1 | ///////////////////////////////////////////////////////////////////////// |
---|
2 | // File: tsarv4_dspin_generic_32_top.cpp |
---|
3 | // Author: Alain Greiner |
---|
4 | // Copyright: UPMC/LIP6 |
---|
5 | // Date : november 5 2010 |
---|
6 | // This program is released under the GNU public license |
---|
7 | ///////////////////////////////////////////////////////////////////////// |
---|
8 | // This file define a generic TSAR architecture without virtual memory. |
---|
9 | // - It uses the virtual_dspin network as global interconnect |
---|
10 | // - It uses the vci_local_ring_fast as local interconnect |
---|
11 | // - It uses the vci_cc_xcache (No MMU) |
---|
12 | // The physical address space is 32 bits. |
---|
13 | // The number of clusters cannot be larger than 256. |
---|
14 | // The three parameters are |
---|
15 | // - xmax : number of clusters in a row |
---|
16 | // - ymax : number of clusters in a column |
---|
17 | // - nprocs : number of processor per cluster |
---|
18 | // |
---|
19 | // Each cluster contains nprocs processors, one Memory Cache, |
---|
20 | // and one XICU component. |
---|
21 | // The peripherals BDEV, CDMA, FBUF, MTTY and the boot BROM |
---|
22 | // are in the cluster containing address 0xBFC00000. |
---|
23 | // - The bdev_irq is connected to IRQ_IN[0] |
---|
24 | // - The cdma_irq is connected to IRQ_IN[1] |
---|
25 | // - The tty_irq[i] is connected to IRQ_IN[i+2] |
---|
26 | // For all clusters, the XICU component contains nprocs timers. |
---|
27 | // |
---|
28 | // As we target up to 256 clusters, each cluster can contain |
---|
29 | // at most 16 Mbytes (in a 4Gbytes address space). |
---|
30 | // - Each memory cache contains 9 Mbytes. |
---|
31 | // - The Frame buffer contains 2 Mbytes. |
---|
32 | // - The Boot ROM contains 1 Mbytes. |
---|
33 | // |
---|
34 | // General policy for 32 bits address decoding: |
---|
35 | // To simplifly, all segments base addresses are aligned |
---|
36 | // on 1 Mbyte adresses. Therefore the 12 address MSB bits |
---|
37 | // define the target in the direct address space. |
---|
38 | // In these 12 bits, the (x_width + y_width) MSB bits define |
---|
39 | // the cluster index, and the 4 LSB bits define the local index: |
---|
40 | // |
---|
41 | // | X_ID | Y_ID |---| L_ID | OFFSET | |
---|
42 | // |x_width|y_width|---| 4 | 20 | |
---|
43 | ///////////////////////////////////////////////////////////////////////// |
---|
44 | |
---|
45 | #include <systemc> |
---|
46 | #include <sys/time.h> |
---|
47 | #include <iostream> |
---|
48 | #include <sstream> |
---|
49 | #include <cstdlib> |
---|
50 | #include <cstdarg> |
---|
51 | |
---|
52 | #include "mapping_table.h" |
---|
53 | #include "mips32.h" |
---|
54 | #include "vci_simple_ram.h" |
---|
55 | #include "vci_multi_tty.h" |
---|
56 | #include "vci_mem_cache_v4.h" |
---|
57 | #include "vci_cc_xcache_wrapper_v4.h" |
---|
58 | #include "vci_xicu.h" |
---|
59 | #include "vci_vgmn.h" |
---|
60 | #include "vci_local_ring_fast.h" |
---|
61 | #include "virtual_dspin_router.h" |
---|
62 | #include "vci_framebuffer.h" |
---|
63 | #include "vci_dma_tsar_v2.h" |
---|
64 | #include "vci_block_device_tsar_v2.h" |
---|
65 | #include "gdbserver.h" |
---|
66 | |
---|
67 | #define SECTOR_SIZE 2048 |
---|
68 | |
---|
69 | #define FBUF_XSIZE 960 |
---|
70 | #define FBUF_YSIZE 960 |
---|
71 | |
---|
72 | #define N_TTYS 4 |
---|
73 | |
---|
74 | ////////////////////////////////////////////// |
---|
75 | // segments definition in direct space. |
---|
76 | // There is 16 Mbytes address space per cluster. |
---|
77 | // The 8 MSB bits define the cluster index (x,y), |
---|
78 | // even if the number of clusters is less than 256. |
---|
79 | // Each memory cache contains up to 9 Mbytes. |
---|
80 | // There is one MEMC segment and one XICU segment per cluster |
---|
81 | // The peripherals BDEV, FBUF, MTTY, CDMA and the boot BROM |
---|
82 | // are mapped in cluster containing address 0xBFC00000 |
---|
83 | |
---|
84 | #define MEMC_BASE 0x00000000 |
---|
85 | #define MEMC_SIZE 0x00900000 |
---|
86 | |
---|
87 | #define XICU_BASE 0x00900000 |
---|
88 | #define XICU_SIZE 0x00001000 |
---|
89 | |
---|
90 | #define FBUF_BASE 0xBFA00000 |
---|
91 | #define FBUF_SIZE 0x00200000 |
---|
92 | |
---|
93 | #define BROM_BASE 0xBFC00000 |
---|
94 | #define BROM_SIZE 0x00100000 |
---|
95 | |
---|
96 | #define BDEV_BASE 0xBFD00000 |
---|
97 | #define BDEV_SIZE 0x00000100 |
---|
98 | |
---|
99 | #define MTTY_BASE 0xBFE00000 |
---|
100 | #define MTTY_SIZE 0x00000100 |
---|
101 | |
---|
102 | #define CDMA_BASE 0xBFF00000 |
---|
103 | #define CDMA_SIZE 0x00000100 |
---|
104 | |
---|
105 | /////////////////////////////////////////////////////////// |
---|
106 | // TGTID & SRCID definition in direct space |
---|
107 | // For all components: global TGTID = global SRCID = cluster_index |
---|
108 | // For processors, the local SRCID is between 0 & nprocs-1 |
---|
109 | |
---|
110 | #define MEMC_TGTID 0 |
---|
111 | #define XICU_TGTID 1 |
---|
112 | #define FBUF_TGTID 2 |
---|
113 | #define MTTY_TGTID 3 |
---|
114 | #define BROM_TGTID 4 |
---|
115 | #define BDEV_TGTID 5 |
---|
116 | #define CDMA_TGTID 6 |
---|
117 | |
---|
118 | #define PROC_SRCID 0 |
---|
119 | #define BDEV_SRCID nprocs |
---|
120 | #define CDMA_SRCID (nprocs+1) |
---|
121 | |
---|
122 | //////////////////////////////////////////////////////// |
---|
123 | // Local TGTID & SRCID definition in coherence space |
---|
124 | // (The global TGTID & SRCID is the cluster index) |
---|
125 | // For MEMC, the local SRCID is 0 |
---|
126 | // For processors, the local SRCID is between 1 & nprocs |
---|
127 | |
---|
128 | ///////////////////////// |
---|
129 | // Router ports index |
---|
130 | |
---|
131 | #define NORTH 0 |
---|
132 | #define SOUTH 1 |
---|
133 | #define EAST 2 |
---|
134 | #define WEST 3 |
---|
135 | #define LOCAL 4 |
---|
136 | |
---|
137 | /////////////////////////////////// |
---|
138 | // flit widths for the DSPIN network |
---|
139 | |
---|
140 | #define cmd_width 40 |
---|
141 | #define rsp_width 33 |
---|
142 | |
---|
143 | ////////////////// |
---|
144 | // VCI format |
---|
145 | |
---|
146 | #define cell_width 4 |
---|
147 | #define address_width 32 |
---|
148 | #define plen_width 8 |
---|
149 | #define error_width 1 |
---|
150 | #define clen_width 1 |
---|
151 | #define rflag_width 1 |
---|
152 | #define srcid_width 14 |
---|
153 | #define pktid_width 4 |
---|
154 | #define trdid_width 4 |
---|
155 | #define wrplen_width 1 |
---|
156 | |
---|
157 | // cluster index (computed from x,y coordinates) |
---|
158 | #define cluster(x,y) (y + ymax*x) |
---|
159 | |
---|
160 | ///////////////////////////////// |
---|
161 | int _main(int argc, char *argv[]) |
---|
162 | { |
---|
163 | using namespace sc_core; |
---|
164 | using namespace soclib::caba; |
---|
165 | using namespace soclib::common; |
---|
166 | |
---|
167 | char soft_name[128] = "undefined_binary_file"; // pathname to binary code |
---|
168 | char disk_name[128] = "undefined_disk_image"; // pathname to the disk image |
---|
169 | size_t ncycles = 1000000000; // simulated cycles |
---|
170 | size_t xmax = 2; // number of clusters in a row |
---|
171 | size_t ymax = 2; // number of clusters in a column |
---|
172 | size_t nprocs = 1; // number of processors per cluster |
---|
173 | bool debug_ok = false; // debug activated |
---|
174 | size_t from_cycle = 0; // debug start cycle |
---|
175 | size_t to_cycle = 1000000000; // debug end cycle |
---|
176 | |
---|
177 | ////////////// command line arguments ////////////////////// |
---|
178 | if (argc > 1) |
---|
179 | { |
---|
180 | for( int n=1 ; n<argc ; n=n+2 ) |
---|
181 | { |
---|
182 | if( (strcmp(argv[n],"-NCYCLES") == 0) && (n+1<argc) ) |
---|
183 | { |
---|
184 | ncycles = atoi(argv[n+1]); |
---|
185 | } |
---|
186 | else if( (strcmp(argv[n],"-NPROCS") == 0) && (n+1<argc) ) |
---|
187 | { |
---|
188 | nprocs = atoi(argv[n+1]); |
---|
189 | assert( (nprocs <= 8) && "The number of processors per cluster cannot be larger than 8"); |
---|
190 | } |
---|
191 | else if( (strcmp(argv[n],"-XMAX") == 0) && (n+1<argc) ) |
---|
192 | { |
---|
193 | xmax = atoi(argv[n+1]); |
---|
194 | assert( ((xmax >= 2) && (xmax <= 16)) |
---|
195 | && "The XMAX parameter (number of clusters in a row) must be in the range [2,16]" ); |
---|
196 | } |
---|
197 | else if( (strcmp(argv[n],"-YMAX") == 0) && (n+1<argc) ) |
---|
198 | { |
---|
199 | ymax = atoi(argv[n+1]); |
---|
200 | assert( ((ymax >= 2) && (ymax <= 16)) |
---|
201 | && "The YMAX parameter (number of clusters in a column) must be in the range [2,16]" ); |
---|
202 | } |
---|
203 | else if( (strcmp(argv[n],"-SOFT") == 0) && (n+1<argc) ) |
---|
204 | { |
---|
205 | strcpy(soft_name, argv[n+1]); |
---|
206 | } |
---|
207 | else if( (strcmp(argv[n],"-DISK") == 0) && (n+1<argc) ) |
---|
208 | { |
---|
209 | strcpy(disk_name, argv[n+1]); |
---|
210 | } |
---|
211 | else if( (strcmp(argv[n],"-DEBUG") == 0) && (n+1<argc) ) |
---|
212 | { |
---|
213 | debug_ok = true; |
---|
214 | from_cycle = atoi(argv[n+1]); |
---|
215 | } |
---|
216 | else if( (strcmp(argv[n],"-TOCYCLE") == 0) && (n+1<argc) ) |
---|
217 | { |
---|
218 | to_cycle = atoi(argv[n+1]); |
---|
219 | } |
---|
220 | else |
---|
221 | { |
---|
222 | std::cout << " Arguments on the command line are (key,value) couples." << std::endl; |
---|
223 | std::cout << " The order is not important." << std::endl; |
---|
224 | std::cout << " Accepted arguments are :" << std::endl << std::endl; |
---|
225 | std::cout << " -SOFT elf_file_name" << std::endl; |
---|
226 | std::cout << " -DISK disk_image_file_name" << std::endl; |
---|
227 | std::cout << " -NCYCLES number_of_simulated_cycles" << std::endl; |
---|
228 | std::cout << " -NPROCS number_of_processors_per_cluster" << std::endl; |
---|
229 | std::cout << " -XMAX number_of_clusters_in_a_row" << std::endl; |
---|
230 | std::cout << " -YMAX number_of_clusters_in_a_column" << std::endl; |
---|
231 | std::cout << " -DEBUG debug_start_cycle" << std::endl; |
---|
232 | std::cout << " -TOCYCLE debug_end_cycle" << std::endl; |
---|
233 | exit(0); |
---|
234 | } |
---|
235 | } |
---|
236 | } |
---|
237 | |
---|
238 | std::cout << std::endl << "*********** TSAR ARCHITECTURE **************" << std::endl |
---|
239 | << " - Interconnect = DSPIN & RING" << std::endl |
---|
240 | << " - Number of clusters = " << xmax << " * " << ymax << std::endl |
---|
241 | << " - Number of processors per cluster = " << nprocs << std::endl |
---|
242 | << "**********************************************" << std::endl |
---|
243 | << std::endl; |
---|
244 | |
---|
245 | // Define VCI parameters |
---|
246 | typedef soclib::caba::VciParams<cell_width, |
---|
247 | plen_width, |
---|
248 | address_width, |
---|
249 | error_width, |
---|
250 | clen_width, |
---|
251 | rflag_width, |
---|
252 | srcid_width, |
---|
253 | pktid_width, |
---|
254 | trdid_width, |
---|
255 | wrplen_width> vci_param; |
---|
256 | |
---|
257 | size_t cluster_io_index; |
---|
258 | size_t x_width; |
---|
259 | size_t y_width; |
---|
260 | |
---|
261 | if (xmax == 2) x_width = 1; |
---|
262 | else if (xmax <= 4) x_width = 2; |
---|
263 | else if (xmax <= 8) x_width = 3; |
---|
264 | else x_width = 4; |
---|
265 | |
---|
266 | if (ymax == 2) y_width = 1; |
---|
267 | else if (ymax <= 4) y_width = 2; |
---|
268 | else if (ymax <= 8) y_width = 3; |
---|
269 | else y_width = 4; |
---|
270 | |
---|
271 | cluster_io_index = 0xBF >> (8 - x_width - y_width); |
---|
272 | |
---|
273 | ///////////////////// |
---|
274 | // Mapping Tables |
---|
275 | ///////////////////// |
---|
276 | |
---|
277 | // direct network |
---|
278 | MappingTable maptabd(address_width, |
---|
279 | IntTab(x_width + y_width, 12 - x_width - y_width), |
---|
280 | IntTab(x_width + y_width, srcid_width - x_width - y_width), |
---|
281 | 0x00F00000); |
---|
282 | for ( size_t x = 0 ; x < xmax ; x++) |
---|
283 | { |
---|
284 | for ( size_t y = 0 ; y < ymax ; y++) |
---|
285 | { |
---|
286 | sc_uint<address_width> offset = cluster(x,y) << (address_width-x_width-y_width); |
---|
287 | std::ostringstream sm; |
---|
288 | sm << "d_seg_memc_" << x << "_" << y; |
---|
289 | maptabd.add(Segment(sm.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y),MEMC_TGTID), true)); |
---|
290 | std::ostringstream si; |
---|
291 | si << "d_seg_xicu_" << x << "_" << y; |
---|
292 | maptabd.add(Segment(si.str(), XICU_BASE+offset, XICU_SIZE, IntTab(cluster(x,y),XICU_TGTID), false)); |
---|
293 | if ( cluster(x,y) == cluster_io_index ) |
---|
294 | { |
---|
295 | maptabd.add(Segment("d_seg_fbuf", FBUF_BASE, FBUF_SIZE, IntTab(cluster(x,y),FBUF_TGTID), false)); |
---|
296 | maptabd.add(Segment("d_seg_bdev", BDEV_BASE, BDEV_SIZE, IntTab(cluster(x,y),BDEV_TGTID), false)); |
---|
297 | maptabd.add(Segment("d_seg_mtty", MTTY_BASE, MTTY_SIZE, IntTab(cluster(x,y),MTTY_TGTID), false)); |
---|
298 | maptabd.add(Segment("d_seg_brom", BROM_BASE, BROM_SIZE, IntTab(cluster(x,y),BROM_TGTID), true)); |
---|
299 | maptabd.add(Segment("d_seg_cdma", CDMA_BASE, CDMA_SIZE, IntTab(cluster(x,y),CDMA_TGTID), false)); |
---|
300 | } |
---|
301 | } |
---|
302 | } |
---|
303 | std::cout << maptabd << std::endl; |
---|
304 | |
---|
305 | // coherence network |
---|
306 | MappingTable maptabc(address_width, |
---|
307 | IntTab(x_width + y_width, 12 - x_width - y_width), |
---|
308 | IntTab(x_width + y_width, srcid_width - x_width - y_width), |
---|
309 | 0xF0000000); |
---|
310 | |
---|
311 | for ( size_t x = 0 ; x < xmax ; x++) |
---|
312 | { |
---|
313 | for ( size_t y = 0 ; y < ymax ; y++) |
---|
314 | { |
---|
315 | sc_uint<address_width> offset = cluster(x,y) << (address_width-x_width-y_width); |
---|
316 | |
---|
317 | std::ostringstream sm; |
---|
318 | sm << "c_seg_memc_" << x << "_" << y; |
---|
319 | maptabc.add(Segment(sm.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y), nprocs), false)); |
---|
320 | // the segment base and size will be modified |
---|
321 | // when the segmentation of the coherence space will be simplified |
---|
322 | |
---|
323 | if ( cluster(x,y) == cluster_io_index ) |
---|
324 | { |
---|
325 | std::ostringstream sr; |
---|
326 | sr << "c_seg_brom_" << x << "_" << y; |
---|
327 | maptabc.add(Segment(sr.str(), BROM_BASE, BROM_SIZE, IntTab(cluster(x,y), nprocs), false)); |
---|
328 | } |
---|
329 | |
---|
330 | sc_uint<address_width> avoid_collision = 0; |
---|
331 | for ( size_t p = 0 ; p < nprocs ; p++) |
---|
332 | { |
---|
333 | sc_uint<address_width> base = MEMC_SIZE + (p*0x100000) + offset; |
---|
334 | // the following test is to avoid a collision between the c_seg_brom segment |
---|
335 | // and a c_seg_proc segment (all segments base addresses being multiple of 1Mbytes) |
---|
336 | if ( base == BROM_BASE ) avoid_collision = 0x100000; |
---|
337 | std::ostringstream sp; |
---|
338 | sp << "c_seg_proc_" << x << "_" << y << "_" << p; |
---|
339 | maptabc.add(Segment(sp.str(), base + avoid_collision, 0x20, IntTab(cluster(x,y), p), false, |
---|
340 | true, IntTab(cluster(x,y), p))); |
---|
341 | // the two last arguments will be removed |
---|
342 | // when the segmentation of the coherence space will be simplified |
---|
343 | } |
---|
344 | } |
---|
345 | } |
---|
346 | std::cout << maptabc << std::endl; |
---|
347 | |
---|
348 | // external network |
---|
349 | MappingTable maptabx(address_width, IntTab(1), IntTab(10), 0xF0000000); |
---|
350 | for ( size_t x = 0 ; x < xmax ; x++) |
---|
351 | { |
---|
352 | for ( size_t y = 0 ; y < ymax ; y++) |
---|
353 | { |
---|
354 | sc_uint<address_width> offset = cluster(x,y) << (address_width-x_width-y_width); |
---|
355 | std::ostringstream sx; |
---|
356 | sx << "seg_xram_" << x << "_" << y; |
---|
357 | maptabx.add(Segment(sx.str(), MEMC_BASE + offset, MEMC_SIZE, IntTab(0), false)); |
---|
358 | } |
---|
359 | } |
---|
360 | std::cout << maptabx << std::endl; |
---|
361 | |
---|
362 | //////////////////// |
---|
363 | // Signals |
---|
364 | /////////////////// |
---|
365 | |
---|
366 | sc_clock signal_clk("clk"); |
---|
367 | sc_signal<bool> signal_resetn("resetn"); |
---|
368 | sc_signal<bool> signal_false; |
---|
369 | |
---|
370 | // IRQ signals (one signal per proc) |
---|
371 | |
---|
372 | sc_signal<bool>**** signal_proc_it = |
---|
373 | alloc_elems<sc_signal<bool> >("signal_proc_it", 1,xmax, ymax, nprocs); |
---|
374 | |
---|
375 | sc_signal<bool>* signal_irq_mtty = |
---|
376 | alloc_elems<sc_signal<bool> >("signal_irq_mtty", N_TTYS); |
---|
377 | |
---|
378 | sc_signal<bool> signal_irq_bdev; |
---|
379 | sc_signal<bool> signal_irq_cdma; |
---|
380 | |
---|
381 | // Direct VCI signals |
---|
382 | |
---|
383 | VciSignals<vci_param>*** signal_vci_ini_d_proc = |
---|
384 | alloc_elems<VciSignals<vci_param> >("signal_vci_ini_d_proc", xmax, ymax, nprocs); |
---|
385 | |
---|
386 | VciSignals<vci_param>** signal_vci_tgt_d_memc = |
---|
387 | alloc_elems<VciSignals<vci_param> >("signal_vci_tgt_d_memc", xmax, ymax); |
---|
388 | |
---|
389 | VciSignals<vci_param>** signal_vci_tgt_d_xicu = |
---|
390 | alloc_elems<VciSignals<vci_param> >("signal_vci_tgt_d_xicu", xmax, ymax); |
---|
391 | |
---|
392 | VciSignals<vci_param> signal_vci_tgt_d_mtty("signal_vci_tgt_d_mtty"); |
---|
393 | VciSignals<vci_param> signal_vci_tgt_d_brom("signal_vci_tgt_d_brom"); |
---|
394 | VciSignals<vci_param> signal_vci_tgt_d_bdev("signal_vci_tgt_d_bdev"); |
---|
395 | VciSignals<vci_param> signal_vci_tgt_d_cdma("signal_vci_tgt_d_cdma"); |
---|
396 | VciSignals<vci_param> signal_vci_tgt_d_fbuf("signal_vci_tgt_d_fbuf"); |
---|
397 | |
---|
398 | VciSignals<vci_param> signal_vci_ini_d_bdev("signal_vci_ini_d_bdev"); |
---|
399 | VciSignals<vci_param> signal_vci_ini_d_cdma("signal_vci_ini_d_cdma"); |
---|
400 | |
---|
401 | // Coherence VCI signals |
---|
402 | |
---|
403 | VciSignals<vci_param>*** signal_vci_ini_c_proc = |
---|
404 | alloc_elems<VciSignals<vci_param> >("signal_vci_ini_c_proc", xmax, ymax, nprocs); |
---|
405 | |
---|
406 | VciSignals<vci_param>*** signal_vci_tgt_c_proc = |
---|
407 | alloc_elems<VciSignals<vci_param> >("signal_vci_tgt_c_proc", xmax, ymax, nprocs); |
---|
408 | |
---|
409 | VciSignals<vci_param>** signal_vci_ini_c_memc = |
---|
410 | alloc_elems<VciSignals<vci_param> >("signal_vci_ini_c_memc", xmax, ymax); |
---|
411 | |
---|
412 | VciSignals<vci_param>** signal_vci_tgt_c_memc = |
---|
413 | alloc_elems<VciSignals<vci_param> >("signal_vci_tgt_c_memc", xmax, ymax); |
---|
414 | |
---|
415 | // DSPIN signals between local ring & global interconnects |
---|
416 | |
---|
417 | DspinSignals<cmd_width>** signal_dspin_cmd_l2g_d = |
---|
418 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_cmd_l2g_d", xmax, ymax); |
---|
419 | DspinSignals<cmd_width>** signal_dspin_cmd_g2l_d = |
---|
420 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_cmd_g2l_d", xmax, ymax); |
---|
421 | |
---|
422 | DspinSignals<cmd_width>** signal_dspin_cmd_l2g_c = |
---|
423 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_cmd_l2g_c", xmax, ymax); |
---|
424 | DspinSignals<cmd_width>** signal_dspin_cmd_g2l_c = |
---|
425 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_cmd_g2l_c", xmax, ymax); |
---|
426 | |
---|
427 | DspinSignals<rsp_width>** signal_dspin_rsp_l2g_d = |
---|
428 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_rsp_l2g_d", xmax, ymax); |
---|
429 | DspinSignals<rsp_width>** signal_dspin_rsp_g2l_d = |
---|
430 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_rsp_g2l_d", xmax, ymax); |
---|
431 | |
---|
432 | DspinSignals<rsp_width>** signal_dspin_rsp_l2g_c = |
---|
433 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_rsp_l2g_c", xmax, ymax); |
---|
434 | DspinSignals<rsp_width>** signal_dspin_rsp_g2l_c = |
---|
435 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_rsp_g2l_c", xmax, ymax); |
---|
436 | |
---|
437 | // Horizontal inter-clusters DSPIN signals |
---|
438 | DspinSignals<cmd_width>*** signal_dspin_h_cmd_inc = |
---|
439 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_h_cmd_inc", xmax-1, ymax, 2); |
---|
440 | DspinSignals<cmd_width>*** signal_dspin_h_cmd_dec = |
---|
441 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_h_cmd_dec", xmax-1, ymax, 2); |
---|
442 | DspinSignals<rsp_width>*** signal_dspin_h_rsp_inc = |
---|
443 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_h_rsp_inc", xmax-1, ymax, 2); |
---|
444 | DspinSignals<rsp_width>*** signal_dspin_h_rsp_dec = |
---|
445 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_h_rsp_dec", xmax-1, ymax, 2); |
---|
446 | |
---|
447 | // Vertical inter-clusters DSPIN signals |
---|
448 | DspinSignals<cmd_width>*** signal_dspin_v_cmd_inc = |
---|
449 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_v_cmd_inc", xmax, ymax-1, 2); |
---|
450 | DspinSignals<cmd_width>*** signal_dspin_v_cmd_dec = |
---|
451 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_v_cmd_dec", xmax, ymax-1, 2); |
---|
452 | DspinSignals<rsp_width>*** signal_dspin_v_rsp_inc = |
---|
453 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_v_rsp_inc", xmax, ymax-1, 2); |
---|
454 | DspinSignals<rsp_width>*** signal_dspin_v_rsp_dec = |
---|
455 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_v_rsp_dec", xmax, ymax-1, 2); |
---|
456 | |
---|
457 | // Mesh boundaries DSPIN signals |
---|
458 | DspinSignals<cmd_width>**** signal_dspin_false_cmd_in = |
---|
459 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_false_cmd_in", xmax, ymax, 2, 2); |
---|
460 | DspinSignals<cmd_width>**** signal_dspin_false_cmd_out = |
---|
461 | alloc_elems<DspinSignals<cmd_width> >("signal_dspin_false_cmd_out", xmax, ymax, 2, 2); |
---|
462 | DspinSignals<rsp_width>**** signal_dspin_false_rsp_in = |
---|
463 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_false_rsp_in", xmax, ymax, 2, 2); |
---|
464 | DspinSignals<rsp_width>**** signal_dspin_false_rsp_out = |
---|
465 | alloc_elems<DspinSignals<rsp_width> >("signal_dspin_false_rsp_out", xmax, ymax, 2, 2); |
---|
466 | |
---|
467 | // Xternal network VCI signals |
---|
468 | VciSignals<vci_param> signal_vci_tgt_x_xram("signal_vci_tgt_x_xram"); |
---|
469 | VciSignals<vci_param>** signal_vci_ini_x_memc = |
---|
470 | alloc_elems<VciSignals<vci_param> >("signal_vci_ini_x_memc", xmax, ymax); |
---|
471 | |
---|
472 | //////////////////////////// |
---|
473 | // Components |
---|
474 | //////////////////////////// |
---|
475 | |
---|
476 | typedef soclib::common::GdbServer<soclib::common::Mips32ElIss> proc_iss; |
---|
477 | |
---|
478 | soclib::common::Loader loader(soft_name); |
---|
479 | proc_iss::set_loader(loader); |
---|
480 | |
---|
481 | // External RAM |
---|
482 | VciSimpleRam<vci_param> xram( |
---|
483 | "xram", |
---|
484 | IntTab(0), |
---|
485 | maptabx, |
---|
486 | loader); |
---|
487 | |
---|
488 | // External network |
---|
489 | VciVgmn<vci_param> xnoc( |
---|
490 | "xnoc", |
---|
491 | maptabx, |
---|
492 | xmax*ymax, |
---|
493 | 1, |
---|
494 | 2, 2); |
---|
495 | |
---|
496 | // Peripherals : TTY, Frame Buffer, Block Device, DMA & Boot ROM |
---|
497 | VciSimpleRam<vci_param> brom( |
---|
498 | "brom", |
---|
499 | IntTab(cluster_io_index, BROM_TGTID), |
---|
500 | maptabd, |
---|
501 | loader); |
---|
502 | |
---|
503 | VciMultiTty<vci_param> mtty( |
---|
504 | "mtty", |
---|
505 | IntTab(cluster_io_index, MTTY_TGTID), |
---|
506 | maptabd, |
---|
507 | "tty0","tty1","tty2","tty3",NULL); |
---|
508 | |
---|
509 | VciFrameBuffer<vci_param> fbuf( |
---|
510 | "fbuf", |
---|
511 | IntTab(cluster_io_index, FBUF_TGTID), |
---|
512 | maptabd, |
---|
513 | FBUF_XSIZE, |
---|
514 | FBUF_YSIZE); |
---|
515 | |
---|
516 | VciBlockDeviceTsarV2<vci_param> bdev( |
---|
517 | "bdev", |
---|
518 | maptabd, |
---|
519 | IntTab(cluster_io_index, BDEV_SRCID), // SRCID_D |
---|
520 | IntTab(cluster_io_index, BDEV_TGTID), // TGTID_D |
---|
521 | disk_name, |
---|
522 | SECTOR_SIZE); |
---|
523 | |
---|
524 | VciDmaTsarV2<vci_param> cdma( |
---|
525 | "cdma", |
---|
526 | maptabd, |
---|
527 | IntTab(cluster_io_index,CDMA_SRCID), // SRCID_D |
---|
528 | IntTab(cluster_io_index,CDMA_TGTID), // TGTID_D |
---|
529 | 64); |
---|
530 | |
---|
531 | // processors (nprocs per cluster) |
---|
532 | VciCcXCacheWrapperV4<vci_param, proc_iss> *proc[xmax][ymax][nprocs]; |
---|
533 | |
---|
534 | for( size_t x = 0 ; x < xmax ; x++ ) |
---|
535 | { |
---|
536 | for( size_t y = 0 ; y < ymax ; y++ ) |
---|
537 | { |
---|
538 | for ( size_t p = 0 ; p < nprocs ; p++ ) |
---|
539 | { |
---|
540 | std::ostringstream sp; |
---|
541 | sp << "proc_" << x << "_" << y << "_" << p; |
---|
542 | |
---|
543 | proc[x][y][p] = new VciCcXCacheWrapperV4<vci_param, proc_iss>( |
---|
544 | sp.str().c_str(), |
---|
545 | p+nprocs*cluster(x,y), |
---|
546 | maptabd, maptabc, |
---|
547 | IntTab(cluster(x,y),PROC_SRCID+p), // SRCID_D |
---|
548 | IntTab(cluster(x,y),PROC_SRCID+p), // SRCID_C |
---|
549 | IntTab(cluster(x,y),PROC_SRCID+p), // TGTID_C |
---|
550 | 1,1, |
---|
551 | 4,64,16,4,64,16, // Icache and Dcache sizes |
---|
552 | 4,8,16); |
---|
553 | } |
---|
554 | } |
---|
555 | } |
---|
556 | |
---|
557 | // memory caches (one per cluster) |
---|
558 | VciMemCacheV4<vci_param>* memc[xmax][ymax]; |
---|
559 | |
---|
560 | for( size_t x = 0 ; x < xmax ; x++ ) |
---|
561 | { |
---|
562 | for( size_t y = 0 ; y < ymax ; y++ ) |
---|
563 | { |
---|
564 | std::ostringstream sm; |
---|
565 | sm << "memc_" << x << "_" << y; |
---|
566 | memc[x][y] = new VciMemCacheV4<vci_param>( |
---|
567 | sm.str().c_str(), |
---|
568 | maptabd, maptabc, maptabx, |
---|
569 | IntTab(cluster(x,y)), // SRCID_X |
---|
570 | IntTab(cluster(x,y), nprocs), // SRCID_C |
---|
571 | IntTab(cluster(x,y),MEMC_TGTID), // TGTID_D |
---|
572 | IntTab(cluster(x,y), nprocs), // TGTID_C |
---|
573 | 16,256,16, // CACHE SIZE |
---|
574 | 4096); // HEAP SIZE |
---|
575 | } |
---|
576 | } |
---|
577 | |
---|
578 | // XICU (one per cluster) |
---|
579 | VciXicu<vci_param>* xicu[xmax][ymax]; |
---|
580 | |
---|
581 | for( size_t x = 0 ; x < xmax ; x++ ) |
---|
582 | { |
---|
583 | for( size_t y = 0 ; y < ymax ; y++ ) |
---|
584 | { |
---|
585 | std::ostringstream si; |
---|
586 | si << "xicu_" << x << "_" << y; |
---|
587 | size_t nhwi; |
---|
588 | if ( cluster(x,y) == cluster_io_index ) nhwi = 2 + N_TTYS; |
---|
589 | else nhwi = 0; |
---|
590 | xicu[x][y] = new VciXicu<vci_param>( |
---|
591 | si.str().c_str(), |
---|
592 | maptabd, |
---|
593 | IntTab(cluster(x,y), XICU_TGTID), // TGTID_D |
---|
594 | nprocs, // number of TIMERS |
---|
595 | nhwi, // number of hard IRQs |
---|
596 | nprocs, // number of soft IRQs |
---|
597 | nprocs); // number of output IRQ lines |
---|
598 | } |
---|
599 | } |
---|
600 | |
---|
601 | // Local interconnects : one direct ring & one coherence ring per cluster |
---|
602 | VciLocalRingFast<vci_param,cmd_width,rsp_width>* ringd[xmax][ymax]; |
---|
603 | VciLocalRingFast<vci_param,cmd_width,rsp_width>* ringc[xmax][ymax]; |
---|
604 | |
---|
605 | for( size_t x = 0 ; x < xmax ; x++ ) |
---|
606 | { |
---|
607 | for( size_t y = 0 ; y < ymax ; y++ ) |
---|
608 | { |
---|
609 | std::ostringstream sd; |
---|
610 | sd << "ringd_" << x << "_" << y; |
---|
611 | size_t nb_direct_initiators = nprocs; |
---|
612 | size_t nb_direct_targets = 2; |
---|
613 | if ( cluster(x,y) == cluster_io_index ) |
---|
614 | { |
---|
615 | nb_direct_initiators = nprocs + 2; |
---|
616 | nb_direct_targets = 7; |
---|
617 | } |
---|
618 | ringd[x][y] = new VciLocalRingFast<vci_param,cmd_width,rsp_width>( |
---|
619 | sd.str().c_str(), |
---|
620 | maptabd, |
---|
621 | IntTab(cluster(x,y)), // cluster index |
---|
622 | 4, // wrapper fifo depth |
---|
623 | 18, // gateway fifo depth |
---|
624 | nb_direct_initiators, // number of initiators |
---|
625 | nb_direct_targets); // number of targets |
---|
626 | |
---|
627 | std::ostringstream sc; |
---|
628 | sc << "ringc_" << x << "_" << y; |
---|
629 | ringc[x][y] = new VciLocalRingFast<vci_param,cmd_width,rsp_width>( |
---|
630 | sc.str().c_str(), |
---|
631 | maptabc, |
---|
632 | IntTab(cluster(x,y)), // cluster index |
---|
633 | 4, // wrapper fifo depth |
---|
634 | 18, // gateway fifo depth |
---|
635 | nprocs+1, // number of initiators |
---|
636 | nprocs+1); // number of targets |
---|
637 | } |
---|
638 | } |
---|
639 | |
---|
640 | // Distributed Global Interconnect : one cmd router & one rsp router per cluster |
---|
641 | VirtualDspinRouter<cmd_width>* cmdrouter[xmax][ymax]; |
---|
642 | VirtualDspinRouter<rsp_width>* rsprouter[xmax][ymax]; |
---|
643 | |
---|
644 | for ( size_t x = 0 ; x < xmax ; x++ ) |
---|
645 | { |
---|
646 | for ( size_t y = 0 ; y < ymax ; y++ ) |
---|
647 | { |
---|
648 | std::ostringstream scmd; |
---|
649 | scmd << "cmdrouter_" << x << "_" << y; |
---|
650 | cmdrouter[x][y] = new VirtualDspinRouter<cmd_width>( |
---|
651 | scmd.str().c_str(), |
---|
652 | x,y, // coordinate in the mesh |
---|
653 | x_width, y_width, // x & y fields width |
---|
654 | 4,4); // input & output fifo depths |
---|
655 | |
---|
656 | std::ostringstream srsp; |
---|
657 | srsp << "rsprouter_" << x << "_" << y; |
---|
658 | rsprouter[x][y] = new VirtualDspinRouter<rsp_width>( |
---|
659 | srsp.str().c_str(), |
---|
660 | x,y, // coordinates in mesh |
---|
661 | x_width, y_width, // x & y fields width |
---|
662 | 4,4); // input & output fifo depths |
---|
663 | } |
---|
664 | } |
---|
665 | |
---|
666 | /////////////////////////////////////////////////////////////// |
---|
667 | // Net-list |
---|
668 | /////////////////////////////////////////////////////////////// |
---|
669 | |
---|
670 | // External Ram (one instance) |
---|
671 | xram.p_clk (signal_clk); |
---|
672 | xram.p_resetn (signal_resetn); |
---|
673 | xram.p_vci (signal_vci_tgt_x_xram); |
---|
674 | |
---|
675 | // External Network (one instance) |
---|
676 | xnoc.p_clk (signal_clk); |
---|
677 | xnoc.p_resetn (signal_resetn); |
---|
678 | xnoc.p_to_target[0] (signal_vci_tgt_x_xram); |
---|
679 | for ( size_t x = 0 ; x < xmax ; x++ ) |
---|
680 | { |
---|
681 | for ( size_t y = 0 ; y < ymax ; y++ ) |
---|
682 | { |
---|
683 | xnoc.p_to_initiator[cluster(x,y)] (signal_vci_ini_x_memc[x][y]); |
---|
684 | } |
---|
685 | } |
---|
686 | |
---|
687 | // Distributed components (in clusters) |
---|
688 | |
---|
689 | for ( size_t x = 0 ; x < xmax ; x++ ) |
---|
690 | { |
---|
691 | for ( size_t y = 0 ; y < ymax ; y++ ) |
---|
692 | { |
---|
693 | // cmd DSPIN router |
---|
694 | cmdrouter[x][y]->p_clk (signal_clk); |
---|
695 | cmdrouter[x][y]->p_resetn (signal_resetn); |
---|
696 | cmdrouter[x][y]->p_out[0][LOCAL] (signal_dspin_cmd_g2l_d[x][y]); |
---|
697 | cmdrouter[x][y]->p_out[1][LOCAL] (signal_dspin_cmd_g2l_c[x][y]); |
---|
698 | cmdrouter[x][y]->p_in[0][LOCAL] (signal_dspin_cmd_l2g_d[x][y]); |
---|
699 | cmdrouter[x][y]->p_in[1][LOCAL] (signal_dspin_cmd_l2g_c[x][y]); |
---|
700 | |
---|
701 | // rsp DSPIN router |
---|
702 | rsprouter[x][y]->p_clk (signal_clk); |
---|
703 | rsprouter[x][y]->p_resetn (signal_resetn); |
---|
704 | rsprouter[x][y]->p_out[0][LOCAL] (signal_dspin_rsp_g2l_d[x][y]); |
---|
705 | rsprouter[x][y]->p_out[1][LOCAL] (signal_dspin_rsp_g2l_c[x][y]); |
---|
706 | rsprouter[x][y]->p_in[0][LOCAL] (signal_dspin_rsp_l2g_d[x][y]); |
---|
707 | rsprouter[x][y]->p_in[1][LOCAL] (signal_dspin_rsp_l2g_c[x][y]); |
---|
708 | |
---|
709 | // direct ring |
---|
710 | ringd[x][y]->p_clk (signal_clk); |
---|
711 | ringd[x][y]->p_resetn (signal_resetn); |
---|
712 | ringd[x][y]->p_gate_cmd_out (signal_dspin_cmd_l2g_d[x][y]); |
---|
713 | ringd[x][y]->p_gate_cmd_in (signal_dspin_cmd_g2l_d[x][y]); |
---|
714 | ringd[x][y]->p_gate_rsp_out (signal_dspin_rsp_l2g_d[x][y]); |
---|
715 | ringd[x][y]->p_gate_rsp_in (signal_dspin_rsp_g2l_d[x][y]); |
---|
716 | ringd[x][y]->p_to_target[MEMC_TGTID] (signal_vci_tgt_d_memc[x][y]); |
---|
717 | ringd[x][y]->p_to_target[XICU_TGTID] (signal_vci_tgt_d_xicu[x][y]); |
---|
718 | for ( size_t p = 0 ; p < nprocs ; p++ ) |
---|
719 | { |
---|
720 | ringd[x][y]->p_to_initiator[p] (signal_vci_ini_d_proc[x][y][p]); |
---|
721 | } |
---|
722 | |
---|
723 | // coherence ring |
---|
724 | ringc[x][y]->p_clk (signal_clk); |
---|
725 | ringc[x][y]->p_resetn (signal_resetn); |
---|
726 | ringc[x][y]->p_gate_cmd_out (signal_dspin_cmd_l2g_c[x][y]); |
---|
727 | ringc[x][y]->p_gate_cmd_in (signal_dspin_cmd_g2l_c[x][y]); |
---|
728 | ringc[x][y]->p_gate_rsp_out (signal_dspin_rsp_l2g_c[x][y]); |
---|
729 | ringc[x][y]->p_gate_rsp_in (signal_dspin_rsp_g2l_c[x][y]); |
---|
730 | ringc[x][y]->p_to_initiator[nprocs] (signal_vci_ini_c_memc[x][y]); |
---|
731 | ringc[x][y]->p_to_target[nprocs] (signal_vci_tgt_c_memc[x][y]); |
---|
732 | for ( size_t p = 0 ; p < nprocs ; p++ ) |
---|
733 | { |
---|
734 | ringc[x][y]->p_to_target[p] (signal_vci_tgt_c_proc[x][y][p]); |
---|
735 | ringc[x][y]->p_to_initiator[p] (signal_vci_ini_c_proc[x][y][p]); |
---|
736 | } |
---|
737 | |
---|
738 | // Processors |
---|
739 | for ( size_t p = 0 ; p < nprocs ; p++ ) |
---|
740 | { |
---|
741 | proc[x][y][p]->p_clk (signal_clk); |
---|
742 | proc[x][y][p]->p_resetn (signal_resetn); |
---|
743 | proc[x][y][p]->p_vci_ini_rw (signal_vci_ini_d_proc[x][y][p]); |
---|
744 | proc[x][y][p]->p_vci_ini_c (signal_vci_ini_c_proc[x][y][p]); |
---|
745 | proc[x][y][p]->p_vci_tgt (signal_vci_tgt_c_proc[x][y][p]); |
---|
746 | proc[x][y][p]->p_irq[0][0] (signal_proc_it[0][x][y][p]); |
---|
747 | for ( size_t j = 1 ; j < 6 ; j++ ) |
---|
748 | { |
---|
749 | proc[x][y][p]->p_irq[0][j] (signal_false); |
---|
750 | } |
---|
751 | } |
---|
752 | |
---|
753 | // XICU |
---|
754 | xicu[x][y]->p_clk (signal_clk); |
---|
755 | xicu[x][y]->p_resetn (signal_resetn); |
---|
756 | xicu[x][y]->p_vci (signal_vci_tgt_d_xicu[x][y]); |
---|
757 | for ( size_t p = 0 ; p < nprocs ; p++ ) |
---|
758 | { |
---|
759 | xicu[x][y]->p_irq[p] (signal_proc_it[0][x][y][p]); |
---|
760 | } |
---|
761 | |
---|
762 | // MEMC |
---|
763 | memc[x][y]->p_clk (signal_clk); |
---|
764 | memc[x][y]->p_resetn (signal_resetn); |
---|
765 | memc[x][y]->p_vci_tgt (signal_vci_tgt_d_memc[x][y]); |
---|
766 | memc[x][y]->p_vci_ini (signal_vci_ini_c_memc[x][y]); |
---|
767 | memc[x][y]->p_vci_tgt_cleanup (signal_vci_tgt_c_memc[x][y]); |
---|
768 | memc[x][y]->p_vci_ixr (signal_vci_ini_x_memc[x][y]); |
---|
769 | |
---|
770 | // I/O peripherals |
---|
771 | if ( cluster(x,y) == cluster_io_index ) |
---|
772 | { |
---|
773 | bdev.p_clk (signal_clk); |
---|
774 | bdev.p_resetn (signal_resetn); |
---|
775 | bdev.p_irq (signal_irq_bdev); |
---|
776 | bdev.p_vci_target (signal_vci_tgt_d_bdev); |
---|
777 | bdev.p_vci_initiator (signal_vci_ini_d_bdev); |
---|
778 | |
---|
779 | cdma.p_clk (signal_clk); |
---|
780 | cdma.p_resetn (signal_resetn); |
---|
781 | cdma.p_irq (signal_irq_cdma); |
---|
782 | cdma.p_vci_target (signal_vci_tgt_d_cdma); |
---|
783 | cdma.p_vci_initiator (signal_vci_ini_d_cdma); |
---|
784 | |
---|
785 | fbuf.p_clk (signal_clk); |
---|
786 | fbuf.p_resetn (signal_resetn); |
---|
787 | fbuf.p_vci (signal_vci_tgt_d_fbuf); |
---|
788 | |
---|
789 | brom.p_clk (signal_clk); |
---|
790 | brom.p_resetn (signal_resetn); |
---|
791 | brom.p_vci (signal_vci_tgt_d_brom); |
---|
792 | |
---|
793 | mtty.p_clk (signal_clk); |
---|
794 | mtty.p_resetn (signal_resetn); |
---|
795 | mtty.p_vci (signal_vci_tgt_d_mtty); |
---|
796 | for(size_t i=0 ; i<N_TTYS ; i++) |
---|
797 | { |
---|
798 | mtty.p_irq[i] (signal_irq_mtty[i]); |
---|
799 | } |
---|
800 | |
---|
801 | ringd[x][y]->p_to_target[BROM_TGTID] (signal_vci_tgt_d_brom); |
---|
802 | ringd[x][y]->p_to_target[MTTY_TGTID] (signal_vci_tgt_d_mtty); |
---|
803 | ringd[x][y]->p_to_target[BDEV_TGTID] (signal_vci_tgt_d_bdev); |
---|
804 | ringd[x][y]->p_to_target[FBUF_TGTID] (signal_vci_tgt_d_fbuf); |
---|
805 | ringd[x][y]->p_to_target[CDMA_TGTID] (signal_vci_tgt_d_cdma); |
---|
806 | |
---|
807 | ringd[x][y]->p_to_initiator[BDEV_SRCID] (signal_vci_ini_d_bdev); |
---|
808 | ringd[x][y]->p_to_initiator[CDMA_SRCID] (signal_vci_ini_d_cdma); |
---|
809 | |
---|
810 | xicu[x][y]->p_hwi[0] (signal_irq_bdev); |
---|
811 | xicu[x][y]->p_hwi[1] (signal_irq_cdma); |
---|
812 | for(size_t i=0 ; i<N_TTYS ; i++) |
---|
813 | { |
---|
814 | xicu[x][y]->p_hwi[2+i] (signal_irq_mtty[i]); |
---|
815 | } |
---|
816 | } |
---|
817 | } // end for y |
---|
818 | } // end for x |
---|
819 | |
---|
820 | // Inter Clusters horizontal connections |
---|
821 | for ( size_t x = 0 ; x < (xmax-1) ; x++ ) |
---|
822 | { |
---|
823 | for ( size_t y = 0 ; y < ymax ; y++ ) |
---|
824 | { |
---|
825 | for ( size_t k = 0 ; k < 2 ; k++ ) |
---|
826 | { |
---|
827 | cmdrouter[x][y]->p_out[k][EAST] (signal_dspin_h_cmd_inc[x][y][k]); |
---|
828 | cmdrouter[x+1][y]->p_in[k][WEST] (signal_dspin_h_cmd_inc[x][y][k]); |
---|
829 | |
---|
830 | cmdrouter[x][y]->p_in[k][EAST] (signal_dspin_h_cmd_dec[x][y][k]); |
---|
831 | cmdrouter[x+1][y]->p_out[k][WEST] (signal_dspin_h_cmd_dec[x][y][k]); |
---|
832 | |
---|
833 | rsprouter[x][y]->p_out[k][EAST] (signal_dspin_h_rsp_inc[x][y][k]); |
---|
834 | rsprouter[x+1][y]->p_in[k][WEST] (signal_dspin_h_rsp_inc[x][y][k]); |
---|
835 | |
---|
836 | rsprouter[x][y]->p_in[k][EAST] (signal_dspin_h_rsp_dec[x][y][k]); |
---|
837 | rsprouter[x+1][y]->p_out[k][WEST] (signal_dspin_h_rsp_dec[x][y][k]); |
---|
838 | } |
---|
839 | } |
---|
840 | } |
---|
841 | |
---|
842 | // Inter Clusters vertical connections |
---|
843 | for ( size_t y = 0 ; y < (ymax-1) ; y++ ) |
---|
844 | { |
---|
845 | for ( size_t x = 0 ; x < xmax ; x++ ) |
---|
846 | { |
---|
847 | for ( size_t k = 0 ; k < 2 ; k++ ) |
---|
848 | { |
---|
849 | cmdrouter[x][y]->p_out[k][NORTH] (signal_dspin_v_cmd_inc[x][y][k]); |
---|
850 | cmdrouter[x][y+1]->p_in[k][SOUTH] (signal_dspin_v_cmd_inc[x][y][k]); |
---|
851 | |
---|
852 | cmdrouter[x][y]->p_in[k][NORTH] (signal_dspin_v_cmd_dec[x][y][k]); |
---|
853 | cmdrouter[x][y+1]->p_out[k][SOUTH] (signal_dspin_v_cmd_dec[x][y][k]); |
---|
854 | |
---|
855 | rsprouter[x][y]->p_out[k][NORTH] (signal_dspin_v_rsp_inc[x][y][k]); |
---|
856 | rsprouter[x][y+1]->p_in[k][SOUTH] (signal_dspin_v_rsp_inc[x][y][k]); |
---|
857 | |
---|
858 | rsprouter[x][y]->p_in[k][NORTH] (signal_dspin_v_rsp_dec[x][y][k]); |
---|
859 | rsprouter[x][y+1]->p_out[k][SOUTH] (signal_dspin_v_rsp_dec[x][y][k]); |
---|
860 | } |
---|
861 | } |
---|
862 | } |
---|
863 | |
---|
864 | // East & West boundary cluster connections |
---|
865 | for ( size_t y = 0 ; y < ymax ; y++ ) |
---|
866 | { |
---|
867 | for ( size_t k = 0 ; k < 2 ; k++ ) |
---|
868 | { |
---|
869 | cmdrouter[0][y]->p_in[k][WEST] (signal_dspin_false_cmd_in[0][y][k][0]); |
---|
870 | cmdrouter[0][y]->p_out[k][WEST] (signal_dspin_false_cmd_out[0][y][k][0]); |
---|
871 | rsprouter[0][y]->p_in[k][WEST] (signal_dspin_false_rsp_in[0][y][k][0]); |
---|
872 | rsprouter[0][y]->p_out[k][WEST] (signal_dspin_false_rsp_out[0][y][k][0]); |
---|
873 | |
---|
874 | cmdrouter[xmax-1][y]->p_in[k][EAST] (signal_dspin_false_cmd_in[xmax-1][y][k][0]); |
---|
875 | cmdrouter[xmax-1][y]->p_out[k][EAST] (signal_dspin_false_cmd_out[xmax-1][y][k][0]); |
---|
876 | rsprouter[xmax-1][y]->p_in[k][EAST] (signal_dspin_false_rsp_in[xmax-1][y][k][0]); |
---|
877 | rsprouter[xmax-1][y]->p_out[k][EAST] (signal_dspin_false_rsp_out[xmax-1][y][k][0]); |
---|
878 | } |
---|
879 | } |
---|
880 | |
---|
881 | // North & South boundary clusters connections |
---|
882 | for ( size_t x = 0 ; x < xmax ; x++ ) |
---|
883 | { |
---|
884 | for ( size_t k = 0 ; k < 2 ; k++ ) |
---|
885 | { |
---|
886 | cmdrouter[x][0]->p_in[k][SOUTH] (signal_dspin_false_cmd_in[x][0][k][1]); |
---|
887 | cmdrouter[x][0]->p_out[k][SOUTH] (signal_dspin_false_cmd_out[x][0][k][1]); |
---|
888 | rsprouter[x][0]->p_in[k][SOUTH] (signal_dspin_false_rsp_in[x][0][k][1]); |
---|
889 | rsprouter[x][0]->p_out[k][SOUTH] (signal_dspin_false_rsp_out[x][0][k][1]); |
---|
890 | |
---|
891 | cmdrouter[x][ymax-1]->p_in[k][NORTH] (signal_dspin_false_cmd_in[x][ymax-1][k][1]); |
---|
892 | cmdrouter[x][ymax-1]->p_out[k][NORTH] (signal_dspin_false_cmd_out[x][xmax-1][k][1]); |
---|
893 | rsprouter[x][ymax-1]->p_in[k][NORTH] (signal_dspin_false_rsp_in[x][ymax-1][k][1]); |
---|
894 | rsprouter[x][ymax-1]->p_out[k][NORTH] (signal_dspin_false_rsp_out[x][ymax-1][k][1]); |
---|
895 | } |
---|
896 | } |
---|
897 | |
---|
898 | //////////////////////////////////////////////////////// |
---|
899 | // Simulation |
---|
900 | /////////////////////////////////////////////////////// |
---|
901 | |
---|
902 | sc_start(sc_core::sc_time(0, SC_NS)); |
---|
903 | signal_resetn = false; |
---|
904 | |
---|
905 | // network boundaries signals |
---|
906 | for(size_t x=0; x<xmax ; x++) |
---|
907 | { |
---|
908 | for(size_t y=0 ; y<ymax ; y++) |
---|
909 | { |
---|
910 | for (size_t k=0; k<2; k++) |
---|
911 | { |
---|
912 | for(size_t a=0; a<2; a++) |
---|
913 | { |
---|
914 | signal_dspin_false_cmd_in[x][y][k][a].write = false; |
---|
915 | signal_dspin_false_cmd_in[x][y][k][a].read = true; |
---|
916 | signal_dspin_false_cmd_out[x][y][k][a].write = false; |
---|
917 | signal_dspin_false_cmd_out[x][y][k][a].read = true; |
---|
918 | |
---|
919 | signal_dspin_false_rsp_in[x][y][k][a].write = false; |
---|
920 | signal_dspin_false_rsp_in[x][y][k][a].read = true; |
---|
921 | signal_dspin_false_rsp_out[x][y][k][a].write = false; |
---|
922 | signal_dspin_false_rsp_out[x][y][k][a].read = true; |
---|
923 | } |
---|
924 | } |
---|
925 | } |
---|
926 | } |
---|
927 | |
---|
928 | |
---|
929 | sc_start(sc_core::sc_time(1, SC_NS)); |
---|
930 | signal_resetn = true; |
---|
931 | |
---|
932 | for(size_t i=1 ; i<ncycles ; i++) |
---|
933 | { |
---|
934 | sc_start(sc_core::sc_time(1, SC_NS)); |
---|
935 | |
---|
936 | if( debug_ok && (i > from_cycle) && (i < to_cycle) ) |
---|
937 | { |
---|
938 | std::cout << std::dec << "*************** cycle " << i |
---|
939 | << " *******************************************************" << std::endl; |
---|
940 | proc[0][0][0]->print_trace(); |
---|
941 | proc[0][1][0]->print_trace(); |
---|
942 | proc[1][0][0]->print_trace(); |
---|
943 | proc[1][1][0]->print_trace(); |
---|
944 | std::cout << std::endl; |
---|
945 | ringd[0][0]->print_trace(); |
---|
946 | ringd[0][1]->print_trace(); |
---|
947 | ringd[1][0]->print_trace(); |
---|
948 | ringd[1][1]->print_trace(); |
---|
949 | ringc[0][0]->print_trace(); |
---|
950 | ringc[0][1]->print_trace(); |
---|
951 | ringc[1][0]->print_trace(); |
---|
952 | ringc[1][1]->print_trace(); |
---|
953 | std::cout << std::endl; |
---|
954 | cmdrouter[0][0]->print_trace(0); |
---|
955 | cmdrouter[0][1]->print_trace(0); |
---|
956 | cmdrouter[1][0]->print_trace(0); |
---|
957 | cmdrouter[1][1]->print_trace(0); |
---|
958 | std::cout << std::endl; |
---|
959 | cmdrouter[0][0]->print_trace(1); |
---|
960 | cmdrouter[0][1]->print_trace(1); |
---|
961 | cmdrouter[1][0]->print_trace(1); |
---|
962 | cmdrouter[1][1]->print_trace(1); |
---|
963 | std::cout << std::endl; |
---|
964 | memc[0][0]->print_trace(); |
---|
965 | memc[0][1]->print_trace(); |
---|
966 | memc[1][0]->print_trace(); |
---|
967 | memc[1][1]->print_trace(); |
---|
968 | // if ( i%5 == 0) getchar(); |
---|
969 | } |
---|
970 | } |
---|
971 | |
---|
972 | std::cout << "Hit ENTER to end simulation" << std::endl; |
---|
973 | char buf[1]; |
---|
974 | std::cin.getline(buf,1); |
---|
975 | |
---|
976 | return EXIT_SUCCESS; |
---|
977 | } |
---|
978 | |
---|
979 | int sc_main (int argc, char *argv[]) |
---|
980 | { |
---|
981 | try { |
---|
982 | return _main(argc, argv); |
---|
983 | } catch (std::exception &e) { |
---|
984 | std::cout << e.what() << std::endl; |
---|
985 | } catch (...) { |
---|
986 | std::cout << "Unknown exception occured" << std::endl; |
---|
987 | throw; |
---|
988 | } |
---|
989 | return 1; |
---|
990 | } |
---|