content += "%-15f" % (float(metrics_val[prot][app][i][metric]) / float(metrics_val[prot][app][int(m_metric_norm[metric])][metric])) |
---|
383 | else: |
---|
384 | assert(False) |
---|
385 | |
---|
386 | app_name = m_app_name[app] |
---|
387 | content += "#" + app_name + "\n" |
---|
388 | |
---|
389 | create_file(data_metric_name, content) |
---|
390 | |
---|
391 | # Calling gnuplot |
---|
392 | print "gnuplot", gp_metric_name |
---|
393 | subprocess.call([ 'gnuplot', gp_metric_name ]) |
---|
394 | |
---|
395 | |
---|
396 | ############################################################ |
---|
397 | ### Graph 5 : Stacked histogram with counters ### |
---|
398 | ############################################################ |
---|
399 | |
---|
400 | # The following section creates a stacked histogram containing |
---|
401 | # the metrics in the "stacked_metric" list |
---|
402 | # It is normalized per application w.r.t the values on 256 procs |
---|
403 | |
---|
404 | for prot in single_protocols: |
---|
405 | data_stacked_name = os.path.join(scripts_path, gen_dir, prot + '_stacked.dat') |
---|
406 | gp_stacked_name = os.path.join(scripts_path, gen_dir, prot + '_stacked.gp') |
---|
407 | |
---|
408 | norm_factor_value = nb_procs[-1] |
---|
409 | |
---|
410 | # Creating the gp file |
---|
411 | template_file = open(stacked_tmpl, 'r') |
---|
412 | template = template_file.read() |
---|
413 | |
---|
414 | xtics_str = "(" |
---|
415 | first = True |
---|
416 | xpos = 1 |
---|
417 | app_labels = "" |
---|
418 | for num_appli in range(0, len(apps)): |
---|
419 | for i in nb_procs[1:len(nb_procs)]: # skipping values for 1 proc |
---|
420 | if not first: |
---|
421 | xtics_str += ", " |
---|
422 | first = False |
---|
423 | if i == nb_procs[1]: |
---|
424 | xpos_first = xpos |
---|
425 | xtics_str += "\"%d\" %d -1" % (i, xpos) |
---|
426 | xpos_last = xpos |
---|
427 | xpos += 1 |
---|
428 | xpos += 1 |
---|
429 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
430 | app_labels += "set label \"%s\" at first %f,character 1 center font \"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
431 | xtics_str += ")" |
---|
432 | |
---|
433 | plot_str = "newhistogram \"\"" |
---|
434 | n = 1 |
---|
435 | for stacked_metric in stacked_metrics: |
---|
436 | plot_str += ", \\\n " + "'" + data_stacked_name + "'" + " using " + str(n) + " lc rgb " + colors[n] + " title \"" + m_metric_name[stacked_metric] + "\"" |
---|
437 | n += 1 |
---|
438 | |
---|
439 | ylabel_str = "Breakdown of Coherence Traffic Normalized w.r.t. \\nthe Values on %d Processors" % norm_factor_value |
---|
440 | content = template % dict(svg_name = os.path.join(graph_dir, prot + '_stacked'), xtics_str = xtics_str, plot_str = plot_str, ylabel_str = ylabel_str, app_labels = app_labels, prot_labels = "") |
---|
441 | |
---|
442 | create_file(gp_stacked_name, content) |
---|
443 | |
---|
444 | # Creating the data file |
---|
445 | # Values are normalized by application, w.r.t. the number of requests for a given number of procs |
---|
446 | content = "#" |
---|
447 | for stacked_metric in stacked_metrics: |
---|
448 | content += stacked_metric |
---|
449 | content += ' ' + ' ' * (15 - len(stacked_metric)) |
---|
450 | content += "\n" |
---|
451 | for app in apps: |
---|
452 | if app != apps[0]: |
---|
453 | for i in range(0, len(stacked_metrics)): |
---|
454 | content += "%-15f" % 0.0 |
---|
455 | content += "\n" |
---|
456 | for i in nb_procs[1:len(nb_procs)]: |
---|
457 | for stacked_metric in stacked_metrics: |
---|
458 | metric_val = metrics_val[prot][app][norm_factor_value]['total_stacked'] # Normalisation |
---|
459 | if metric_val != 0: |
---|
460 | content += "%-15f" % (float(metrics_val[prot][app][i][stacked_metric]) / metric_val) |
---|
461 | else: |
---|
462 | content += "%-15f" % 0 |
---|
463 | content += "\n" |
---|
464 | |
---|
465 | create_file(data_stacked_name, content) |
---|
466 | # Calling gnuplot |
---|
467 | print "gnuplot", gp_stacked_name |
---|
468 | subprocess.call([ 'gnuplot', gp_stacked_name ]) |
---|
469 | |
---|
470 | |
---|
471 | |
---|
472 | ################################################################################# |
---|
473 | ### Graph 6 : Stacked histogram with coherence cost compared to r/w cost ### |
---|
474 | ################################################################################# |
---|
475 | |
---|
476 | # The following section creates pairs of stacked histograms, normalized w.r.t. the first one. |
---|
477 | # The first one contains the cost of reads and writes, the second contains the cost |
---|
478 | # of m_inv, m_up and broadcasts (extrapolated) |
---|
479 | |
---|
480 | for prot in single_protocols: |
---|
481 | data_cost_filename = os.path.join(scripts_path, gen_dir, prot + '_relative_cost.dat') |
---|
482 | gp_cost_filename = os.path.join(scripts_path, gen_dir, prot + '_relative_cost.gp') |
---|
483 | |
---|
484 | direct_cost_metrics = [ 'read_cost', 'write_cost' ] |
---|
485 | #coherence_cost_metrics = ['update_cost', 'm_inv_cost', 'broadcast_cost' ] |
---|
486 | coherence_cost_metrics = ['coherence_cost'] |
---|
487 | |
---|
488 | # Creating the gp file |
---|
489 | template_file = open(stacked_tmpl, 'r') |
---|
490 | template = template_file.read() |
---|
491 | |
---|
492 | xtics_str = "(" |
---|
493 | first = True |
---|
494 | xpos = 1 |
---|
495 | app_labels = "" |
---|
496 | for num_appli in range(0, len(apps)): |
---|
497 | first_proc = True |
---|
498 | for i in nb_procs: |
---|
499 | if i > 4: |
---|
500 | if not first: |
---|
501 | xtics_str += ", " |
---|
502 | first = False |
---|
503 | if first_proc: |
---|
504 | first_proc = False |
---|
505 | xpos_first = xpos |
---|
506 | xtics_str += "\"%d\" %f -1" % (i, float(xpos + 0.5)) |
---|
507 | xpos_last = xpos |
---|
508 | xpos += 3 |
---|
509 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
510 | app_labels += "set label \"%s\" at first %f,character 1 center font \"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
511 | #xpos += 1 |
---|
512 | xtics_str += ")" |
---|
513 | |
---|
514 | plot_str = "newhistogram \"\"" |
---|
515 | n = 1 |
---|
516 | for cost_metric in direct_cost_metrics + coherence_cost_metrics: |
---|
517 | plot_str += ", \\\n " + "'" + data_cost_filename + "'" + " using " + str(n) + " lc rgb " + colors[n] + " title \"" + m_metric_name[cost_metric] + "\"" |
---|
518 | n += 1 |
---|
519 | |
---|
520 | ylabel_str = "Coherence Cost Compared to Direct Requests Cost,\\nNormalized per Application for each Number of Processors" |
---|
521 | content = template % dict(svg_name = os.path.join(graph_dir, prot + '_rel_cost'), xtics_str = xtics_str, plot_str = plot_str, ylabel_str = ylabel_str, app_labels = app_labels, prot_labels = "") |
---|
522 | |
---|
523 | create_file(gp_cost_filename, content) |
---|
524 | |
---|
525 | # Creating the data file |
---|
526 | # Values are normalized by application, w.r.t. the number of requests for a given number of procs |
---|
527 | content = "#" |
---|
528 | for cost_metric in direct_cost_metrics: |
---|
529 | content += cost_metric |
---|
530 | content += ' ' + ' ' * (15 - len(cost_metric)) |
---|
531 | for cost_metric in coherence_cost_metrics: |
---|
532 | content += cost_metric |
---|
533 | content += ' ' + ' ' * (15 - len(cost_metric)) |
---|
534 | content += "\n" |
---|
535 | for app in apps: |
---|
536 | if app != apps[0]: |
---|
537 | for i in range(0, len(direct_cost_metrics) + len(coherence_cost_metrics)): |
---|
538 | content += "%-15f" % 0.0 |
---|
539 | content += "\n" |
---|
540 | for i in nb_procs: |
---|
541 | if i > 4: |
---|
542 | for cost_metric in direct_cost_metrics: |
---|
543 | if metrics_val[prot][app][i]['direct_cost'] == 0: |
---|
544 | print "Error: prot : ", prot, " - app : ", app, " - i : ", i |
---|
545 | content += "%-15f" % 0 |
---|
546 | else: |
---|
547 | content += "%-15f" % (float(metrics_val[prot][app][i][cost_metric]) / metrics_val[prot][app][i]['direct_cost']) |
---|
548 | for cost_metric in coherence_cost_metrics: |
---|
549 | content += "%-15f" % 0.0 |
---|
550 | content += "\n" |
---|
551 | for cost_metric in direct_cost_metrics: |
---|
552 | content += "%-15f" % 0.0 |
---|
553 | for cost_metric in coherence_cost_metrics: |
---|
554 | if metrics_val[prot][app][i]['direct_cost'] == 0: |
---|
555 | print "Error: prot : ", prot, " - app : ", app, " - i : ", i |
---|
556 | content += "%-15f" % 0 |
---|
557 | else: |
---|
558 | content += "%-15f" % (float(metrics_val[prot][app][i][cost_metric]) / metrics_val[prot][app][i]['direct_cost']) |
---|
559 | content += "\n" |
---|
560 | if i != nb_procs[-1]: |
---|
561 | for j in range(0, len(direct_cost_metrics) + len(coherence_cost_metrics)): |
---|
562 | content += "%-15f" % 0.0 |
---|
563 | content += "\n" |
---|
564 | |
---|
565 | create_file(data_cost_filename, content) |
---|
566 | # Calling gnuplot |
---|
567 | print "gnuplot", gp_cost_filename |
---|
568 | subprocess.call([ 'gnuplot', gp_cost_filename ]) |
---|
569 | |
---|
570 | |
---|
571 | ################################################################################# |
---|
572 | ### Joint Graphs to several architectures ### |
---|
573 | ################################################################################# |
---|
574 | |
---|
575 | if len(joint_protocols) == 0: |
---|
576 | sys.exit() |
---|
577 | |
---|
578 | ################################################################################# |
---|
579 | ### Graph 7: Comparison of Speedups (normalized w.r.t. 1 proc on first arch) ### |
---|
580 | ################################################################################# |
---|
581 | |
---|
582 | |
---|
583 | for app in apps: |
---|
584 | |
---|
585 | data_speedup_name = os.path.join(scripts_path, gen_dir, 'joint_' + app + '_speedup.dat') |
---|
586 | gp_speedup_name = os.path.join(scripts_path, gen_dir, 'joint_' + app + '_speedup.gp') |
---|
587 | |
---|
588 | # Creating data file |
---|
589 | width = 15 |
---|
590 | content = "#nb_procs" |
---|
591 | nb_spaces = width - len(content) |
---|
592 | content += nb_spaces * ' ' |
---|
593 | content += "speedup\n" |
---|
594 | |
---|
595 | for i in nb_procs: |
---|
596 | content += "%-15d " % i |
---|
597 | for prot in joint_protocols: |
---|
598 | val = exec_time[prot][app][i] |
---|
599 | content += "%-15f " % (exec_time[joint_protocols[0]][app][1] / float(val)) |
---|
600 | content += "\n" |
---|
601 | |
---|
602 | create_file(data_speedup_name, content) |
---|
603 | |
---|
604 | # Creating the gp file |
---|
605 | template_file = open(speedup_tmpl, 'r') |
---|
606 | template = template_file.read() |
---|
607 | |
---|
608 | plot_str = "" |
---|
609 | col = 2 |
---|
610 | for prot in joint_protocols: |
---|
611 | if prot != joint_protocols[0]: |
---|
612 | plot_str += ", \\\n " |
---|
613 | plot_str += "\"" + data_speedup_name + "\" using ($1):($" + str(col) + ") lc rgb %s title \"" % (colors[col - 2]) + m_prot_name[prot] + "\" with linespoint" |
---|
614 | col += 1 |
---|
615 | |
---|
616 | gp_commands = template % dict(appli = m_app_name[app] + " Normalized w.r.t. " + m_prot_name[joint_protocols[0]] + " on 1 Processor", nb_procs = nb_procs[-1] + 1, plot_str = plot_str, svg_name = os.path.join(graph_dir, 'joint_' + app + '_speedup')) |
---|
617 | |
---|
618 | create_file(gp_speedup_name, gp_commands) |
---|
619 | |
---|
620 | # Calling gnuplot |
---|
621 | print "gnuplot", gp_speedup_name |
---|
622 | subprocess.call([ 'gnuplot', gp_speedup_name ]) |
---|
623 | |
---|
624 | |
---|
625 | ################################################################################# |
---|
626 | ### Graph 8 : Joint Stacked histogram with coherence cost and r/w cost ### |
---|
627 | ################################################################################# |
---|
628 | |
---|
629 | # The following section creates pairs of stacked histograms for each arch for each number of proc for each app, normalized by (app x number of procs) (with first arch, R/W cost, first of the 2*num_arch histo). It is close to Graph 6 |
---|
630 | |
---|
631 | data_cost_filename = os.path.join(scripts_path, gen_dir, 'joint_relative_cost.dat') |
---|
632 | gp_cost_filename = os.path.join(scripts_path, gen_dir, 'joint_relative_cost.gp') |
---|
633 | |
---|
634 | direct_cost_metrics = [ 'read_cost', 'write_cost', 'getm_cost' ] |
---|
635 | coherence_cost_metrics = ['update_cost', 'm_inv_cost', 'broadcast_cost', 'inval_ro_cost', 'cleanup_cost', 'cleanup_d_cost' ] |
---|
636 | |
---|
637 | # Creating the gp file |
---|
638 | template_file = open(stacked_tmpl, 'r') |
---|
639 | template = template_file.read() |
---|
640 | |
---|
641 | xtics_str = "(" |
---|
642 | first = True |
---|
643 | xpos = 1 # successive x position of the center of the first bar in a application |
---|
644 | app_labels = "" |
---|
645 | prot_labels = "" |
---|
646 | for num_appli in range(0, len(apps)): |
---|
647 | first_proc = True |
---|
648 | for i in nb_procs: |
---|
649 | if i > 4: |
---|
650 | x = 0 # local var for computing position of protocol names |
---|
651 | for prot in joint_protocols: |
---|
652 | prot_labels += "set label \"%s\" at first %f, character 2 center font \"Times,10\"\n" % (m_prot_name[prot], float((xpos - 0.5)) + x) # -0.5 instead of +0.5, don't know why... (bug gnuplot?) |
---|
653 | x += 2 |
---|
654 | |
---|
655 | if not first: |
---|
656 | xtics_str += ", " |
---|
657 | first = False |
---|
658 | if first_proc: |
---|
659 | first_proc = False |
---|
660 | xpos_first = xpos |
---|
661 | xtics_str += "\"%d\" %f -1" % (i, float(xpos - 0.5 + len(joint_protocols))) |
---|
662 | xpos_last = xpos |
---|
663 | xpos += 1 + len(joint_protocols) * 2 |
---|
664 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
665 | app_labels += "set label \"%s\" at first %f,character 1 center font \"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
666 | xpos += 1 |
---|
667 | xtics_str += ")" |
---|
668 | |
---|
669 | plot_str = "newhistogram \"\"" |
---|
670 | n = 1 |
---|
671 | for cost_metric in direct_cost_metrics + coherence_cost_metrics: |
---|
672 | plot_str += ", \\\n " + "'" + data_cost_filename + "'" + " using " + str(n) + " lc rgb " + colors[n] + " title \"" + m_metric_name[cost_metric] + "\"" |
---|
673 | n += 1 |
---|
674 | |
---|
675 | ylabel_str = "Coherence Cost and Direct Requests Cost,\\nNormalized per Application for each Number of Processors" |
---|
676 | content = template % dict(svg_name = os.path.join(graph_dir, 'joint_rel_cost'), xtics_str = xtics_str, plot_str = plot_str, ylabel_str = ylabel_str, app_labels = app_labels, prot_labels = prot_labels) |
---|
677 | |
---|
678 | create_file(gp_cost_filename, content) |
---|
679 | |
---|
680 | # Creating the data file |
---|
681 | # Values are normalized by application, w.r.t. the number of requests for a given number of procs |
---|
682 | content = "#" |
---|
683 | for cost_metric in direct_cost_metrics: |
---|
684 | content += cost_metric |
---|
685 | content += ' ' + ' ' * (15 - len(cost_metric)) |
---|
686 | for cost_metric in coherence_cost_metrics: |
---|
687 | content += cost_metric |
---|
688 | content += ' ' + ' ' * (15 - len(cost_metric)) |
---|
689 | content += "\n" |
---|
690 | for app in apps: |
---|
691 | if app != apps[0]: |
---|
692 | for j in range(0, len(direct_cost_metrics) + len(coherence_cost_metrics)): |
---|
693 | content += "%-15f" % 0.0 |
---|
694 | content += "\n" |
---|
695 | for i in nb_procs: |
---|
696 | if i > 4: |
---|
697 | for prot in joint_protocols: |
---|
698 | if metrics_val[joint_protocols[0]][app][i]['direct_cost'] == 0: |
---|
699 | continue |
---|
700 | for cost_metric in direct_cost_metrics: |
---|
701 | content += "%-15f" % (float(metrics_val[prot][app][i][cost_metric]) / metrics_val[joint_protocols[0]][app][i]['direct_cost']) |
---|
702 | for cost_metric in coherence_cost_metrics: |
---|
703 | content += "%-15f" % 0.0 |
---|
704 | content += "\n" |
---|
705 | for cost_metric in direct_cost_metrics: |
---|
706 | content += "%-15f" % 0.0 |
---|
707 | for cost_metric in coherence_cost_metrics: |
---|
708 | content += "%-15f" % (float(metrics_val[prot][app][i][cost_metric]) / metrics_val[joint_protocols[0]][app][i]['direct_cost']) |
---|
709 | content += "\n" |
---|
710 | if i != nb_procs[-1]: |
---|
711 | for j in range(0, len(direct_cost_metrics) + len(coherence_cost_metrics)): |
---|
712 | content += "%-15f" % 0.0 |
---|
713 | content += "\n" |
---|
714 | |
---|
715 | create_file(data_cost_filename, content) |
---|
716 | # Calling gnuplot |
---|
717 | print "gnuplot", gp_cost_filename |
---|
718 | subprocess.call([ 'gnuplot', gp_cost_filename ]) |
---|
719 | |
---|
720 | |
---|
721 | |
---|
722 | ################################################################################# |
---|
723 | ### Graph 9 : ### |
---|
724 | ################################################################################# |
---|
725 | |
---|
726 | |
---|
727 | data_metric_filename = os.path.join(scripts_path, gen_dir, 'single_metric.dat') |
---|
728 | gp_metric_filename = os.path.join(scripts_path, gen_dir, 'single_metric.gp') |
---|
729 | |
---|
730 | metric = 'total_write' |
---|
731 | |
---|
732 | # Creating the gp file |
---|
733 | template_file = open(stacked_tmpl, 'r') |
---|
734 | template = template_file.read() |
---|
735 | |
---|
736 | xtics_str = "(" |
---|
737 | first = True |
---|
738 | xpos = 0 # successive x position of the center of the first bar in a application |
---|
739 | app_labels = "" |
---|
740 | prot_labels = "" |
---|
741 | for num_appli in range(0, len(apps)): |
---|
742 | first_proc = True |
---|
743 | for i in nb_procs: |
---|
744 | x = 0 # local var for computing position of protocol names |
---|
745 | #for prot in joint_protocols: |
---|
746 | #prot_labels += "set label \"%s\" at first %f, character 2 center font \"Times,10\"\n" % (m_prot_name[prot], float((xpos - 0.5)) + x) # -0.5 instead of +0.5, don't know why... (bug gnuplot?) |
---|
747 | #x += 1 |
---|
748 | |
---|
749 | if not first: |
---|
750 | xtics_str += ", " |
---|
751 | first = False |
---|
752 | if first_proc: |
---|
753 | first_proc = False |
---|
754 | xpos_first = xpos |
---|
755 | xtics_str += "\"%d\" %f -1" % (i, float(xpos - 0.5 + len(joint_protocols))) |
---|
756 | xpos_last = xpos |
---|
757 | xpos += 1 + len(joint_protocols) |
---|
758 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
759 | app_labels += "set label \"%s\" at first %f,character 1 center font \"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
760 | xpos += 1 |
---|
761 | xtics_str += ")" |
---|
762 | |
---|
763 | n = 1 |
---|
764 | plot_str = "newhistogram \"\"" |
---|
765 | for prot in joint_protocols: |
---|
766 | plot_str += ", \\\n " + "'" + data_metric_filename + "'" + " using " + str(n) + " lc rgb " + colors[n] + " title \"" + m_metric_name[metric] + " for " + m_prot_name[prot] + "\"" |
---|
767 | n += 1 |
---|
768 | |
---|
769 | ylabel_str = "%(m)s" % dict(m = m_metric_name[metric]) |
---|
770 | content = template % dict(svg_name = os.path.join(graph_dir, 'single_metric'), xtics_str = xtics_str, plot_str = plot_str, ylabel_str = ylabel_str, app_labels = app_labels, prot_labels = prot_labels) |
---|
771 | |
---|
772 | create_file(gp_metric_filename, content) |
---|
773 | |
---|
774 | # Creating the data file |
---|
775 | content = "#" + metric |
---|
776 | content += "\n" |
---|
777 | for app in apps: |
---|
778 | if app != apps[0]: |
---|
779 | for prot in joint_protocols: |
---|
780 | for p in joint_protocols: |
---|
781 | content += "%-15f " % 0.0 |
---|
782 | content += "\n" |
---|
783 | for i in nb_procs: |
---|
784 | for prot in joint_protocols: |
---|
785 | for p in joint_protocols: |
---|
786 | if p != prot: |
---|
787 | content += "%-15f " % 0 |
---|
788 | else: |
---|
789 | content += "%-15f " % (float(metrics_val[prot][app][i][metric])) |
---|
790 | content += "\n" |
---|
791 | if i != nb_procs[-1]: |
---|
792 | for p in joint_protocols: |
---|
793 | content += "%-15f " % 0.0 |
---|
794 | content += "\n" |
---|
795 | |
---|
796 | create_file(data_metric_filename, content) |
---|
797 | # Calling gnuplot |
---|
798 | print "gnuplot", gp_metric_filename |
---|
799 | subprocess.call([ 'gnuplot', gp_metric_filename ]) |
---|
800 | |
---|
801 | |
---|
802 | |
---|
803 | |
---|