1 | #!/usr/bin/python |
---|
2 | |
---|
3 | import subprocess |
---|
4 | import os |
---|
5 | import re |
---|
6 | |
---|
7 | |
---|
8 | |
---|
9 | apps = [ 'histogram', 'mandel', 'filter', 'radix_ga', 'fft_ga', 'kmeans' ] |
---|
10 | nb_procs = [ 1, 4, 8, 16, 32, 64, 128, 256 ] |
---|
11 | |
---|
12 | top_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..") |
---|
13 | scripts_path = os.path.join(top_path, 'scripts') |
---|
14 | counter_defs_name = os.path.join(scripts_path, "counter_defs.py") |
---|
15 | |
---|
16 | exec(file(counter_defs_name)) |
---|
17 | |
---|
18 | gen_dir = 'generated' |
---|
19 | graph_dir = 'graph' |
---|
20 | template_dir = 'templates' |
---|
21 | data_dir = 'data' |
---|
22 | |
---|
23 | log_init_name = 'log_init_' |
---|
24 | log_term_name = 'log_term_' |
---|
25 | |
---|
26 | coherence_tmpl = os.path.join(scripts_path, template_dir, 'coherence_template.gp') # 1 graph per appli |
---|
27 | speedup_tmpl = os.path.join(scripts_path, template_dir, 'speedup_template.gp') |
---|
28 | metric_tmpl = os.path.join(scripts_path, template_dir, 'metric_template.gp') # 1 graph per metric |
---|
29 | stacked_tmpl = os.path.join(scripts_path, template_dir, 'stacked_template.gp') |
---|
30 | |
---|
31 | |
---|
32 | |
---|
33 | def create_file(name, content): |
---|
34 | file = open(name, 'w') |
---|
35 | file.write(content) |
---|
36 | file.close() |
---|
37 | |
---|
38 | def is_numeric(s): |
---|
39 | try: |
---|
40 | float(s) |
---|
41 | return True |
---|
42 | except ValueError: |
---|
43 | return False |
---|
44 | |
---|
45 | def get_x_y(nb_procs): |
---|
46 | x = 1 |
---|
47 | y = 1 |
---|
48 | to_x = True |
---|
49 | while (x * y * 4 < nb_procs): |
---|
50 | if to_x: |
---|
51 | x = x * 2 |
---|
52 | else: |
---|
53 | y = y * 2 |
---|
54 | to_x = not to_x |
---|
55 | return x, y |
---|
56 | |
---|
57 | |
---|
58 | |
---|
59 | # We first fill the m_metric_id table |
---|
60 | for metric in all_metrics: |
---|
61 | for tag in all_tags: |
---|
62 | if m_metric_tag[metric] == tag: |
---|
63 | m_metric_id[tag] = metric |
---|
64 | break |
---|
65 | |
---|
66 | |
---|
67 | # We start by processing all the log files |
---|
68 | # Term files are processed for exec time only |
---|
69 | # Init files are processed for all metrics |
---|
70 | exec_time = {} |
---|
71 | metrics_val = {} |
---|
72 | for app in apps: |
---|
73 | exec_time[app] = {} |
---|
74 | metrics_val[app] = {} |
---|
75 | for i in nb_procs: |
---|
76 | metrics_val[app][i] = {} |
---|
77 | log_init_file = os.path.join(scripts_path, data_dir, app + '_' + log_init_name + str(i)) |
---|
78 | log_term_file = os.path.join(scripts_path, data_dir, app + '_' + log_term_name + str(i)) |
---|
79 | |
---|
80 | # Term |
---|
81 | lines = open(log_term_file, 'r') |
---|
82 | for line in lines: |
---|
83 | tokens = line[:-1].split() |
---|
84 | if len(tokens) > 0 and tokens[0] == "[ELAPSED2]": |
---|
85 | exec_time[app][i] = int(tokens[len(tokens) - 1]) |
---|
86 | |
---|
87 | # Init files |
---|
88 | lines = open(log_init_file, 'r') |
---|
89 | for line in lines: |
---|
90 | tokens = line[:-1].split() |
---|
91 | if len(tokens) == 0: |
---|
92 | continue |
---|
93 | tag = tokens[0] |
---|
94 | value = tokens[len(tokens) - 1] |
---|
95 | pattern = re.compile('\[0[0-9][0-9]\]') |
---|
96 | if pattern.match(tag): |
---|
97 | metric = m_metric_id[tag] |
---|
98 | if (not metrics_val[app][i].has_key(metric) or tag == "[000]" or tag == "[001]"): |
---|
99 | # We don't add cycles of all Memcaches (they must be the same for all) |
---|
100 | metrics_val[app][i][metric] = int(value) |
---|
101 | else: |
---|
102 | metrics_val[app][i][metric] += int(value) |
---|
103 | |
---|
104 | # We make a 2nd pass to fill the derived fields, e.g. nb_total_updates |
---|
105 | for app in apps: |
---|
106 | for i in nb_procs: |
---|
107 | x, y = get_x_y(i) |
---|
108 | metrics_val[app][i]['total_read'] = metrics_val[app][i]['local_read'] + metrics_val[app][i]['remote_read'] |
---|
109 | metrics_val[app][i]['total_write'] = metrics_val[app][i]['local_write'] + metrics_val[app][i]['remote_write'] |
---|
110 | metrics_val[app][i]['total_ll'] = metrics_val[app][i]['local_ll'] + metrics_val[app][i]['remote_ll'] |
---|
111 | metrics_val[app][i]['total_sc'] = metrics_val[app][i]['local_sc'] + metrics_val[app][i]['remote_sc'] |
---|
112 | metrics_val[app][i]['total_cas'] = metrics_val[app][i]['local_cas'] + metrics_val[app][i]['remote_cas'] |
---|
113 | metrics_val[app][i]['total_update'] = metrics_val[app][i]['local_update'] + metrics_val[app][i]['remote_update'] |
---|
114 | metrics_val[app][i]['total_m_inv'] = metrics_val[app][i]['local_m_inv'] + metrics_val[app][i]['remote_m_inv'] |
---|
115 | metrics_val[app][i]['total_cleanup'] = metrics_val[app][i]['local_cleanup'] + metrics_val[app][i]['remote_cleanup'] |
---|
116 | metrics_val[app][i]['total_direct'] = metrics_val[app][i]['total_read'] + metrics_val[app][i]['total_write'] |
---|
117 | metrics_val[app][i]['direct_cost'] = metrics_val[app][i]['read_cost'] + metrics_val[app][i]['write_cost'] |
---|
118 | metrics_val[app][i]['broadcast_cost'] = metrics_val[app][i]['broadcast'] * (x * y - 1) |
---|
119 | if metrics_val[app][i]['broadcast'] < metrics_val[app][i]['write_broadcast']: |
---|
120 | # test to patch a bug in mem_cache |
---|
121 | metrics_val[app][i]['nonwrite_broadcast'] = 0 |
---|
122 | else: |
---|
123 | metrics_val[app][i]['nonwrite_broadcast'] = metrics_val[app][i]['broadcast'] - metrics_val[app][i]['write_broadcast'] |
---|
124 | |
---|
125 | metrics_val[app][i]['total_stacked'] = 0 |
---|
126 | for stacked_metric in stacked_metrics: |
---|
127 | metrics_val[app][i]['total_stacked'] += metrics_val[app][i][stacked_metric] |
---|
128 | |
---|
129 | |
---|
130 | print "mkdir -p", os.path.join(scripts_path, gen_dir) |
---|
131 | subprocess.call([ 'mkdir', '-p', os.path.join(scripts_path, gen_dir) ]) |
---|
132 | |
---|
133 | print "mkdir -p", os.path.join(scripts_path, graph_dir) |
---|
134 | subprocess.call([ 'mkdir', '-p', os.path.join(scripts_path, graph_dir) ]) |
---|
135 | |
---|
136 | ############################################################ |
---|
137 | ### Graph 1 : Coherence traffic Cost per application ### |
---|
138 | ############################################################ |
---|
139 | |
---|
140 | for app in apps: |
---|
141 | |
---|
142 | data_coherence_name = os.path.join(scripts_path, gen_dir, app + '_coherence.dat') |
---|
143 | gp_coherence_name = os.path.join(scripts_path, gen_dir, app + '_coherence.gp') |
---|
144 | |
---|
145 | # Creating the data file |
---|
146 | width = 15 |
---|
147 | content = "" |
---|
148 | |
---|
149 | for metric in [ '#nb_procs' ] + grouped_metrics: |
---|
150 | content += metric + " " |
---|
151 | nb_spaces = width - len(metric) |
---|
152 | content += nb_spaces * ' ' |
---|
153 | content += "\n" |
---|
154 | |
---|
155 | for i in nb_procs: |
---|
156 | content += "%-15d " % i |
---|
157 | for metric in grouped_metrics: |
---|
158 | val = float(metrics_val[app][i][metric]) / exec_time[app][i] * 1000 |
---|
159 | content += "%-15f " % val |
---|
160 | content += "\n" |
---|
161 | |
---|
162 | create_file(data_coherence_name, content) |
---|
163 | |
---|
164 | # Creating the gp file |
---|
165 | template_file = open(coherence_tmpl, 'r') |
---|
166 | template = template_file.read() |
---|
167 | |
---|
168 | plot_str = "" |
---|
169 | col = 2 |
---|
170 | for metric in grouped_metrics: |
---|
171 | if metric != grouped_metrics[0]: |
---|
172 | plot_str += ", \\\n " |
---|
173 | plot_str += "\"" + data_coherence_name + "\" using ($1):($" + str(col) + ") lc rgb " + colors[col - 2] + " title \"" + m_metric_name[metric] + "\" with linespoint" |
---|
174 | col += 1 |
---|
175 | gp_commands = template % dict(app_name = m_app_name[app], nb_procs = nb_procs[-1] + 1, plot_str = plot_str, svg_name = os.path.join(graph_dir, app + '_coherence')) |
---|
176 | |
---|
177 | create_file(gp_coherence_name, gp_commands) |
---|
178 | |
---|
179 | # Calling gnuplot |
---|
180 | print "gnuplot", gp_coherence_name |
---|
181 | subprocess.call([ 'gnuplot', gp_coherence_name ]) |
---|
182 | |
---|
183 | |
---|
184 | ############################################################ |
---|
185 | ### Graph 2 : Speedup per Application ### |
---|
186 | ############################################################ |
---|
187 | |
---|
188 | for app in apps: |
---|
189 | |
---|
190 | data_speedup_name = os.path.join(scripts_path, gen_dir, app + '_speedup.dat') |
---|
191 | gp_speedup_name = os.path.join(scripts_path, gen_dir, app + '_speedup.gp') |
---|
192 | |
---|
193 | # Creating data file |
---|
194 | width = 15 |
---|
195 | content = "#nb_procs" |
---|
196 | nb_spaces = width - len(content) |
---|
197 | content += nb_spaces * ' ' |
---|
198 | content += "speedup\n" |
---|
199 | |
---|
200 | for i in nb_procs: |
---|
201 | content += "%-15d " % i |
---|
202 | val = exec_time[app][i] |
---|
203 | content += "%-15f\n" % (exec_time[app][1] / float(val)) |
---|
204 | |
---|
205 | plot_str = "\"" + data_speedup_name + "\" using ($1):($2) lc rgb \"#654387\" title \"Speedup\" with linespoint" |
---|
206 | |
---|
207 | create_file(data_speedup_name, content) |
---|
208 | |
---|
209 | # Creating the gp file |
---|
210 | template_file = open(speedup_tmpl, 'r') |
---|
211 | template = template_file.read() |
---|
212 | |
---|
213 | gp_commands = template % dict(appli = m_app_name[app], nb_procs = nb_procs[-1] + 1, plot_str = plot_str, svg_name = os.path.join(graph_dir, app + '_speedup')) |
---|
214 | |
---|
215 | create_file(gp_speedup_name, gp_commands) |
---|
216 | |
---|
217 | # Calling gnuplot |
---|
218 | print "gnuplot", gp_speedup_name |
---|
219 | subprocess.call([ 'gnuplot', gp_speedup_name ]) |
---|
220 | |
---|
221 | |
---|
222 | ############################################################ |
---|
223 | ### Graph 3 : All speedups on the same Graph ### |
---|
224 | ############################################################ |
---|
225 | |
---|
226 | # This graph uses the same template as the graph 2 |
---|
227 | |
---|
228 | data_speedup_name = os.path.join(scripts_path, gen_dir, 'all_speedup.dat') |
---|
229 | gp_speedup_name = os.path.join(scripts_path, gen_dir, 'all_speedup.gp') |
---|
230 | |
---|
231 | # Creating data file |
---|
232 | width = 15 |
---|
233 | content = "#nb_procs" |
---|
234 | nb_spaces = width - len(content) |
---|
235 | content += (nb_spaces + 1) * ' ' |
---|
236 | for app in apps: |
---|
237 | content += app + " " |
---|
238 | content += (width - len(app)) * " " |
---|
239 | content += "\n" |
---|
240 | |
---|
241 | for i in nb_procs: |
---|
242 | content += "%-15d " % i |
---|
243 | for app in apps: |
---|
244 | val = exec_time[app][i] |
---|
245 | content += "%-15f " % (exec_time[app][1] / float(val)) |
---|
246 | content += "\n" |
---|
247 | |
---|
248 | create_file(data_speedup_name, content) |
---|
249 | |
---|
250 | # Creating gp file |
---|
251 | template_file = open(speedup_tmpl, 'r') |
---|
252 | template = template_file.read() |
---|
253 | |
---|
254 | plot_str = "" |
---|
255 | col = 2 |
---|
256 | for app in apps: |
---|
257 | if app != apps[0]: |
---|
258 | plot_str += ", \\\n " |
---|
259 | plot_str += "\"" + data_speedup_name + "\" using ($1):($" + str(col) + ") lc rgb %s title \"" % (colors[col - 2]) + m_app_name[app] + "\" with linespoint" |
---|
260 | col += 1 |
---|
261 | |
---|
262 | gp_commands = template % dict(appli = "All Applications", nb_procs = nb_procs[-1] + 1, plot_str = plot_str, svg_name = os.path.join(graph_dir, 'all_speedup')) |
---|
263 | |
---|
264 | create_file(gp_speedup_name, gp_commands) |
---|
265 | |
---|
266 | # Calling gnuplot |
---|
267 | print "gnuplot", gp_speedup_name |
---|
268 | subprocess.call([ 'gnuplot', gp_speedup_name ]) |
---|
269 | |
---|
270 | |
---|
271 | ############################################################ |
---|
272 | ### Graph 4 : Graph per metric ### |
---|
273 | ############################################################ |
---|
274 | |
---|
275 | # The following section creates the graphs grouped by measure (e.g. #broadcasts) |
---|
276 | # The template file cannot be easily created otherwise it would not be generic |
---|
277 | # in many ways. This is why it is mainly created here. |
---|
278 | # Graphs are created for metric in the "individual_metrics" list |
---|
279 | |
---|
280 | for metric in individual_metrics: |
---|
281 | data_metric_name = os.path.join(scripts_path, gen_dir, metric + '.dat') |
---|
282 | gp_metric_name = os.path.join(scripts_path, gen_dir, metric + '.gp') |
---|
283 | |
---|
284 | # Creating the gp file |
---|
285 | # Setting xtics, i.e. number of procs for each application |
---|
286 | xtics_str = "(" |
---|
287 | first = True |
---|
288 | xpos = 1 |
---|
289 | app_labels = "" |
---|
290 | for num_appli in range(0, len(apps)): |
---|
291 | for i in nb_procs: |
---|
292 | if not first: |
---|
293 | xtics_str += ", " |
---|
294 | first = False |
---|
295 | if i == nb_procs[0]: |
---|
296 | xpos_first = xpos |
---|
297 | xtics_str += "\"%d\" %.1f" % (i, xpos) |
---|
298 | xpos_last = xpos |
---|
299 | xpos += 1.5 |
---|
300 | xpos += 0.5 |
---|
301 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
302 | app_labels += "set label \"%s\" at first %f,character 1 center font\"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
303 | xtics_str += ")" |
---|
304 | |
---|
305 | xmax_val = xpos + 0.5 |
---|
306 | |
---|
307 | # Writing the lines of "plot" |
---|
308 | plot_str = "" |
---|
309 | xpos = 0 |
---|
310 | first = True |
---|
311 | column = 2 |
---|
312 | for i in range(0, len(nb_procs)): |
---|
313 | if not first: |
---|
314 | plot_str += ", \\\n " |
---|
315 | first = False |
---|
316 | plot_str += "\"%s\" using ($1+%.1f):($%d) lc rgb %s notitle with boxes" % (data_metric_name, xpos, column, colors[i]) |
---|
317 | column += 1 |
---|
318 | xpos += 1.5 |
---|
319 | |
---|
320 | template_file = open(metric_tmpl, 'r') |
---|
321 | template = template_file.read() |
---|
322 | |
---|
323 | gp_commands = template % dict(xtics_str = xtics_str, app_labels = app_labels, ylabel_str = m_metric_name[metric], norm_factor_str = m_norm_factor_name[m_metric_norm[metric]], xmax_val = xmax_val, plot_str = plot_str, svg_name = os.path.join(graph_dir, metric)) |
---|
324 | |
---|
325 | create_file(gp_metric_name, gp_commands) |
---|
326 | |
---|
327 | # Creating the data file |
---|
328 | width = 15 |
---|
329 | content = "#x_pos" |
---|
330 | nb_spaces = width - len(content) |
---|
331 | content += nb_spaces * ' ' |
---|
332 | for i in nb_procs: |
---|
333 | content += "%-15d" % i |
---|
334 | content += "\n" |
---|
335 | |
---|
336 | x_pos = 1 |
---|
337 | for app in apps: |
---|
338 | # Computation of x_pos |
---|
339 | content += "%-15f" % x_pos |
---|
340 | x_pos += len(nb_procs) * 1.5 + 0.5 |
---|
341 | for i in nb_procs: |
---|
342 | if m_metric_norm[metric] == "N": |
---|
343 | content += "%-15d" % (metrics_val[app][i][metric]) |
---|
344 | elif m_metric_norm[metric] == "P": |
---|
345 | content += "%-15f" % (float(metrics_val[app][i][metric]) / i) |
---|
346 | elif m_metric_norm[metric] == "C": |
---|
347 | content += "%-15f" % (float(metrics_val[app][i][metric]) / exec_time[app][i] * 1000) |
---|
348 | elif m_metric_norm[metric] == "W": |
---|
349 | content += "%-15f" % (float(metrics_val[app][i][metric]) / float(metrics_val[app][i]['total_write'])) # Number of writes |
---|
350 | elif m_metric_norm[metric] == "R": |
---|
351 | content += "%-15f" % (float(metrics_val[app][i][metric]) / float(metrics_val[app][i]['total_read'])) # Number of reads |
---|
352 | elif m_metric_norm[metric] == "D": |
---|
353 | content += "%-15f" % (float(metrics_val[app][i][metric]) / float(metrics_val[app][i]['total_direct'])) # Number of req. |
---|
354 | elif is_numeric(m_metric_norm[metric]): |
---|
355 | content += "%-15f" % (float(metrics_val[app][i][metric]) / float(metrics_val[app][int(m_metric_norm[metric])][metric])) |
---|
356 | else: |
---|
357 | assert(False) |
---|
358 | |
---|
359 | app_name = m_app_name[app] |
---|
360 | content += "#" + app_name + "\n" |
---|
361 | |
---|
362 | create_file(data_metric_name, content) |
---|
363 | |
---|
364 | # Calling gnuplot |
---|
365 | print "gnuplot", gp_metric_name |
---|
366 | subprocess.call([ 'gnuplot', gp_metric_name ]) |
---|
367 | |
---|
368 | |
---|
369 | ############################################################ |
---|
370 | ### Graph 5 : Stacked histogram with counters ### |
---|
371 | ############################################################ |
---|
372 | |
---|
373 | # The following section creates a stacked histogram containing |
---|
374 | # the metrics in the "stacked_metric" list |
---|
375 | # It is normalized per application w.r.t the values on 256 procs |
---|
376 | |
---|
377 | data_stacked_name = os.path.join(scripts_path, gen_dir, 'stacked.dat') |
---|
378 | gp_stacked_name = os.path.join(scripts_path, gen_dir, 'stacked.gp') |
---|
379 | |
---|
380 | norm_factor_value = 256 |
---|
381 | |
---|
382 | # Creating the gp file |
---|
383 | template_file = open(stacked_tmpl, 'r') |
---|
384 | template = template_file.read() |
---|
385 | |
---|
386 | xtics_str = "(" |
---|
387 | first = True |
---|
388 | xpos = 1 |
---|
389 | app_labels = "" |
---|
390 | for num_appli in range(0, len(apps)): |
---|
391 | for i in nb_procs: |
---|
392 | if not first: |
---|
393 | xtics_str += ", " |
---|
394 | first = False |
---|
395 | if i == nb_procs[0]: |
---|
396 | xpos_first = xpos |
---|
397 | xtics_str += "\"%d\" %d -1" % (i, xpos) |
---|
398 | xpos_last = xpos |
---|
399 | xpos += 1 |
---|
400 | xpos += 1 |
---|
401 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
402 | app_labels += "set label \"%s\" at first %f,character 1 center font\"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
403 | xtics_str += ")" |
---|
404 | |
---|
405 | plot_str = "newhistogram \"\"" |
---|
406 | n = 1 |
---|
407 | for stacked_metric in stacked_metrics: |
---|
408 | plot_str += ", \\\n " + "'" + data_stacked_name + "'" + " using " + str(n) + " lc rgb " + colors[n] + " title \"" + m_metric_name[stacked_metric] + "\"" |
---|
409 | n += 1 |
---|
410 | |
---|
411 | ylabel_str = "Breakdown of Coherence Traffic Normalized w.r.t. \\nthe Values on %d Processors" % norm_factor_value |
---|
412 | content = template % dict(svg_name = os.path.join(graph_dir, 'stacked'), xtics_str = xtics_str, plot_str = plot_str, ylabel_str = ylabel_str, app_labels = app_labels) |
---|
413 | |
---|
414 | create_file(gp_stacked_name, content) |
---|
415 | |
---|
416 | # Creating the data file |
---|
417 | # Values are normalized by application, w.r.t. the number of requests for a given number of procs |
---|
418 | content = "#" |
---|
419 | for stacked_metric in stacked_metrics: |
---|
420 | content += stacked_metric |
---|
421 | content += ' ' + ' ' * (15 - len(stacked_metric)) |
---|
422 | content += "\n" |
---|
423 | for app in apps: |
---|
424 | if app != apps[0]: |
---|
425 | for i in range(0, len(stacked_metrics)): |
---|
426 | content += "%-15f" % 0.0 |
---|
427 | content += "\n" |
---|
428 | for i in nb_procs: |
---|
429 | for stacked_metric in stacked_metrics: |
---|
430 | content += "%-15f" % (float(metrics_val[app][i][stacked_metric]) / metrics_val[app][norm_factor_value]['total_stacked']) |
---|
431 | content += "\n" |
---|
432 | |
---|
433 | create_file(data_stacked_name, content) |
---|
434 | # Calling gnuplot |
---|
435 | print "gnuplot", gp_stacked_name |
---|
436 | subprocess.call([ 'gnuplot', gp_stacked_name ]) |
---|
437 | |
---|
438 | |
---|
439 | |
---|
440 | ################################################################################# |
---|
441 | ### Graph 6 : Stacked histogram with coherence cost compared to r/w cost ### |
---|
442 | ################################################################################# |
---|
443 | |
---|
444 | # The following section creates pairs of stacked histograms, normalized w.r.t. the first one. |
---|
445 | # The first one contains the cost of reads and writes, the second contains the cost |
---|
446 | # of m_inv, m_up and broadcasts (extrapolated) |
---|
447 | |
---|
448 | data_cost_filename = os.path.join(scripts_path, gen_dir, 'relative_cost.dat') |
---|
449 | gp_cost_filename = os.path.join(scripts_path, gen_dir, 'relative_cost.gp') |
---|
450 | |
---|
451 | direct_cost_metrics = [ 'read_cost', 'write_cost' ] |
---|
452 | coherence_cost_metrics = ['update_cost', 'm_inv_cost', 'broadcast_cost' ] |
---|
453 | |
---|
454 | # Creating the gp file |
---|
455 | template_file = open(stacked_tmpl, 'r') |
---|
456 | template = template_file.read() |
---|
457 | |
---|
458 | xtics_str = "(" |
---|
459 | first = True |
---|
460 | xpos = 1.5 |
---|
461 | app_labels = "" |
---|
462 | for num_appli in range(0, len(apps)): |
---|
463 | first_proc = True |
---|
464 | for i in nb_procs: |
---|
465 | if i > 4: |
---|
466 | if not first: |
---|
467 | xtics_str += ", " |
---|
468 | first = False |
---|
469 | if first_proc: |
---|
470 | first_proc = False |
---|
471 | xpos_first = xpos |
---|
472 | xtics_str += "\"%d\" %f -1" % (i, xpos) |
---|
473 | xpos_last = xpos |
---|
474 | xpos += 3 |
---|
475 | app_name_xpos = float((xpos_first + xpos_last)) / 2 |
---|
476 | app_labels += "set label \"%s\" at first %f,character 1 center font\"Times,12\"\n" % (m_app_name[apps[num_appli]], app_name_xpos) |
---|
477 | xpos += 1 |
---|
478 | xtics_str += ")" |
---|
479 | |
---|
480 | plot_str = "newhistogram \"\"" |
---|
481 | n = 1 |
---|
482 | for cost_metric in direct_cost_metrics + coherence_cost_metrics: |
---|
483 | plot_str += ", \\\n " + "'" + data_cost_filename + "'" + " using " + str(n) + " lc rgb " + colors[n] + " title \"" + m_metric_name[cost_metric] + "\"" |
---|
484 | n += 1 |
---|
485 | |
---|
486 | ylabel_str = "Coherence Cost Compared to Direct Requests Cost,\\nNormalized per Application for each Number of Processors" |
---|
487 | content = template % dict(svg_name = os.path.join(graph_dir, 'rel_cost'), xtics_str = xtics_str, plot_str = plot_str, ylabel_str = ylabel_str, app_labels = app_labels) |
---|
488 | |
---|
489 | create_file(gp_cost_filename, content) |
---|
490 | |
---|
491 | # Creating the data file |
---|
492 | # Values are normalized by application, w.r.t. the number of requests for a given number of procs |
---|
493 | content = "#" |
---|
494 | for cost_metric in direct_cost_metrics: |
---|
495 | content += cost_metric |
---|
496 | content += ' ' + ' ' * (15 - len(cost_metric)) |
---|
497 | for cost_metric in coherence_cost_metrics: |
---|
498 | content += cost_metric |
---|
499 | content += ' ' + ' ' * (15 - len(cost_metric)) |
---|
500 | content += "\n" |
---|
501 | for app in apps: |
---|
502 | if app != apps[0]: |
---|
503 | for i in range(0, len(direct_cost_metrics) + len(coherence_cost_metrics)): |
---|
504 | content += "%-15f" % 0.0 |
---|
505 | content += "\n" |
---|
506 | for i in nb_procs: |
---|
507 | if i > 4: |
---|
508 | for cost_metric in direct_cost_metrics: |
---|
509 | content += "%-15f" % (float(metrics_val[app][i][cost_metric]) / metrics_val[app][i]['direct_cost']) |
---|
510 | for cost_metric in coherence_cost_metrics: |
---|
511 | content += "%-15f" % 0.0 |
---|
512 | content += "\n" |
---|
513 | for cost_metric in direct_cost_metrics: |
---|
514 | content += "%-15f" % 0.0 |
---|
515 | for cost_metric in coherence_cost_metrics: |
---|
516 | content += "%-15f" % (float(metrics_val[app][i][cost_metric]) / metrics_val[app][i]['direct_cost']) |
---|
517 | content += "\n" |
---|
518 | for i in range(0, len(direct_cost_metrics) + len(coherence_cost_metrics)): |
---|
519 | content += "%-15f" % 0.0 |
---|
520 | content += "\n" |
---|
521 | |
---|
522 | create_file(data_cost_filename, content) |
---|
523 | # Calling gnuplot |
---|
524 | print "gnuplot", gp_cost_filename |
---|
525 | subprocess.call([ 'gnuplot', gp_cost_filename ]) |
---|
526 | |
---|
527 | |
---|